
Aaron Moorey Candidate Number: 9462, Center number:64395, Godalming College

AUTOMATIC EBAY LISTER

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

1

Contents

Research .. 4

What is eBay and what is an eBay item? .. 4

Football Shirts ... 7

What is a neural network? .. 8

Interview with two eBay sellers .. 9

eBay API and Tkinter ... 11

Analysis ... 12

Existing system flowchart ... 12

Data Flow Diagrams .. 13

Images ... 15

Matrices .. 16

Activation functions .. 18

After the user has inputted the image .. 21

Top down diagram .. 22

Organizational chart .. 22

Document Specification Sheet (online listing on eBay) .. 23

Proposed General Solutions.. 25

Requirements .. 27

Design .. 29

Ipso charts ... 29

Interface .. 33

Flowcharts ... 36

Organizational chart changes ... 43

Pseudocode ... 44

Matrix class ... 44

MakeMatrix ... 44

Randomize Matrix ... 44

Multiply ... 45

Add .. 46

Apply_function .. 46

Subtract ... 47

Transpose .. 47

Dot product ... 48

apply_function_new_matrix ... 49

Images class .. 50

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

2

Resize .. 50

Toarray .. 50

Training data program .. 52

Separate program which gets the training data ... 52

Rename ... 53

Neural network class ... 54

Initialization procedure ... 54

Feedforward .. 55

Softmax ... 56

Activation functions .. 57

Train .. 58

Write_weights_to_file .. 61

Run_with_existing_weights .. 63

Train_with_existing_weights .. 67

Gui program .. 74

Imports .. 74

main .. 76

End .. 76

open_file ... 77

window_for_info_being_added ... 81

Confirm_items .. 83

Scroll_box .. 88

Calculate_price .. 88

Quicksort ... 89

Show_listings .. 91

Change_price .. 92

Change_title .. 92

Change_description .. 93

Change_postage_price.. 94

List_item .. 95

Training neural network .. 98

Validation .. 103

UML class diagram .. 104

Data Storage.. 104

Testing ... 107

Test Table .. 107

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

3

Videos for testing .. 112

The matrix calculations ... 113

GUI .. 118

Training the neural network ... 121

Worked example of the back propagation for the neural network.. 121

Images for training data: ... 132

The code I used for the training: ... 133

Video for neural network training .. 137

Showing the neural network works for the same colour shirts .. 138

Showing the eBay API connection works correctly... 139

Images ... 139

Checking the title .. 145

Checking the price ... 149

Quicksort algorithm .. 151

Evaluation ... 153

Meeting the requirements .. 153

Possible improvements ... 155

End user’s opinion of the solution .. 156

Bibliography .. 158

Code Appendix .. 0

Get training data program .. 0

Images.py .. 1

Matrix.py ... 2

Neuralnetwork.py ... 5

Training.py .. 18

Gui.py .. 24

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

4

Research

The aim of this project is to create a system that allows eBay sellers to list items much faster

than by using eBay’s website. I will aim to make a program which takes an image of a

football shirt inputted by the user, works out the club of the shirt, and lists it on eBay, the

user will also provide the year and size of the shirt and their PayPal email. I will use a neural

network to work out what club the shirt image is, and then once the program has found out

what the club is, it will search on eBay using the eBay API to find similar sold items and list it

on to eBay in a similar way, with a similar price and title to others that have sold. There will

be minimum input from the user which I believe makes it a useful program to someone that

wants to list items on eBay because of the time saved.

From this research I will conclude whether someone that lists on eBay would find this

program useful, what a neural network is, what an eBay item is and consists of, and what

Python Tkinter and the eBay API are.

What is eBay and what is an eBay item?

eBay is a worldwide online shopping site. Anyone can post items to sell on eBay, either on

auction (where buyers can bid and the item ends on a certain date), or on buy it now (BIN,

where the item has a set price which the buyer must pay unless another price between the

seller and buyer is agreed). Selling on eBay is used by the general public and by businesses

so is an ideal platform for anyone.

From my personal experience of using eBay, I have found that listing items on eBay can be

time consuming, because you have to search through any sold items to check how best to

title your item and what the best price is. My program will save a substantial amount of

time for sellers on eBay because they will not have to find out the price and title

themselves, the program will do this for them. However, they will have the option to tweak

any specifics about the item if they would like.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

5

Below shows what listing an eBay item manually looks like:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

6

 (eBay, n.d.)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

7

ebay.co.uk 1

(eBay, n.d.)

Football Shirts
I have decided that I will aim to get my program to work for telling the difference between

certain football clubs’ shirts. This is because the way that photos are taken of them is

relatively similar for all football shirts on eBay.

I will obtain the pictures which I will use for my training data (explained below) from

previously sold eBay items. To do this I will write a separate program to get images of

certain football clubs’ shirts and put them into a file and then resize them all to 50 x 50 pixel

JPEG images.

Here is an example of what listings of football shirts looks like on eBay:

ebay.co.uk 2

(eBay, n.d.)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

8

What is a neural network?

A neural network is a computing system based around biological neural networks. The

system can learn to solve problems without being told what to do specifically. A neural

network has a large number of processors that operate in parallel with each other and are

arranged as tiers. The first tier receives raw input, each tier after that then receives input

from the tier before it and then passes on its output to the tier in after it. The last tier gives

a final output. Each tier is made up by nodes, which are connected with the nodes in the

tiers before and after it. These nodes perform certain operation on the input they receive

and pass on the result as output to the next tier.

Types of neural networks:

Feedforward – this is where the inputted data passes through the nodes until it reaches the

output node. The sum of the inputs and their weights are calculated and are then

transferred to the output.

Multilayer Perceptron – this has at least three layers. Every node in one layer is connected

to each node in the next layer, so is fully connected. It also uses an activation function,

which defines the output of a node.

Convolutional – this uses more than one multilayer perceptron’s. It performs a

convolutional operation on the input before passing it in, this means the network can be

much deeper but with fewer parameters. It contains one or more convolutional layers which

can be interconnected or pooled.

Recurrent neural network – this is where the output of a layer is saved and fed back to the

input which helps predict the outcome of the layer. If the prediction is wrong, then the

system learns and uses backpropagation to make the right prediction.

(A.Mehta, 2015)

For my neural network, I will use pictures of sold items of football shirts for my training data

(the data which will be put into the neural network to make the neural network learn). Each

input will consist of an image of a football shirt. Each input will have a target array matched

up with it. For example a Chelsea shirt input might have a target array output of [1,0,0,0,0].

The network will train with my training data and by the end of the training it should be able

to work out which football shirt an inputted image is.

The user will be asked to input an image of a shirt and this will be passed through the neural

network, the program will then display what club it thinks the shirt belongs to. It will ask the

user to confirm that the program has got the correct club name. If it is not the same then

the user will have to input the correct club name the network will train again with the image

inputted. When the user confirms it’s the same, they will have to input certain details about

the shirt, like the size, year and also their PayPal email.

It will then use these details to perform a search using the eBay API to find others of the

same items to it that have previously sold. Using the information of the previously sold

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

9

items, it will make a listing for the item the user input, by working out what price it should

have, and the title.

Finally, the user will be offered the chance to make any changes to the listing and then

confirm that it is fine to be listed on to eBay.

Here is an example of item information I can pull out using the eBay API by searching by a

specific category, you can also search by other factors such as by keywords in the title:

To find out how I will make my neural network and use the eBay API I have read many

online resources and I have also watched YouTube videos. These have helped me

understand what is needed for my program to function correctly. I have looked at what is

needed in a neural network and also the logic and maths behind it to help me better

understand it; in addition I have also looked at ways to make it more effective (with more or

less layers, or more or less nodes in each layer).

Interview with two eBay sellers

Interviewee number 1 – he has been selling on eBay for over a year so has good experience

about the current eBay listing system.

Interviewee number 2 – W. Horsley, he has also been selling on eBay for over a year so has

good experience of the current listing process too.

1. What do you like about eBay?

It’s easy to use

I like how it is easy to set parameters on searches etc, particularly on my phone

2. What don’t you like about eBay?

title Image

(galler

yURL)

price

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

10

eBay almost always sides with the buyer in any dispute

I don’t like how long it takes to extract pictures from my phone onto my laptop and

then onto eBay and then resizing and rotating them

3. About how long does it take you to list an item?

Around 5 minutes, depending on the item

9-10 minutes

4. Do you feel it takes longer than necessary?

No not really, only when relisting

Absolutely

5. Do you spend lots of time looking up the price of other items?

Yes

Much longer than necessary

6. Do you find it interesting seeing the price of other items like yours?

Yes

I find it interesting to find out the value of what I am selling

7. Do you spend lots of time looking up what to include in your title for an item?

No

I spend longer than I want because I have to check a number of sold items as well as

listed items on the product I am listing

8. Do you find it interesting finding out what to include in your title?

No

No I find it time consuming having to find lots of relevant words from listed and sold

items to help maximise the searches I will get on the listing

9. What don’t you like about the current listing method on eBay?

Having to rotate and crop the images

The number of separate stages there are to listing. Finding a price, finding a title and

adding the pictures

10. Would you find something that lists items for you automatically from you just

inputting an image useful?

Yes

Yes

11. Why/ why not?

It would be less time consuming and less commitment for me

Because it would mean I could list more items in a given period and it would reduce

the time researching things like price, title etc

In conclusion, from these interviews I have found that both interviewees would find my

program useful because it would save time. Additionally, both find it interesting to see

similar sold items, therefore I will have to include this in my program somewhere. I have

also found that both find that cropping and rotating images takes a long time.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

11

eBay API and Tkinter
Tkinter provides an easy to use simple graphical user interface for python. I have had to

learn how to use Tkinter, this will make my project look much better and will make it much

easier for the user to use. By using Tkinter this will give my program a user friendly interface

which will make it possible for anyone who wants to list a football shirt on eBay, be able to

list the shirt simply and quickly. Here there will also be validation on user inputs, such as the

user typing in the year of the shirt. This will also help with the ease of using the program by

making sure there are no errors while it is running.

Here’s an example of python Tkinter:

The eBay API (application programming interface) is used for interacting with the eBay

database. The communication occurs over the internet. There are buy, sell, commerce and

developer APIs. These allow you to search for items, list items, buy items and many other

possibilities through code and is crucial for my program. For example, I will be using the

trading API to list items and the finding API to search for recently sold similar items. For this

I will need a file to store my API personal user keys to allow me to have access to eBay,

however I will not show these in the documentation because they are private to my

account. These will be stored in the file ‘ebay.yaml’.

(developer.ebay.com, 2020)

Overall, I will be making a program that takes an image of a football shirt that the user has

inputted and lists the item on eBay by using a neural network and the eBay API to work out

what football club the shirt inputted by the user belongs to and therefore work out the

price, title and other attributes the listing should have. This should make the listing process

for eBay sellers more efficient and save them time.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

12

Analysis

Existing system flowchart

As you can see from the flow chart, listing an item requires many steps and is very

repetitive. My program should stop it from taking so long to list items and make there less

steps for the user, hopefully making it a less dull process.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

13

Data Flow Diagrams
Here are two data flow diagrams, one level 0 and two level 1s showing simply how the

program I will make is expected to work.

Level 0:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

14

Level 1:

This diagram shows how the listing part of the program will work

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

15

Images

I will require many photos of each football club shirt for my training data. This will be

collected by searching through current listings on eBay and taking the photo of each listing.

A search for each club shirt will be carried out and then saved to a different folder for each

club. There should be around 100 images for each club.

I will then manually look through each folder to make sure the images are of the correct

shirts and delete any that are incorrect. The pictures will then be renamed by a separate

program so that they are all named in numerical order.

I will use the python module Pillow to read the images. Each image will be resized to 50 x 50

pixels and saved as a jpg. I will then use Pillow to convert each image to an array. Each pixel

is made up of 3 numbers for the RGB (red green blue) values for the colour. This means that

an array will contain 7500 (50x50x3) numbers for each image.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

16

Matrices
A matrix is a rectangular array of numbers in rows and columns.

These are examples of matrices:

inquiry maths 1

(maths, n.d.)

Using matrices to store the weights and data in a neural networks is very useful, which I will

go into more detail later showing how they are used.

I will require a separate class to do any matrix calculations required for the neural network,

this is described below. The matrix class will take rows and columns as parameters in the

initialisation function.

These are the sub procedures that will be in the class:

MakeMatrix – this sub creates an empty matrix with the dimensions specified by rows and

columns.

RandomizeMatrix – this sub assigns a random number between -1 and 1 to each position in

the matrix.

Multiply – this sub multiplies each element in the matrix by a number given as a parameter

or multiplies two matrices together.

Subtract – this is where one matrix is subtracted from another and a new matrix is returned.

Each element in the two matrices are matched up and subtracted from one another:

Apply_function Apply_function

_new_matrix

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

17

codeforwin.org, 2015 1

(Codeforwin, codeforwin, 2015)

Dotproduct – the diagram below demonstrates the dotproduct multiplication, the rows and

columns of two different matrices must match for this multiplication to work:

hadrienj - github, 2018 1

(github, 2018)

Transpose – this is where the matrix’s rows are turned into a new matrix’s columns, the

diagram below shows how this works:

java67.com, 2016 1

(Java67.com, 2016)

Apply_function – this is where a specified function is applied to each element in the matrix.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

18

Add - this is where one matrix is added to another and a new matrix is returned. Each

element in the two matrices are matched up and added to one another:

codeforwin.org, 2017 1

(Codeforwin, codeforwin, 2017)

Apply_function_new_matrix – this is where a specified function is applied to each element

in the matrix and a new matrix is created with these values in.

Activation functions
Activation functions take away the linear properties of the neural network and give it non-

linear properties. They convert the input node to an output node which is then fed into the

next layer as input. Giving the neural network non linear properties which means they can

learn almost anything as linear functions are easy to solve and have limited complexity.

Possible activation functions:

The sigmoid function:

towardsdatascience.com, 2017 1

(Towardsdatascience, Towards data science, 2017)

This function returns a value in the range of 0 and 1 which is useful for normalising the

weights for the neural network. However, this function makes the gradient changes go too

Sigmoid

Formula

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

19

far in different directions and has a vanishing gradient problem as shown in the diagram on

the left where the gradient turns to 0 at either end.

Hyperbolic tangent function:

This produces values between -1 and 1, which makes it 0 centred, therefore optimization is

easier than with sigmoid. However, this still has the vanishing gradient like sigmoid.

mathworld.wolfram.com 1

(Mathworld, n.d.)

Rectified linear units:

This is where if x < 0 then R(x) = 0 and if x >= 0 then R(x) = x

This is very simple and also loses the vanishing gradient problem found in both sigmoid and

the hyperbolic tangent function. However, this should only be used for the hidden layers.

(machinelearningmastery, 2019)

Therefore, a softmax function should be used for the output layer, this returns a value

between 0 and 1 and all the outputs add up to 1. The high value of the outputs will have the

highest probability.

oreilly.com 1

machinelearningmastery.com, 2019 1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

20

The softmax graph looks like this:

dataaspirant.com, 2017 1

(Dataaspirant, 2017)

Softmax formula:

dataaspirant.com, 2017 2

(Dataaspirant, 2017)

Leaky ReLu:

Some gradients with ReLu can be fragile during training and die, this could result in dead

neurons.

To fix this leaky ReLu is used which has a small slope before 0 to stop neurons dying.

ayearofai.com, 2016 1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

21

(ayearofai, 2016)

I will be using sigmoid and softmax for my program as the softmax gives probabilities

which works well for me working out which football shirt an image is.

(Sharma, 2017) – activation functions

After the user has inputted the image

Once the user has inputted the image, it will then be converted to an array of numbers and

fed through the neural network. An output will be displayed showing which club the

program thinks the shirt belongs to:

Here the user can say that the program got the club correct or incorrect by selecting yes or

no. If the user says the program got the incorrect club then they should input the actual club

name and the neural network will train again with the image the user inputted and the

actual club name they just inputted.

If the user says the program got the correct club, the user will then have to enter details

about the shirt, such as the year it was from, the size and the weight, and also their PayPal

email which is needed for listing the item on eBay.

Once they have inputted this information which will be validated (email by using regex, year

of shirt by using boundaries so only certain years you can input, etc.), the program will then

use the information inputted to search through previously sold similar items on eBay using

the eBay API. It will create a suggested title, description, postage price and price (made by

taking out outlier prices and then finding an average). All of these suggested features will be

made possible to be changed by the user however, these are meant to be the ideal features

for the eBay item. E.g. the title will feature the most common words used by other eBay

sellers for similarly sold items which should help the item sell.

Then the user should be allowed to make any final changes before listing the item on to

eBay. Once they have listed the item on eBay they will then be able to choose to exit the

program or list another item.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

22

Top down diagram
This is a top down diagram to show the basic processes involved in the planned program.

Organizational chart
This organizational chart shows the basic processes involved in my program including

planned sub procedures

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

23

Document Specification Sheet (online listing on eBay)

Volumetrics

Document description System Document Name Sheet

eBay online listing

Listing an item

online

1 Aaron Moorey 1

Stationery ref. Size Number of parts Method of preparation

 1 typed

Filing sequence Medium Prepared by

Computer Person listing an item on

eBay

Frequency of preparation Retention period Location of file

Every time an item is needed to be

listed on eBay

 online

V
o
lu

m
e

Minimum Maximum Av/Abs Growth rate/fluctuations

Users/receipts Purpose Frequency of use

People listing on eBay

To list an item on eBay Whenever an item is

needed to be listed

on eBay

Data Dictionary

Ref Name Data Type Regex Occurrence Source of data /

description

1 title string Once per listing User input

2 Category string Once per listing User input

3 Condition string Once per listing User input

4 Photos images Max 12 times

per listing,

User input

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

24

otherwise have

to pay extra

5 Description string Once per listing User input

6 Format string Once per listing User input

7 price number Once per listing User input

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

25

Proposed General Solutions

Here I have two possible solutions which I could use to make my program.

Solution 1:

In this system it would require the program to iterate through current and sold eBay items.

From these items it would pull out the image of the item. It would have to work out which

items are the same and which aren’t from the titles of the listings. Then the neural network

would train by selecting two random images and outputting a 1 if the images were the same

and a 0 if the images were different. The weights would then be stored in a notepad file

once the training is finished.

The user would then input their image and using the eBay API, the program would search

through the items in the football shirt category on eBay and use the neural network to

compare the image inputted by the user and the image of the item currently being looked at

in the football shirt category. If the computer thinks they are different, the program will

move onto the next listing and compare the image of that listing.

If a number near 1 is outputted, then the program will take the title from the item. This will

then be used to search for other items with similar titles and the program will then be able

to work out what price the item should be listed at and what title the item should have.

The user would input their PayPal email, the weight of the item and then add anything to

the description if they would like. The item will then be showed to the user and they will be

able to make any changes that they would like to make, and they can then confirm listing

the item.

Solution 2:

In this system the training data would be collected from current eBay listings’ photos. At

least 100 images of each football shirt (for at least five teams in the English Premier League)

will be collected using a separate program and then stored in folders with the team assigned

to the correct folder. The neural network will then train using the images collected from the

eBay search, selecting random images from the folders. The weights will then be stored in a

text file.

The user will then have to input an image. This image will be resized to 50x50 pixels, then

converted to an array of numbers, 3 RGB numbers representing each pixel in the image.

This array will then be fed forward through the neural network using the weights stored in

the text file. An output will be given of which football club it thinks the shirt belongs too.

The user will then have to confirm whether this is correct.

Once the football club and shirt have been confirmed to be correct by the user, they would

have to input information like shirt size and year. The program can then use this information

to search on eBay for similar items and decide on a title and price for the shirt. The user will

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

26

then have to input their PayPal email, the weight of the item and can choose to edit the

description. After this the user will have the option to make any changes to the item and

then they can confirm that they are happy for the item to be listed.

Solution I have chosen:

Solution 1 requires two images to be passed through the neural network. This would take

twice as long to train and feed forward as solution two would making it less efficient.

Solution 2 would require me to check every image in the training data to make sure it is the

right shirt which would take a lot of time but is not too much of a problem. Solution 1 would

also require a lot more training data as it is checking for if images are the same or different

whereas solution 2 is just matching an image with an output. Also, solution 1 may cause

some problems with the training data when having to try and find similar images. Overall, I

have decided that I will use solution 2 as it is more efficient and matches all the criteria

needed for the user.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

27

Requirements
1. To be easy to use

1.1 The program must be able to be used by anyone that wants to list a football shirt

on eBay

1.2 Must have a good user-friendly interface

1.3 There must be validation to avoid any errors while the program runs

2. Training data must be gathered

2.1 get around 100 images for each club, some clubs may be harder to find lots of

images

2.2 images must be checked manually to make sure they are the correct shirt for the

club

2.2.1 inappropriate images should be deleted from the folders

2.2.2 images should then be renamed in numerical order

3. The neural network should then train

3.1 randomly selected images from the training data will be selected along with an

output value, which will then be used to train the neural network

3.2 the weights from the outcome of the training will be stored in a txt file which will

be used later in the program

4. User must be able to input an image

4.1 the image must be resized to a 50x50 pixel image

4.2 the image must then be converted to an array of numbers, 3 numbers

representing each pixel in the image

4.3 this image must then be able to be passed through the neural network. An

output should be displayed of what football club the computer thinks the shirt

belongs to using the weights stored in the text file

4.4 The user must then be able to confirm whether the computer got the correct

club for the picture of the shirt they inputted

5. If the computer got the wrong club then the following should happen

5.1 The user should input the actual club for the shirt

5.2 The neural network should train again using the image inputted by the user, and

therefore updating its weights

5.3 The program should then continue as it would from point 6

6. List item

6.1 The user must input some information:

6.1.1 the year the shirt was from

6.1.2 their PayPal email

6.1.3 the size of the shirt

6.1.4 the weight of the shirt

6.2 The program should then use the club, size and the year to search for the item

using the eBay API

6.3 Get title for item

6.3.1 The program should look at currently listed items and sold items to

decide on a title for the item

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

28

6.3.2 Should pull out key words that occur regularly and format correctly

6.4 Get price for item

6.4.1 The program should look at recently sold items to work out a price for the

item

6.4.2 Any outlier prices should not be used

6.4.3 The user should also be able to see recently sold items of their particular

shirt as requested in the interview in my research

6.5 The user will then be shown the listing and given the opportunity to make any

changes and confirm they are happy for the item to be listed

7. User then has option to exit program or list another shirt

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

29

Design

Ipso charts

Get training data

Get images of shirts for different clubs which will be used for training data in the neural

network

Input

• List of clubs

Processes

• Search through eBay and

download images of club

shirts

Storage

• Save images in folder of

name of club

Outputs

• Images saved in folder

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

30

Train neural network

Training data is passed into the neural network and adjusts weights in the network to get

closer to match the actual output with the expected output

Input

• Randomly selected shirts

from training data folders

Processes

• Image turned into array of

numbers representing

pixels of image

• Array passed through

training part of neural

network

Storage

• Weights saved to text file

when training finished

Outputs

• Conformation that

training is complete

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

31

Work out which shirt

User inputs a shirt and is sent through the neural network to work out which club the shirt

inputted is

Input

• User image of shirt

Processes

• Convert image to array of

numbers representing the

pixels of the image

• Feed the array of numbers

through the neural network

Storage

• Save which shirt the

neural network thinks it is

in the program

Outputs

• Display which club shirt

the neural network thinks

the user input

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

32

List item

Search on eBay to work out price and title for the listing of the shirt and then list it on eBay

Input

• Year of shirt

• Size of shirt

• PayPal email

• Weight of shirt

Processes

• Work out price to list shirt at

• Work out title to use for

listing

• List the shirt using eBay API

Storage

• Use shirt discovered

earlier to work out price

and title

• ebay.yaml config file for

eBay API token

Outputs

• List the item on eBay

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

33

Interface

These are some simple designs for how the user interface will look, they will have the simple

inputs and outputs the program will require. This is by using the module Tkinter.

Button for user to press to be

able to select an image to be sent

through the neural network.

There is a progress bar at the

bottom to show how far the user

is through the listing process.

When button is pressed, opens

up a place for the user to browse

and select the image they want

to send to the neural network,

only will be allowed to input a

JPEG image to stop errors

occurring for validation.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

34

It will then display the image the

user inputted and ask the user

whether the neural network has

got the club of the shirt correct,

which the user will then have to

select ‘yes’ or ‘no’. Giving the

user the only options of yes and

no means that whichever they

select, an error will not occur, so

is more robust than asking them

to type it manually.

If the user answers ‘no’, then the

user will have to enter the actual

club of the shirt. Then the image

inputted by the user will be

trained by the neural network

with the actual club name just

inputted by the user. The

program will then continue as it

would for if the user had selected

‘yes’.

User then needs to input the size

of the shirt and the year it was

from. This will then be used to

search on eBay for similarly sold

items, for the program to be able

to obtain a title and price for the

shirt for the users listing.

Will be validated

to ensure that

the user only can

enter one of the

allowed clubs

Year of the shirt will be validated

by user only being able to input

years between and including

1900 and 2020.

Size of shirt will be a drop-down

box where there are only certain

sizes the user can select (e.g. XS,

S, M, L, XL, etc.)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

35

The user will then be shown what their new listing will look like, here they will have the

opportunity to make changes to the title, price, description and postage price. Once they

are happy with the listing, they will then be able to confirm that they are happy for the shirt

to be listed on eBay. Once it has been listed on eBay, the user will then have the option to

list another shirt or exit the program.

Then the interface should display

previously sold items with their

prices so that the user can see

what other shirts similar have

sold at. This was suggested in my

interview with two eBay sellers in

my research and will help the

user know whether they should

stick with the program’s

recommendation for price or

change it.

The user should then enter their

PayPal email and the weight of

their item. The PayPal email is

needed for listing the item on

eBay, so that when the item is

bought, the money paid by the

buyer has somewhere to go.

The weight is needed so that the

postage cost for the item can be

calculated. Different weights

have different postage costs.

The email will be validated using regex, to

make sure the user inputs a valid email.

The weight will be a drop-down box, giving

the user only certain options for the weight.

This means I can avoid having to validate raw

user text input and is also quicker for the

user.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

36

Flowcharts

This flowchart shows how the training data will be gathered

Here are some flow charts showing how I plan to develop the neural network, they only

include one hidden layer however the final solution will include two hidden layers.

This flowchart shows the basic setup of the neural network when the class is initialised

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

37

This flowchart shows a simplified

version of how the training

section works for the neural

network

Weights_ih stands for the

weights in between the input and

hidden layer.

Weights_ho stands for the

weights in between the hidden

and output layer

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

38

These diagrams show a similar training process used by my neural network in the flowchart

above:

guru99.com 1

(guru99, n.d.)

Once the actual output has been produced, the difference between the actual output and expected

output is calculated. This difference is then used to for the back-propagation process where the

weights are updated.

towardsdatascience.com, 2017 2

(Towardsdatascience, Towardsdatascience, 2017)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

39

Flowchart showing the feed forward process of the neural network:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

40

Flow chart showing the basic process of listing the item on eBay

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

41

Flowchart for the

GUI

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

42

List_item sub procedure

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

43

Organizational chart changes

New organizational chart, updated from analysis:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

44

Pseudocode

Matrix class

These are the sub routines in the matrix class:

Subroutine name Page number

MakeMatrix 44

RandomizeMatrix 44

Multiply 45

Add 46

Apply_function 46

subtract 47

transpose 47

Dot product 48

Apply_function_new_matrix 49

MakeMatrix

- Creates a matrix with width self.cols and height self.rows, each element in the matrix

will be equal to 0

FUNCTION MakeMatrix(self):

 FOR I in range(0,self.rows):

 self.matrix.append([])

 FOR j in range(0,self.cols):

 self.matrix[i].append(j)

 self.matrix[i][j] ← 0

 END FOR

 END FOR

 RETURN self.matrix

END FUNCTION

Randomize Matrix

- Puts random values in each element of a matrix, each value will be between -1 and 1

FUNCTION RandomizeMatrix(self):

 FOR I in range(0,self.rows):

 FOR j in range(0,self.cols):

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

45

 self.matrix[i][j] ← random.uniFORm(-1,1)

 END FOR

 END FOR

 RETURN self.matrix

END FUNCTION

Multiply

- Multiplies each element in matrix by n or multiplies two matrices together

FUNCTION multiply(self, n):

 IF isinstance(n, Matrix):

 FOR I in range(0,self.rows):

 FOR j in range(0,self.cols):

 self.matrix[i][j] *← n.matrix[i][j]

 END FOR

 END FOR

 RETURN self.matrix

 ELSE:

 FOR I in range(0,self.rows):

 FOR j in range(0,self.cols):

 self.matrix[i][j] *← n

 END FOR

 END FOR

 RETURN self.matrix

 END IF

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

46

Add

- Adds n to each element in matrix or adds two matrices together

FUNCTION add(self, n):

 IF isinstance(n, Matrix):

 FOR I in range(0,self.rows):

 FOR j in range(0,self.cols):

 self.matrix[i][j] +← n.matrix[i][j]

 END FOR

 END FOR

 RETURN self.matrix

 ELSE:

 FOR I in range(0,self.rows):

 FOR j in range(0,self.cols):

 self.matrix[i][j] +← n

 END FOR

 END FOR

 RETURN self.matrix

 END IF

END FUNCTION

Apply_function

- Applies a function, fun, to each element in the matrix, for example it may apply a

function called double which doubles each element in the matrix

FUNCTION apply_function(self, fun):

 FOR I in range(0, self.rows):

 FOR j in range(0, self.cols):

 val ← self.matrix[i][j]

 self.matrix[i][j] ← fun(val)

 END FOR

 END FOR

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

47

 RETURN self.matrix

END FUNCTION

Subtract

- Subtracts one matrix from another

FUNCTION subtract(self, n):

 result ← Matrix(self.rows, self.cols)

 result.MakeMatrix()

 FOR I in range(0,result.rows):

 FOR j in range(0,result.cols):

 result.matrix[i][j] ← self.matrix[i][j] – n.matrix[i][j]

 END FOR

 END FOR

 RETURN result

END FUNCTION

Transpose

- Shown in my analysis section what the transpose procedure is, page 17

FUNCTION transpose(self):

 result ← Matrix(self.cols, self.rows)

 result.MakeMatrix()

 FOR I in range(0, self.rows):

 FOR j in range(0, self.cols):

 result.matrix[j][i] ← self.matrix[i][j]

 END FOR

 END FOR

 RETURN result

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

48

Dot product

- Applies dot product between 2 matrices, shown in my analysis, page 17

 FUNCTION dotproduct(self, n):

 IF isinstance(n, Matrix):

 IF self.cols !← n.rows:

 OUTPUT “Not equal cols and rows”

 ELSE:

 result ← Matrix(self.rows, n.cols)

 result.MakeMatrix()

 FOR I in range(0, result.rows):

 FOR j in range(0,result.cols):

 total ← 0

 FOR k in range(0, self.cols):

 total +← self.matrix[i][k] * n.matrix[k][j]

 END FOR

 result.matrix[i][j] ← total

 END FOR

 END FOR

 RETURN result

 END IF

 ELSE:

 OUTPUT “Not matrix”

 END IF

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

49

apply_function_new_matrix

- Applies a function to each element in matrix and returns a new matrix, same as

apply_function but a new matrix is made with the new values in it

FUNCTION apply_function_new_matrix(self, fun):

 result ← Matrix(self.rows, self.cols)

 result.MakeMatrix()

 FOR I in range(0, result.rows):

 FOR j in range(0, result.cols):

 val ← self.matrix[i][j]

 result.matrix[i][j] ← fun(val)

 END FOR

 END FOR

 RETURN result

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

50

Images class

This class manages all the images inputted by the user or used for the training data. It uses

the module PIL which is imported at the start of the program. The two procedures are resize

and toarray.

Resize

- This resizes an image to a new 50 x 50 pixel image

FUNCTION resize(self, filename2):

 img Image.open(self.filename)

 new_img img.resize((50,50))

 TRY:

 new_img.save(settings_array[4] + filename2 + “.jpg”)

 EXCEPT:

 OUTPUT “File path does not exist in the settings file, please update and then restart”

 sys.exit()

END FUNCTION

Toarray

- this converts the image to an array of integers, 3 integers for each pixel because of

the RGB colours.

FUNCTION toarray(self):

 img ← Image.open(self.filename, ‘r’)

 w, h ← img.size

 pix ← list(img.getdata())

 x ← [pix[n:n+w] FOR n in range(0, w*h, w)]

 arr ← []

 FOR I in range(0, len(x)):

 FOR j in range(0, len(x[i])):

 FOR k in range(0, len(x[i][j])):

 arr.append(round(3*((x[i][j][k]) / float(1000)),3))

 END FOR

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

51

 END FOR

 END FOR

 RETURN arr

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

52

Training data program

Separate program which gets the training data

- This program searches through eBay using the eBay API and downloads images of

football shirts and saves them to folders named by club. This uses imports of urllib2,

json, requests, Images, PIL and os.

FROM urllib2 IMPORT urlopen

IMPORT json

IMPORT requests

FROM images IMPORT *

FROM PIL IMPORT Image

IMPORT os

search_term ← “club_name%20shirt%20home”

url ← (‘https://svcs.ebay.com/services/search/FindingService/v1\

?OPERATION-NAME←findItemsByKeywords&paginationInput.pageNumber←1&SERVICE-

VERSION←1.0.0\

&SECURITY-APPNAME←ebay_key&\

RESPONSE-DATA-FORMAT←JSON&REST-PAYLOAD&keywords←’ + search_term)

apiresult ← requests.get(url)

api_return ← apiresult.json()

index ← 0

FOR item in (api_return[“findItemsByKeywordsResponse”][0][“searchResult”][0][“item”]):

 pic ← item[“galleryURL”][0]

 Images(urlopen(pic), “pic” + str(index)).resize()

 index+←1

END FOR

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

53

Rename

- This procedure renames all the files in the folders after I have gone through

manually and deleted any photos which should not be in the files. It renames them

in numerical order which makes the images much easier for me to use for the neural

network training.

FUNCTION rename():

 I ← 0

 FOR filename in os.listdir(“location_of_where_images_are_stored”):

 IF filename ← “Thumbs.db”:

 OUTPUT “not an image”

 ELSE:

 new_name ←”pic” + str(i) + “.jpg”

 current_name ← location_of_where_images_are_stored + filename

 new_name ← location_of_where_images_are_stored + dst

 os.rename(current_name, new_name)

 I +← 1

 END IF

 END FOR

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

54

Neural network class

- The program with this class in imports the matrix and images modules above as well

as math and sys.

These are the sections for the neural network class:

Section Page

Initialization procedure 54

Feedforward 55

Softmax 56

Activation functions 57

Train 58

Write_weights_to_file 61

Run_with_existing_weights 63

Train_with_existing_weights 67

Initialization procedure

- this takes in the amounts of nodes in the neural network for each layer and makes a

matrix for each layer for the weights and biases and randomizes the contents to give

random weights for the neural network

 FUNCTION __init__(self, inputnodes, hiddennodes1, hiddennodes2, outputnodes):

 self.inodes ← inputnodes

 self.hnodes1 ← hiddennodes1

 self.hnodes2 ← hiddennodes2

 self.onodes ← outputnodes

 self.weights_ih ← Matrix(self.hnodes1, self.inodes)

 self.weights_h1h2 ← Matrix(self.hnodes2, self.hnodes1)

 self.weights_ho ← Matrix(self.onodes, self.hnodes2)

 self.weights_ih.MakeMatrix()

 self.weights_h1h2.MakeMatrix()

 self.weights_ho.MakeMatrix()

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

55

 self.weights_ih.RandomizeMatrix()

 self.weights_h1h2.RandomizeMatrix()

 self.weights_ho.RandomizeMatrix()

 self.bias_h ← Matrix(self.hnodes1, 1)

 self.bias_h2 ← Matrix(self.hnodes2, 1)

 self.bias_o ← Matrix(self.onodes, 1)

 self.bias_h.MakeMatrix()

 self.bias_h2.MakeMatrix()

 self.bias_o.MakeMatrix()

 self.bias_h.RandomizeMatrix()

 self.bias_h2.RandomizeMatrix()

 self.bias_o.RandomizeMatrix()

 self.learningrate ← 0.01

END FUNCTION

Feedforward

- Takes image array, feeds it through the neural network which applies matrix

calculations and activations functions to the array and returns an output matrix

FUNCTION feedforward(self, input_array):

 inputs ← Matrix(len(input_array), 1)

 inputs.MakeMatrix()

 FOR I in range(0, len(input_array)):

 inputs.matrix[i][0] ← input_array[i]

 END FOR

 hidden ← self.weights_ih.dotproduct(inputs)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

56

 hidden.add(self.bias_h)

 hidden.func(activation_function)

 hidden2 ← self.weights_h1h2.dotproduct(hidden)

 hidden2.add(self.bias_h2)

 hidden2.func(activation_function)

 output ← self.weights_ho.dotproduct(hidden2)

 output.add(self.bias_o)

 output.func(activation_function)

 output = softmax(output)

 RETURN output

END FUNCTION

Softmax

- Applies softmax function to a matrix, explained in analysis 19

FUNCTION softmax(outputs):

 denominator ← 0

 FOR I in range(0,outputs.rows):

 FOR j in range(0,outputs.cols):

 denominator +← math.exp(outputs.matrix[i][j])

 END FOR

 END FOR

 FOR I in range(0,outputs.rows):

 FOR j in range(0,outputs.cols):

 OUTPUT (math.exp(outputs.matrix[i][j]))/denominator

 END FOR

 END FOR

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

57

Activation functions

The activation function are explained in analysis, on page 18

Sigmoid:

- Applies sigmoid function

FUNCTION sigmoid(x):

 IF x < 0:

 RETURN 1- 1 / (1 + math.exp(x))

 RETURN 1 / (1 + math.exp(-x))

 END IF

END FUNCTION

Derivative of sigmoid (used for backpropogation):

- Applies derivative of sigmoid

FUNCTION dsigmoid(x):

 RETURN x * (1 – x)

END FUNCTION

Relu:

- Applies relu function

FUNCTION relu(x):

 IF x < 0:

 RETURN x * 0.01

 ELSE:

 RETURN x

 END IF

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

58

Derivative of relu (used for backpropogation):

- Applies derivative of relu

FUNCTION drelu(x):

 IF x < 0:

 RETURN 0.01

 ELSE:

 RETURN 1

 END IF

END FUNCTION

- Tanh activation function can be used with the import module math

Train

- This function is used to train the neural network, it takes an image, inputs_array, a

target_array and nn, which is the neural network which has been instantiated

earlier. The image is converted to an array and then a matrix, which is fed through

the network. The error between the actual output and the expected output is

calculated, then the backpropogation occurs where the weights are adjusted.

 FUNCTION train(self, inputs_array, targets_array, nn):

 inputs ← Matrix(len(inputs_array), 1)

 inputs.MakeMatrix()

 FOR I in range(0, len(inputs_array)):

 inputs.matrix[i][0] ← inputs_array[i]

 END FOR

 #generating hidden output

 hidden ← self.weights_ih.dotproduct(inputs)

 hidden.add(self.bias_h)

 #activation function

 hidden.func(activation_function)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

59

 hidden2 ← self.weights_h1h2.dotproduct(hidden)

 hidden2.add(self.bias_h2)

 hidden2.func(activation_function)

 #generate output

 outputs ← self.weights_ho.dotproduct(hidden2)

 outputs.add(self.bias_o)

 #activation function

 outputs.func(activation_function)

 #put targets array into matrix

 targets ← Matrix(len(targets_array), 1)

 targets.MakeMatrix()

 FOR I in range(0, len(targets_array)):

 targets.matrix[i][0] ← targets_array[i]

 END FOR

 #calculate output errors

 output_errors ← targets.subtract(outputs)

 #calculate gradients

 gradients ← outputs.stfunc(derivative_of_activation_function)

 gradients.multiply(output_errors)

 gradients.multiply(self.learningrate)

 #calculate deltas

 hidden2_transposed ← hidden2.transpose()

 weight_ho_deltas ← gradients.dotproduct(hidden2_transposed)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

60

 #adjust ho weights by deltas

 self.weights_ho.add(weight_ho_deltas)

 #adjust bias by deltas

 self.bias_o.add(gradients)

 #calculate hidden layer errors

 weights_ho_transposed ← self.weights_ho.transpose()

 hidden2_errors ← weights_ho_transposed.dotproduct(output_errors)

 hidden2_gradient ← hidden2.stfunc(derivative_of_activation_function)

 hidden2_gradient.multiply(hidden2_errors)

 hidden2_gradient.multiply(self.learningrate)

 hidden1_transposed ← hidden.transpose()

 weight_h1h2_deltas ← hidden2_gradient.dotproduct(hidden1_transposed)

 self.weights_h1h2.add(weight_h1h2_deltas)

 self.bias_h2.add(hidden2_gradient)

 weights_h1h2_transposed ← self.weights_h1h2.transpose()

 hidden_errors ← weights_h1h2_transposed.dotproduct(hidden2_errors)

 #calculate hidden gradients

 hidden_gradient ← hidden.stfunc(derivative_of_activation_function)

 hidden_gradient.multiply(hidden_errors)

 hidden_gradient.multiply(self.learningrate)

 #calculate input to hidden deltas

 inputs_transposed ← inputs.transpose()

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

61

 weight_ih_deltas ← hidden_gradient.dotproduct(inputs_transposed)

 #adjust ih weights

 self.weights_ih.add(weight_ih_deltas)

 #adjust hidden bias by deltas

 self.bias_h.add(hidden_gradient)

 nn.write_weights_to_file(self.weights_ih.matrix, self.bias_h.matrix,

self.weights_h1h2.matrix, self.bias_h2.matrix, self.weights_ho.matrix, self.bias_o.matrix)

END FUNCTION

Write_weights_to_file

- This writes all the weights of the neural network to a text file, it writes a comma

between each weight, and a new line between each layer

FUNCTION write_weights_to_file(self, wih, bh1, wh1h2, bh2, wh2h3, bh3, wh3o, bo):

 f ← open(settings_array[5], “w+”)

 FOR I in wih:

 FOR j in i:

 f.write(str(j)+”,”)

 END FOR

 END FOR

 f.write(“\n”)

 FOR I in bh1:

 FOR j in i:

 f.write(str(j)+”,”)

 END FOR

 END FOR

 f.write(“\n”)

 FOR I in wh1h2:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

62

 FOR j in i:

 f.write(str(j)+”,”)

 END FOR

 END FOR

 f.write(“\n”)

 FOR I in bh2:

 FOR j in i:

 f.write(str(j)+”,”)

 END FOR

 END FOR

 f.write(“\n”)

 FOR I in wh2o:

 FOR j in i:

 f.write(str(j)+”,”)

 END FOR

 END FOR

 f.write(“\n”)

 FOR I in bo:

 FOR j in i:

 f.write(str(j)+”,”)

 END FOR

 END FOR

 f.write(“\n”)

 f.close()

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

63

Run_with_existing_weights

- This procedure uses the weights in the text file and then feedforwards an image

passed in which produces an output. The weights from the files are converted to

type matrix. Then using these matrices, the image inputted is converted to a matrix

and fed through the network, where an output is then produced.

 FUNCTION run_with_existing_weights(self, input_array):

 inputs ← Matrix(len(input_array), 1)

 inputs.MakeMatrix()

 FOR I in range(0, len(input_array)):

 inputs.matrix[i][0] ← input_array[i]

 TRY

 f ← open(settings_array[5], “r”)

 EXCEPT

 OUTPUT “weights file in settings file does not exist or file path is incorrect, please

update and restart”

 sys.exit()

 TRY

 ih1 ← f.readline()

 ih1split ← ih1.split(“,”)

 ih1_weights ← []

 FOR I in range(0,len(ih1split)-1):

 ih1_weights.append(ih1split[i])

 END FOR

 weights_ih1 ← Matrix(self.hnodes1,self.inodes)

 weights_ih1.MakeMatrix()

 count_ih1 ← 0

 FOR I in range(0,self.hnodes1):

 FOR j in range(0,self.inodes):

 weights_ih1.matrix[i][j] ← float(ih1_weights[count_ih1])

 count_ih1 +← 1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

64

 END FOR

 END FOR

 bh1 ← f.readline()

 bh1split ← bh1.split(“,”)

 bh1_weights ← []

 FOR I in range(0,len(bh1split)-1):

 bh1_weights.append(bh1split[i])

 END FOR

 weights_bh1 ← Matrix(self.hnodes1,1)

 weights_bh1.MakeMatrix()

 count_bh1 ← 0

 FOR I in range(0,self.hnodes1):

 FOR j in range(0,1):

 weights_bh1.matrix[i][j] ← float(bh1_weights[count_bh1])

 count_bh1 +← 1

 END FOR

 END FOR

 h1h2 ← f.readline()

 h1h2split ← h1h2.split(“,”)

 h1h2_weights ← []

 FOR I in range(0, len(h1h2split)-1):

 h1h2_weights.append(h1h2split[i])

 END FOR

 weights_h1h2 ← Matrix(self.hnodes2,self.hnodes1)

 weights_h1h2.MakeMatrix()

 count_h1h2 ← 0

 FOR I in range(0,self.hnodes2):

 FOR j in range(0,self.hnodes1):

 weights_h1h2.matrix[i][j] ← float(h1h2_weights[count_h1h2])

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

65

 count_h1h2 +← 1

 END FOR

 END FOR

 bh2 ← f.readline()

 bh2split ← bh2.split(“,”)

 bh2_weights ← []

 FOR I in range(0,len(bh2split)-1):

 bh2_weights.append(bh2split[i])

 END FOR

 weights_bh2 ← Matrix(self.hnodes2,1)

 weights_bh2.MakeMatrix()

 count_bh2 ← 0

 FOR I in range(0,self.hnodes2):

 FOR j in range(0,1):

 weights_bh2.matrix[i][j] ← float(bh2_weights[count_bh2])

 count_bh2 +← 1

 END FOR

 END FOR

 h3o ← f.readline()

 h3osplit ← h3o.split(“,”)

 h3o_weights ← []

 FOR I in range(0, len(h3osplit)-1):

 h3o_weights.append(h3osplit[i])

 END FOR

 weights_h3o ← Matrix(self.onodes,self.hnodes2)

 weights_h3o.MakeMatrix()

 count_h3o ← 0

 FOR I in range(0,self.onodes):

 FOR j in range(0,self.hnodes2):

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

66

 weights_h3o.matrix[i][j] ← float(h3o_weights[count_h3o])

 count_h3o +← 1

 END FOR

 END FOR

 bo ← f.readline()

 bosplit ← bo.split(“,”)

 bo_weights ← []

 FOR I in range(0,len(bosplit)-1):

 bo_weights.append(bosplit[i])

 END FOR

 weights_bo ← Matrix(self.onodes,1)

 weights_bo.MakeMatrix()

 count_bo ← 0

 FOR I in range(0,self.onodes):

 FOR j in range(0,1):

 weights_bo.matrix[i][j] ← float(bo_weights[count_bo])

 count_bo +← 1

 END FOR

 END FOR

 f.close()

 EXCEPT

 OUTPUT “invalid weights file”

 sys.exit()

 hidden1 ← weights_ih1.dotproduct(inputs)

 hidden1.add(weights_bh1)

 hidden1.func(activation_function)

 hidden2 ← weights_h1h2.dotproduct(hidden1)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

67

 hidden2.add(weights_bh2)

 hidden2.func(activation_function)

 output ← weights_h3o.dotproduct(hidden2)

 output.add(weights_bo)

 output.func(activation_function)

 RETURN output

END FUNCTION

Train_with_existing_weights

- This procedure trains the neural network with the weights stored in the text file. The

weights in the text file are converted to matrices. The image inputted is then

converted to a matrix where it is fed through the neural network using the new

matrices from the text file. The output error between the expected output and the

actual output is calculated and the backpropagation occurs. The new weights are

then stored in the text file.

 FUNCTION train_with_existing_weights(self, inputs_array, targets_array, nn):

 inputs ← Matrix(len(inputs_array), 1)

 inputs.MakeMatrix()

 FOR I in range(0, len(inputs_array)):

 inputs.matrix[i][0] ← inputs_array[i]

 END FOR

 TRY

 f ← open(“weights.txt”, “r”)

 EXCEPT

 OUTPUT “weights file in settings file does not exist or file path is incorrect, please

update and restart”

 sys.exit()

 TRY

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

68

 ih1 ← f.readline()

 ih1split ← ih1.split(“,”)

 ih1_weights ← []

 FOR I in range(0,len(ih1split)-1):

 ih1_weights.append(ih1split[i])

 END FOR

 weights_ih1 ← Matrix(self.hnodes1,self.inodes)

 weights_ih1.MakeMatrix()

 count_ih1 ← 0

 FOR I in range(0,self.hnodes1):

 FOR j in range(0,self.inodes):

 weights_ih1.matrix[i][j] ← float(ih1_weights[count_ih1])

 count_ih1 +← 1

 END FOR

 END FOR

 bh1 ← f.readline()

 bh1split ← bh1.split(“,”)

 bh1_weights ← []

 FOR I in range(0,len(bh1split)-1):

 bh1_weights.append(bh1split[i])

 END FOR

 weights_bh1 ← Matrix(self.hnodes1,1)

 weights_bh1.MakeMatrix()

 count_bh1 ← 0

 FOR I in range(0,self.hnodes1):

 FOR j in range(0,1):

 weights_bh1.matrix[i][j] ← float(bh1_weights[count_bh1])

 count_bh1 +← 1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

69

 END FOR

 END FOR

 h1h2 ← f.readline()

 h1h2split ← h1h2.split(“,”)

 h1h2_weights ← []

 FOR I in range(0, len(h1h2split)-1):

 h1h2_weights.append(h1h2split[i])

 END FOR

 weights_h1h2 ← Matrix(self.hnodes2,self.hnodes1)

 weights_h1h2.MakeMatrix()

 count_h1h2 ← 0

 FOR I in range(0,self.hnodes2):

 FOR j in range(0,self.hnodes1):

 weights_h1h2.matrix[i][j] ← float(h1h2_weights[count_h1h2])

 count_h1h2 +← 1

 END FOR

 END FOR

 bh2 ← f.readline()

 bh2split ← bh2.split(“,”)

 bh2_weights ← []

 FOR I in range(0,len(bh2split)-1):

 bh2_weights.append(bh2split[i])

 END FOR

 weights_bh2 ← Matrix(self.hnodes2,1)

 weights_bh2.MakeMatrix()

 count_bh2 ← 0

 FOR I in range(0,self.hnodes2):

 FOR j in range(0,1):

 weights_bh2.matrix[i][j] ← float(bh2_weights[count_bh2])

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

70

 count_bh2 +← 1

 END FOR

 END FOR

 h3o ← f.readline()

 h3osplit ← h3o.split(“,”)

 h3o_weights ← []

 FOR I in range(0, len(h3osplit)-1):

 h3o_weights.append(h3osplit[i])

 END FOR

 weights_h3o ← Matrix(self.onodes,self.hnodes2)

 weights_h3o.MakeMatrix()

 count_h3o ← 0

 FOR I in range(0,self.onodes):

 FOR j in range(0,self.hnodes2):

 weights_h3o.matrix[i][j] ← float(h3o_weights[count_h3o])

 count_h3o +← 1

 END FOR

 END FOR

 bo ← f.readline()

 bosplit ← bo.split(“,”)

 bo_weights ← []

 FOR I in range(0,len(bosplit)-1):

 bo_weights.append(bosplit[i])

 END FOR

 weights_bo ← Matrix(self.onodes,1)

 weights_bo.MakeMatrix()

 count_bo ← 0

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

71

 FOR I in range(0,self.onodes):

 FOR j in range(0,1):

 weights_bo.matrix[i][j] ← float(bo_weights[count_bo])

 count_bo +← 1

 END FOR

 END FOR

 f.close()

 EXCEPT

 OUTPUT “invalid weights file”

 sys.exit()

 inputs ← Matrix(len(inputs_array), 1)

 inputs.MakeMatrix()

 FOR I in range(0, len(inputs_array)):

 inputs.matrix[i][0] ← inputs_array[i]

 END FOR

 hidden1 ← weights_ih1.dotproduct(inputs)

 hidden1.add(weights_bh1)

 hidden1.func(activation_function)

 hidden2 ← weights_h1h2.dotproduct(hidden1)

 hidden2.add(weights_bh2)

 hidden2.func(activation_function)

 outputs ← weights_h3o.dotproduct(hidden2)

 outputs.add(weights_bo)

 outputs.func(activation_function)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

72

 targets ← Matrix(len(targets_array), 1)

 targets.MakeMatrix()

 FOR I in range(0, len(targets_array)):

 targets.matrix[i][0] ← targets_array[i]

 END FOR

 #calculate output errors

 output_errors ← targets.subtract(outputs)

 #calculate gradients

 gradients ← outputs.stfunc(derivative_of_activation_function)

 gradients.multiply(output_errors)

 gradients.multiply(self.learningrate)

 #calculate deltas

 hidden2_transposed ← hidden2.transpose()

 weight_ho_deltas ← gradients.dotproduct(hidden2_transposed)

 #adjust ho weights by deltas

 weights_h3o.add(weight_ho_deltas)

 #adjust bias by deltas

 weights_bo.add(gradients)

 #calculate hidden layer errors

 weights_ho_transposed ← weights_h3o.transpose()

 hidden2_errors ← weights_ho_transposed.dotproduct(output_errors)

 hidden2_gradient ← hidden2.stfunc(derivative_of_activation_function)

 hidden2_gradient.multiply(hidden2_errors)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

73

 hidden2_gradient.multiply(self.learningrate)

 hidden1_transposed ← hidden1.transpose()

 weight_h1h2_deltas ← hidden2_gradient.dotproduct(hidden1_transposed)

 weights_h1h2.add(weight_h1h2_deltas)

 weights_bh2.add(hidden2_gradient)

 weights_h1h2_transposed ← weights_h1h2.transpose()

 hidden_errors ← weights_h1h2_transposed.dotproduct(hidden2_errors)

 #calculate hidden gradients

 hidden_gradient ← hidden1.stfunc(derivative_of_activation_function)

 hidden_gradient.multiply(hidden_errors)

 hidden_gradient.multiply(self.learningrate)

 #calculate input to hidden deltas

 inputs_transposed ← inputs.transpose()

 weight_ih_deltas ← hidden_gradient.dotproduct(inputs_transposed)

 #adjust ih weights

 weights_ih1.add(weight_ih_deltas)

 #adjust hidden bias by deltas

 weights_bh1.add(hidden_gradient)

 nn.write_weights_to_file(weights_ih1.matrix, weights_bh1.matrix,

weights_h1h2.matrix, weights_bh2.matrix, weights_h3o.matrix, weights_bo.matrix)

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

74

Gui program

Contents of the gui program sections:

Section Page

imports 74

main 76

end 76

Open_file 77

Window_for_info_being_added 81

Confirm_items 83

Scroll_box 88

Calculate_price 88

Quicksort 89

Show_listings 91

Change_price 92

Change_title 92

Change_description 93

Change_postage_price 94

List_item 95

Imports

- Start of program, imports, makes two arrays containing contents of the settings and

clubs files. The settings and clubs files are validated, making sure they exist and

match up correctly.

IMPORT Tkinter

IMPORT tkMessageBox

IMPORT ttk

IMPORT tkFileDialog

IMPORT tkSimpleDialog as simpledialog

FROM PIL IMPORT ImageTk, Image

IMPORT re

FROM urllib2 IMPORT urlopen

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

75

IMPORT json

IMPORT requests

IMPORT math

IMPORT io

IMPORT sys

FROM ebaysdk.trading IMPORT Connection as Trading

FROM neuralnetwork IMPORT *

FROM images IMPORT *

continue_listing → True

#settings file

settings_array → []

TRY:

 settings_file → open(“settings.txt”, “r”)

EXCEPT:

 OUTPUT “the settings file doesn’t exist, the program will end now”

 sys.exit()

FOR line in settings_file:

 settings_array.append(line.strip(‘\n’))

END FOR

#clubs file

clubs → []

TRY:

 clubs_file → open(“clubs.txt”, “r”)

EXCEPT:

 OUTPUT “the clubs file does not exist, the program will end now”

 sys.exit()

FOR club in clubs_file:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

76

 clubs.append(club.strip(‘\n’))

END FOR

main()

main

- Welcome screen with button to exit program or input an image

FUNCTION main():

WHILE continue_listing == True:

 main_menu → Tkinter.Tk()

 welcome_label → Tkinter.Label(input_image, text = “Welcome To The Auto eBay

Lister”)

 input_image_button → Tkinter.Button(input_image, text=”Input image”,

command=open_file)

 progress_bar → ttk.Progressbar(input_image, length=200)

 button_exit → Tkinter.Button(input_image, text=”Exit program”, command=end)

 main_menu.mainloop()

END FUNCTION

End

- Ends the program

FUNCTION end():

 input_image.destroy()

 sys.exit()

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

77

open_file

- This sub routine opens a window for the user to select their image of a shirt (will be

validated to only allow JPEG images inputted) and then that gets passed through the

neural network. User is asked if shirt network got is correct, if it is then it proceeds to

the subroutine window_for_info_being_added(). If the shirt guessed by the network

was incorrect, the user will type the correct club, then the neural network will train

with the image inputted by the user and then will go to the

window_for_info_being_added() sub routine.

FUNCTION open_file(main_menu):

 IF len(clubs) !→ int(settings_array[6]):

 tkMessageBox.showinfo(‘Problem with clubs or settings file’, ‘The number of clubs and

number of output nodes do not match in the settings and club files’)

 end(main_menu)

 END IF

 valid_file → False

 WHILE valid_file → False:

 file_path → tkFileDialog.askopenfilename(filetypes → [(‘Jpeg Files’, ‘*.jpg’)])

 IF file_path !→ ‘’:

 img → Image.open(file_path)

 width, height → img.size

 IF width >→ 500 and height >→ 500:

 valid_file → True

 ELSE:

 tkMessageBox.showinfo(‘Invalid image’, ‘Your image is too small, please input

another’)

 resize → tkMessageBox.askquestion(‘Resize?’, ‘Would you like your image to be

resized?\nIt is recommended you get a better quality image’)

 IF resize → ‘yes’:

 img → Image.open(file_path)

 width, height → img.size

 new_img → img.resize((500, 500))

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

78

 new_img.save(file_path)

 valid_file → True

 END IF

 END IF

 END IF

 END WHILE

 Images(file_path).resize(settings_array[1])

 nn → neuralNetwork(7500,200,20,int(settings_array[6]))

 TRY:

 image → nn.run_with_existing_weights(Images(settings_array[2]).toarray()).matrix

 EXCEPT:

 tkMessageBox.showinfo(‘Problem with settings file’, ‘The number of output nodes in

the settings file is incorrect or the file name is incorrect, please correct this and restart the

program’)

 end(main_menu)

 highest_index → 0

 highest → 0

 club_name → “”

 image_softmax → softmaxtrain(image)

 FOR I in range(0,len(image_softmax)):

 IF image_softmax[i] > highest:

 highest → image_softmax[i]

 highest_index→ i

 END IF

 END FOR

 IF highest > 0.18:

 club_name → clubs[highest_index]

 main_menu.destroy()

 check_shirt_window → Tkinter.Tk()

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

79

 TRY:

 image_shirt → ImageTk.PhotoImage(Image.open(settings_array[2]))

 EXCEPT:

 tkMessageBox.showinfo(‘Problem with settings file’, ‘The file path in the settings file

does not exist, please update the settings file and then restart the program’)

 check_shirt_window.destroy()

 sys.exit()

 panel_shirt → Tkinter.Label(check_shirt_window, image → image_shirt)

 panel_shirt.image → image_shirt

 progress_bar → ttk.Progressbar(check_shirt_window, length→200)

 progress_bar[‘value’]→20

 correct_shirt → tkMessageBox.askquestion(‘Shirt’, club_name + ‘?’)

 IF correct_shirt → ‘yes’:

 check_shirt_window.destroy()

 window_for_info_being_added(file_path, club_name)

 ELIF correct_shirt → ‘no’:

 valid_title → False

 while valid_title → False:

 TRY:

 club_name → simpledialog.askstring(‘Input actual club’,’Please input the actual

club name of the shirt’, parent→check_shirt_window)

 IF club_name !→ ‘’:

 IF club_name in clubs:

 valid_title → True

 ELSE:

 tkMessageBox.showinfo(‘Invalid club’, ‘Please input a valid club’)

 END IF

 ELSE:

 tkMessageBox.showinfo(‘Invalid club’, ‘Please input a valid club’)

 END IF

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

80

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid club’, ‘Please input a valid club’)

 TRY:

 inputs → Images(settings_array[3]).toarray()

 EXCEPT:

 tkMessageBox.showinfo(‘Problem with settings file’, ‘The file path in the settings

file does not exist, please update the settings file and then restart the program’)

 check_shirt_window.destroy()

 sys.exit()

 target → []

 FOR club in clubs:

 IF club → club_name:

 club_index → clubs.index(club)

 END IF

 END FOR

 FOR I in range(0,int(settings_array[6])):

 target.append(0)

 END FOR

 target[club_index] → 1

 nn.train_with_existing_weights(inputs,target,nn)

 check_shirt_window.destroy()

 window_for_info_being_added(file_path, club_name)

 END IF

 ELSE:

 tkMessageBox.showinfo(‘Unknown shirt’, ‘Unsure what club this is, please try another

photo’)

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

81

window_for_info_being_added

- User inputs the year, size, weight of shirt and their PayPal email, which is all

validated and displayed to the user. When confirm button is pressed, go to

confirm_items sub routine.

FUNCTION window_for_info_being_added(file_path, club_name):

 input_shirt_details_window → Tkinter.Tk()

 valid_year → False

 valid_email → False

 label_year → Tkinter.Label(input_shirt_details_window, text→”Year of shirt”)

 label_size → Tkinter.Label(input_shirt_details_window, text→”Select the size of the

shirt”)

 label_email → Tkinter.Label(input_shirt_details_window, text→”PayPal email”)

 label_weight → Tkinter.Label(input_shirt_details_window, text→”Select the weight of the

shirt”)

 label_year_number → Tkinter.Label(input_shirt_details_window,text→””)

 combo_size → ttk.Combobox(input_shirt_details_window)

 combo_size[‘values’]→ (“XXS”, “XS”, “S”, “M”, “L”, “XL”, “XXL”, “XXXL”)

 combo_size.current(0)

 label_email_display → Tkinter.Label(input_shirt_details_window,text→””)

 combo_weight → ttk.Combobox(input_shirt_details_window)

 combo_weight[‘values’]→ (“w<1”,”1<w<2”,”2<w<10”,”10<w<15”)

 combo_weight.current(0)

 progress_bar → ttk.Progressbar(input_shirt_details_window, length→200)

 progress_bar[‘value’]→30

 button_confirm_text → Tkinter.Button(input_shirt_details_window, text→”Confirm”),

command→lambda: confirm_items(label_year_number.cget(“text”),

combo_size.get(),label_email_display.cget(“text”),combo_weight.get(),

input_shirt_details_window, file_path, club_name))

 WHILE valid_year → False:

 TRY:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

82

 year → int(simpledialog.askstring(‘Year’,’Please input the year for the shirt’,

parent→input_shirt_details_window))

 IF year < 1900 or year > 2020:

 tkMessageBox.showinfo(‘Invalid year’, ‘Please input a valid year’)

 ELSE:

 valid_year → True

 END IF

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid year’, ‘Please input a valid year’)

 END WHILE

 label_year_number.configure(text→str(year))

 WHILE valid_email → False:

 TRY:

 email → str(simpledialog.askstring(‘Email’,’Please input your PayPal email’,

parent→input_shirt_details_window))

 regex → re.search(“[a-z0-9!#$%&’*+/→?^_`{|}~-]+(?:\.[a-z0-9!#$%&’*+/→?^_`{|}~-

]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?”, email)

 IF regex → None:

 tkMessageBox.showinfo(‘Invalid email’, ‘Please input a valid email’)

 ELSE:

 valid_email → True

 END IF

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid email’, ‘Please input a valid email’)

 END WHILE

 label_email_display.configure(text→str(email))

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

83

Confirm_items

- Changes the abbreviation of size to actual word for size (e.g. “S” to “Small”) which is

used for the actual listing and works out postage price based on weight of shirt.

Searches through previously sold eBay items using eBay API and picks out the images

and prices and titles. The title is decided by finding out the most used words, the

price is calculated by using the calculate_price subroutine. Then the images and

prices are used in the scrollbox to show the user what similarly sold items sold at.

FUNCTION confirm_items(year, size, email, weight, window, file_path, club_name):

 size_actual →’’

 IF size → “S”:

 size_actual → “Small”

 ELIF size → “M”:

 size_actual → “Medium”

 ELIF size → “L”:

 size_actual → “Large”

 END IF

 IF size_actual → ‘’:

 size_actual → size

 END IF

 postage_price → 0

 IF weight → “w<1”:

 postage_price → 2.89

 ELIF weight → “1<w<2”:

 postage_price → 4.05

 ELIF weight → “2<w<10”:

 postage_price → 6.49

 ELSE:

 postage_price → 8.99

 END IF

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

84

 url → (settings_array[0] + club_name + “+shirt+home+” + str(year)+”+”+size_actual)

 internet_connection → False

 WHILE internet_connection → False:

 TRY:

 apiresult → requests.get(url)

 internet_connection → True

 EXCEPT:

 tkMessageBox.showinfo(‘No Internet Connection or invalid URL’, ‘Please connect to

the internet or I the URL in the settings file and restart the program’)

 END WHILE

 TRY:

 json_format_of_listings → apiresult.json()

 array_for_prices →[]

 array_for_images →[]

 array_for_titles →[]

 FOR item in

(json_format_of_listings[“findCompletedItemsResponse”][0][“searchResult”][0][“item”]):

 picture_of_listing → item[“galleryURL”][0]

 ebay_title → item[“title”][0]

 ebay_title_split → ebay_title.split()

 array_for_titles.append(ebay_title)

 array_for_images.append(picture_of_listing)

 price_of_shirt → item[‘sellingStatus’][0][“convertedCurrentPrice”][0][‘__value__’]

 array_for_prices.append(price_of_shirt)

 END FOR

 window.destroy()

 price → calculate_price(array_for_prices, year)

 words → []

 word_array → []

 word_count_array → []

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

85

 IF len(array_for_titles) > 0:

 FOR title in range(0,len(array_for_titles)):

 split_title → array_for_titles[title].split()

 FOR word in split_title:

 word → word.lower()

 words.append(word)

 END FOR

 END FOR

 FOR word in words:

 IF len(word_array) → 0:

 word_array.append(word)

 word_count_array.append(1)

 ELSE:

 IF word in word_array:

 index → word_array.index(word)

 word_count_array[index] → word_count_array[index] + 1

 ELSE:

 word_array.append(word)

 word_count_array.append(1)

 END IF

 END IF

 END FOR

 title_words → []

 index → 0

 FOR num in word_count_array:

 IF num >= len(array_for_titles)/2.75:

 title_words.append(word_array[index])

 END IF

 index +→1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

86

 END FOR

 FOR title_word in range(0,len(title_words)):

 title_words[title_word] → title_words[title_word].capitalize()

 END FOR

 title → “ “.join(title_words)

 ELSE:

 title → club_name + “ Football Soccer Home Shirt Year “ + year + “ Size UK “ +

size_actual + “ Good Condition”

 END IF

 show_listing_window → Tkinter.Tk()

 show_listings(title, price, postage_price, show_listing_window, email, file_path)

 EXCEPT:

 title → club_name + “ Football Soccer Home Shirt Year “ + year + “ Size UK “ +

size_actual + “ Good Condition”

 valid_price → False

 price → 0

 WHILE valid_price → False:

 TRY:

 price → float(simpledialog.askstring(‘Price’,’No listings found, please input a price’,

parent→window))

 IF price < 0.99:

 tkMessageBox.showinfo(‘Invalid price’, ‘Please input a valid price’)

 ELSE:

 valid_price → True

 END IF

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid price’, ‘Please input a valid price’)

 END WHILE

 window.destroy()

 show_listing_window → Tkinter.Tk()

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

87

 show_listings(title, price, postage_price, show_listing_window, email, file_path)

 IF len(array_for_images)>0:

scroll_window→Tkinter.Frame(show_listing_window,relief→Tkinter.GROOVE,width→500,h

eight→500,bd→1)

 global canvas

 canvas→Tkinter.Canvas(scroll_window)

 scroll_frame→Tkinter.Frame(canvas)

myscrollbar→Tkinter.Scrollbar(scroll_window,orient→”vertical”,command→canvas.yview)

 canvas.configure(yscrollcommand→myscrollbar.set)

 myscrollbar.pack(side→”right”,fill→”y”)

 canvas.pack(side→”left”)

 canvas.create_window((0,0),window→scroll_frame,anchor→’nw’)

 scroll_frame.bind(“<Configure>”,scroll_box)

 FOR I in range(0,len(array_for_prices)):

 img → ImageTk.PhotoImage(Image.open(urlopen(array_for_images[i])))

 panel → Tkinter.Label(scroll_frame, image → img)

 panel.image → img

 panel.grid(column→0,row→i)

 Tkinter.Label(scroll_frame,text→str(array_for_prices[i])).grid(row→I,column→2)

 END FOR

 END IF

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

88

Scroll_box

- Used in confirm_items, to make the scroll box for showing images of previously sold

shirts

FUNCTION scroll_box(event):

 canvas.configure(scrollregion=canvas.bbox(“all”),width=500,height=450)

END FUNCTION

Calculate_price

- Used in confirm items to work out the price to list the item at. The list of prices

passed in is sorted into numerical order using the quicksort algorithm. Here the

lower and upper quartiles can be found out, and therefore the interquartile range.

This allows outlier bounds to be calculated and therefore outliers can be removed.

An average of the prices left is then calculated. The average price is then rounded up

to the nearest integer with 0.01 removed to make the price look more appealing to

buyers on eBay (the price will be x.99).

FUNCTION calculate_price(array_for_prices, year):

 total_price → 0

 copy_of_array_for_prices → []

 FOR I in range(0,len(array_for_prices)):

 copy_of_array_for_prices.append(array_for_prices[i])

 END FOR

 sorted_array → quicksort(copy_of_array_for_prices, 0, len(copy_of_array_for_prices)-1)

 length_of_array → len(array_for_prices)

 lower_quartile_position → int(math.ceil(length_of_array/4))

 upper_quartile_position → int(math.ceil((length_of_array/4)*3))

 inter_quartile_range → float(sorted_array[int(upper_quartile_position)])-

float(sorted_array[int(lower_quartile_position)])

 IF int(year) < 1980:

 difference → 0.05 * inter_quartile_range

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

89

 ELIF int(year) < 2000:

 difference → 0.1* inter_quartile_range

 ELIF int(year) < 2010:

 difference → 0.2*inter_quartile_range

 ELIF int(year) < 2015:

 difference → inter_quartile_range

 ELSE:

 difference → 1.5*inter_quartile_range

 lower_bound → float(sorted_array[int(lower_quartile_position)])-difference

 upper_bound → float(sorted_array[int(upper_quartile_position)])+difference

 FOR I in range(0,len(sorted_array)):

 IF float(sorted_array[i]) < lower_bound or float(sorted_array[i])>upper_bound:

 sorted_array[i] → 0

 END IF

 END FOR

 FOR I in range(0,len(sorted_array)):

 total_price +→ float(sorted_array[i])

 END FOR

 price → (math.ceil(total_price / length_of_array))-0.01

 RETURN price

END FUNCTION

Quicksort

- used in calculate_price, sorts the array of prices in order, uses recursion to make this

an efficient algorithm

FUNCTION quicksort(array, start, end):

 low → start

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

90

 high → end

 pivot → array[int((low+high)/2)]

 WHILE low<=high:

 WHILE array[low] < pivot:

 low +→1

 END WHILE

 WHILE pivot < array[high]:

 high-→1

 END WHILE

 IF low <= high:

 temp → array[low]

 array[low] → array[high]

 array[high] → temp

 low+→1

 high-→1

 END IF

 END WHILE

 IF start<high:

 quicksort(array, start, high)

 END IF

 IF end > low:

 quicksort(array,low, end)

 END IF

 RETURN array

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

91

Show_listings

- displays what the listing will look like to the user (shows title, image, price,

description and postage price) and gives them the opportunity to make any changes

(any changes they make will be validated, like making sure the price is not below

0.99). Also shows the recently sold similar items (images and prices) and has a

button which if you press, lists the item on eBay.

FUNCTION show_listings(title, price, postage_price, show_listing_window, email, file_path):

 label_title = Tkinter.Label(show_listing_window, text=title)

 image_of_shirt = ImageTk.PhotoImage(Image.open(settings_array[2]))

 panel = Tkinter.Label(show_listing_window, image = image_of_shirt)

 panel.image = image_of_shirt

 label_description = Tkinter.Label(show_listing_window, text=title)

 label_price = Tkinter.Label(show_listing_window, text=str(price))

 label_postage_price = Tkinter.Label(show_listing_window, text=str(postage_price))

 label_sub_heading = Tkinter.Label(show_listing_window, text=”Recently sold shirts”)

 button_change_title = Tkinter.Button(show_listing_window, text=”Change title”,

command=lambda: change_title(show_listing_window, label_title))

 button_change_description = Tkinter.Button(show_listing_window, text=”Change

description”, command=lambda: change_description(show_listing_window,

label_description))

 button_change_price = Tkinter.Button(show_listing_window, text=”Change price”,

command=lambda: change_price(show_listing_window, label_price))

 button_change_postage_price = Tkinter.Button(show_listing_window, text=”Change

postage price”, command=lambda: change_postage_price(show_listing_window,

label_postage_price))

 button_confirm_listing = Tkinter.Button(show_listing_window, text=”List”, bg=”green”,

command=lambda:

list_item(label_title.cget(‘text’),label_description.cget(‘text’),label_price.cget(‘text’),

label_postage_price.cget(‘text’), show_listing_window, email, file_path))

 progress_bar = ttk.Progressbar(show_listing_window, length=200)

 progress_bar[‘value’]=75

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

92

Change_price

- used in the show_listings sub routine, used for the user wanting to make a change to

the price, validates the input to make sure it is an integer or float and that it is

greater than 0.99.

FUNCTION change_price(window, existing_label):

 valid_price → False

 WHILE valid_price → False:

 TRY:

 price → float(simpledialog.askstring(‘Change price’,’Please input a price’,

parent→window))

 IF price < 0.99:

 tkMessageBox.showinfo(‘Invalid price’, ‘Please input a valid price’)

 ELSE:

 valid_price → True

 END IF

 EXCPET:

 tkMessageBox.showinfo(‘Invalid price’, ‘Please input a valid price’)

 END WHILE

 existing_label.configure(text=str(price))

END FUNCTION

Change_title

- used in the show_listings sub routine, used for the user wanting to make a change to

the title, validates to make sure the user inputs something.

FUNCTION change_title(window, existing_label):

 valid_title → False

 WHILE valid_title → False:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

93

 TRY:

 title → simpledialog.askstring(‘Change title’,’Please input a title’, parent→window)

 IF title !→ ‘’:

 existing_label.configure(text=title)

 valid_title→True

 END IF

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid title’, ‘Please input a valid title’)

 END WHILE

END FUNCTION

Change_description

- used in the show_listings sub routine, used for the user wanting to make a change to

the description, validates to make sure the user inputs something.

FUNCTION change_description(window, existing_label):

 valid_description → False

 WHILE valid_description → False:

 TRY:

 description → simpledialog.askstring(‘Change description’,’Please input a

description’, parent→window)

 IF description !→ ‘’:

 existing_label.configure(text→description)

 valid_description→True

 END IF

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid description’, ‘Please input a valid description’)

 END WHILE

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

94

Change_postage_price

- used in the show_listings sub routine, used for the user wanting to make a change to

the title, validates to make sure the user inputs an integer or float and that it is

greater than 0.01

FUNCTION change_postage_price(window, existing_label):

 valid_price → False

 WHILE valid_price → False:

 TRY:

 price → float(simpledialog.askstring(‘Change postage price’,’Please input postage

price’, parent→window))

 IF price < 0.01:

 tkMessageBox.showinfo(‘Invalid postage price’, ‘Please input a valid postage price’)

 ELSE:

 valid_price → True

 END IF

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid postage price’, ‘Please input a valid postage price’)

 END WHILE

 existing_label.configure(text→str(price))

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

95

List_item

- Lists the item on eBay using eBay api, called in the show_listings sub routine when

‘list’ button is pressed. Uploads the image to eBay to be able to access it and use it

for the listing. Uses the details for title, image, description, postage price and PayPal

email for the listing. Validates to make sure you are connected to the internet.

FUNCTION list_item(title, description, price, postage_price,window, email, file_path):

 api → Trading(config_file→”ebay.yaml”, siteid→3)

 WITH Image.open(file_path) AS user_image:

 user_image.thumbnail((1600,1600))

 WITH io.BytesIO() AS image:

 user_image.save(image, “JPEG”)

 files → {‘file’: (‘EbayImage’, image.getvalue())}

 pictureData → {

 “WarningLevel”: “High”,

 “PictureSet”:’Supersize’,

 “PictureName”: “Test”

 }

 internet → False

 WHILE internet → False:

 TRY:

 response → api.execute(‘UploadSiteHostedPictures’, pictureData, files→files)

 picture → (response.reply.SiteHostedPictureDetails.FullURL)

 internet → True

 EXCEPT:

 tkMessageBox.showinfo(‘No internet connection or invalid eBay token’, ‘Please

connect to the internet or get new eBay token’)

 END WHILE

File used to store my

personal user eBay API

keys

Site ID for the UK

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

96

 api_request → {

 “Item”: {

 “Title”: title,

 “Country”: “GB”,

 “Location”: “GB”,

 “Site”: “UK”,

 “ConditionID”: “3000”,

 “PaymentMethods”: “PayPal”,

 “PayPalEmailAddress”: email,

 “PictureDetails”: {“PictureURL”: [picture]},

 “PrimaryCategory”: {“CategoryID”: “123490”},

 “Description”: description,

 “ListingType”: “FixedPriceItem”,

 “ListingDuration”: “GTC”,

 “StartPrice”: price,

 “Currency”: “GBP”,

 “ReturnPolicy”: {

 “ReturnsAcceptedOption”: “ReturnsAccepted”,

 “RefundOption”: “MoneyBack”,

 “ReturnsWithinOption”: “Days_30”,

 “ShippingCostPaidByOption”: “Buyer”

 },

 “ShippingDetails”: {

 “ShippingServiceOptions”: {

 “FreeShipping”: “False”,

 “ShippingService”: “UK_myHermesDoorToDoorService”,

 “ShippingServiceCost”: postage_price

 }

 },

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

97

 “DispatchTimeMax”: “2”

 }

 }

 TRY:

 api.execute(“AddItem”, api_request)

 tkMessageBox.showinfo(‘Listing complete’, ‘Your item has been published on eBay’)

 EXCEPT:

 tkMessageBox.showinfo(‘Invalid listing’, ‘This listing already exists’)

 window.destroy()

END FUNCTION

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

98

Training neural network

- this is a separate program which uses the neural network class to train

FROM testsagain IMPORT *

FROM images IMPORT *

IMPORT sys

#settings file

settings_array → []

TRY:

 settings_file → open(“settings.txt”, “r”)

EXCEPT:

 OUTPUT “the settings file doesn’t exist, the program will end now”

 sys.exit()

FOR line in settings_file:

 settings_array.append(line.strip(‘\n’))

END FOR

FUNCTION softmaxtrain(outputs):

 arr → []

 denominator → 0

 FOR I in range(0,len(outputs)):

 FOR j in range(0,1):

 denominator +→ math.exp(outputs[i][j])

 END FOR

 END FOR

 FOR I in range(0,len(outputs)):

 FOR j in range(0,1):

 arr.append((math.exp(outputs[i][j]))/denominator)

Softmax function

which is explained in

analysis, page 19

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

99

 END FOR

 END FOR

 RETURN arr

END FUNCTION

training_inputs → []

FOR I in range(0, 113):

 training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A

Level/Nea/99ewcast/pic” + str(i) + “.jpg”).toarray())

END FOR

FOR I in range(0,108):

 training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A

Level/Nea/arsenal/pic” + str(i) + “.jpg”).toarray())

END FOR

FOR I in range(0,59):

 training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A

Level/Nea/Norwich/pic” + str(i) + “.jpg”).toarray())

END FOR

FOR I in range(0,106):

 training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A

Level/Nea/mancity/pic” + str(i) + “.jpg”).toarray())

END FOR

FOR I in range(0,87):

 training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A

Level/Nea/99ewcastle/pic” + str(i) + “.jpg”).toarray())

END FOR

FOR I in range(0,123):

 training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A

Level/Nea/99ewcastle/pic” + str(i) + “.jpg”).toarray())

END FOR

Add the training inputs to an

array (adds all the pictures in the

training data folders and

converts them to arrays of floats)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

100

training_targets → []

FOR I in range(0,113):

training_targets.append([1,0,0,0,0,0])#chelsea

END FOR

FOR I in range(0,108):

 training_targets.append([0,1,0,0,0,0])#arsenal

END FOR

FOR I in range(0,59):

 training_targets.append([0,0,1,0,0,0])#norwich

END FOR

FOR I in range(0,106):

 training_targets.append([0,0,0,1,0,0])#man city

END FOR

FOR I in range(0,87):

 training_targets.append([0,0,0,0,1,0])#tottenham

END FOR

FOR I in range(0,123):

 training_targets.append([0,0,0,0,0,1])#newcastle

END FOR

nn → neuralNetwork(7500,200,20,6)

FOR I in range(0,1):

 inputs → random.choice(training_inputs)

 index → training_inputs.index(inputs)

 target → training_targets[index]

 nn.train(inputs,target)

Here a randomly selected image is

chosen and then the correct output

is assigned. This trains with the

randomly generated weights and

writes them to the text file (seen in

the train subroutine)

Add the training targets to an array

(each shirt has a specific output, so

outputs are added in the same

quantity and in the same order as

the training data)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

101

 OUTPUT “trained”

END FOR

ind → 0

FOR I in range(0,1000):

 ind +→1

 inputs → random.choice(training_inputs)

 index → training_inputs.index(inputs)

 target → training_targets[index]

 nn.train_with_existing_weights(inputs,target,nn)

 OUTPUT “trained” + str(ind)

 IF ind → 100 or ind → 200 or ind → 300 or ind → 400 or ind → 500 or ind → 600 or ind →

700 or ind → 800 or ind → 900 or ind → 1000:

 OUTPUT “101ewcast → [1,0,0,0,0,0]”

 FOR I in range(1,11):

 c → nn.run_with_existing_weights(Images(“chelseatest” + str(i) +

“.jpg”).toarray()).matrix

 OUTPUT softmaxtrainI

 END FOR

 OUTPUT “arsenal → [0,1,0,0,0,0]”

 FOR I in range(1,11):

 a → nn.run_with_existing_weights(Images(“arsenaltest” + str(i) +

“.jpg”).toarray()).matrix

 print softmaxtrain(a)

 END FOR

 OUTPUT “101ewcast → [0,0,1,0,0,0]”

 FOR I in range(1,11):

 nor → nn.run_with_existing_weights(Images(“norwichtest” + str(i) +

“.jpg”).toarray()).matrix

 print softmaxtrain(nor)

 END FOR

The way you train the neural network can be

customized a lot (e.g. you can change the

training data, number of iterations and the

learning rate). This is just one example of

training the network for 1000 iterations,

printing out the results of some images every

100 iterations. Every 100 iterations here each

club has 10 testing shirts and these testing

shirts are fed through the neural network,

using the run_with_existing_weights sub

routine. The outputs are then displayed so you

are able to see how the network is performing

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

102

 OUPUT “man city → [0,0,0,1,0,0]”

 FOR I in range(1,11):

 man → nn.run_with_existing_weights(Images(“mancitytest” + str(i) +

“.jpg”).toarray()).matrix

 OUTPUT softmaxtrain(man)

 END FOR

 OUTPUT “102ewcastle → [0,0,0,0,1,0]”

 FOR I in range(1,11):

 w → nn.run_with_existing_weights(Images(“102ewcastle” + str(i) +

“.jpg”).toarray()).matrix

 OUTPUT softmaxtrain(w)

 END FOR

 OUTPUT “102ewcastle → [0,0,0,0,0,1]”

 FOR I in range(1,11):

 new → nn.run_with_existing_weights(Images(“102ewcastle” + str(i) +

“.jpg”).toarray()).matrix

 OUTPUT softmaxtrain(new)

 END FOR

 END IF

 END FOR

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

103

Validation
Images

The image inputted by the user will be validated to ensure that only JPEG images can be

inputted.

Year of shirt

The year of the shirt will be validated to ensure that an integer between 1900 and 2020 is

inputted.

Size and weight of shirt

The size and weight of the shirts will be validated by using drop down boxes. Here only

certain values will be allowed to be selected ensuring any value selected is valid.

PayPal email

the PayPal email will be validated using Regex to confirm that a valid email has been

inputted.

The regex I will use is:

[a-z0-9!#$%&’*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&’*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-

]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?

(Regexr.com, n.d.)

Connecting to the API

I will also validate that when the eBay API is used, like searching through previously sold

items, uploading an image to eBay and listing the item on eBay, that the user has internet

connection to avoid any errors when trying to connect to the API.

Validation on the user making changes to the listing

There will be validation for if the user wants to change the price – it will be ensured that

they input an integer or float and that it is greater than 0.99.

There will be validation for if the user wants to change the description or title – it will be

ensured that they input at least one character.

There will be validation for if the user wants to change the postage price – it will be ensured

that they input an integer or float and that it is greater than 0.01.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

104

UML class diagram

Data Storage

Each image for the training data will be resized to a 50 x 50 pixel image. This will normalize

my data and make all images the same size. Then each image will be stored in an array with

3 elements per pixel (for the RGB colour values), so an array of length 7500 (50*50*3).

Each image will also have a matching target array for outputs. For example:

Liverpool [0,0,1]

Arsenal [0,1,0]

Chelsea [1,0,0]

The weights that will be created by the neural network will be stored in a notepad file, they

will be able to be updated and used throughout the program.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

105

Here is an example of how I will store the weights for my neural network. Each weight will

be separated by a comma and each layer will be separated by a new line.

Settings.txt file:

The settings file has any file paths or web URLs, which means you only have to change the

settings file not the actual code if making changes. E.g. if changing where you want to save

images to or changing the weights file.

This is the structure of the file:

Line 1 – search URL for eBay finding API

Line 2 – name of file to save resized image inputted by user

Line 3 – to use the resized image inputted by the user

Line 4 – exact location of resized image inputted by user

Line 5 – used for the images class, for where images resized are saved

Line 6 – the name of the weights file for the neural network

Line 7 – number of output nodes for network (number of clubs network is working for)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

106

Clubs.txt file

This file stores the name of all the clubs that the program works for and will be used for

training the network if the program gets the wrong club.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

107

Testing

Test Table

Test
number

Description Data type Expected result Pass/Fail Cross reference

1 User presses
input image
button and
comes up with
window to
select an
image from

Typical Comes up with a
window to select
an image

Pass Validation part 1
– 9 secs

2 Image user
inputs must be
a jpeg

Typical Only allow user to
input jpeg images

Pass Validation part 1
– 20 secs

3 User inputs no
image

Erroneous Ask user to input
image again

Pass Validation part 1
– 54 secs

4 When user has
option to say
whether shirt
neural
network
guesses is
correct, the
user selects
‘no’ button

Typical Comes up with a
text input to type
in the correct club
of the shirt

Pass Validation part 1
– 1 min 13 secs

5 When user has
to input actual
shirt if neural
network
guesses
wrong, test
whether
allowed shirt
names work

Typical Trains the neural
network with the
image inputted
and the actual
club name
inputted by the
user

Pass Validation part 1
– 1 min 45 secs

6 When user has
to input actual
shirt if neural
network
guesses
wrong, test
with any string
that isn’t one
of the allowed

Erroneous User asked to
input club again

Pass Validation part 1
– 3 mins

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

108

club names is
inputted

7 When user has
option to say
whether shirt
neural
network
guesses is
correct, the
user selects
‘yes’ button

Typical Window for
inputting year of
shirt comes up

Pass Validation part 1
– 3 mins 20
seconds

8 User inputting
year of shirt,
input a
number
between 1900
and 2020

Typical Window for
inputting PayPal
email

Pass Validation part 1
– 3 mins 30
seconds

9 User inputting
year of shirt,
input a
number below
1900 and
above 2020

Erroneous Ask user to input
year again

Pass Validation part 1
– 3 mins 47
seconds

10 User inputting
year of shirt,
input
boundaries of
1900 and 2020

Extreme Window for
inputting PayPal
email

Pass Validation part 1
– 4 mins 4
seconds

11 User inputting
year of shirt,
input a string

Erroneous Ask user to input
year again

Pass Validation part 1
– 4 mins 25
seconds

12 User inputting
year of shirt,
input a float

Erroneous Ask user to input
year again

Pass Validation part 1
– 4 mins 33
seconds

13 User inputting
email, input a
valid email

Typical Goes to the
confirm item
window

Pass Validation part 1
– 4 mins 44
seconds

14 User inputting
email, input an
invalid email

Erroneous Asks user to input
email again

Pass Validation part 1
– 5 mins 2
seconds

15 User presses
‘confirm’
button

Typical Displays a window
with previously
sold items and
their prices and
the user’s listing
with options to
change title, price,

Pass Validation part 1
– 5 mins 14
seconds, I say 16
but mean 15

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

109

description and
postage price, and
the option to list
the item

16 If can’t find
any previously
sold items,
then asks user
to input their
own price,
input an
integer

Typical Accepts the input
and displays the
user’s listing

Pass Validation part 1
– 5 mins 54
seconds

17 If can’t find
any previously
sold items,
then asks user
to input their
own price,
input a float

Typical Accepts the input
and displays the
user’s listing

Pass Validation part 1
– 6 mins 25
seconds

18 If can’t find
any previously
sold items,
then asks user
to input their
own price,
input a string

Erroneous Asks user to input
a price again

Pass Validation part 1
– 6 mins 37
seconds

19 If can’t find
any previously
sold items,
then asks user
to input their
own price,
input nothing

Erroneous Asks the user to
input a price again

Pass Validation part 1
– 6 mins 43
seconds

20 User presses
‘change title’
button, inputs
a valid string

Typical Changes the title
and displays it on
the window

Pass Validation part 1
– 6 mins 54
seconds

21 User presses
‘change title’
button, inputs
nothing

Erroneous Asks the user to
input title again

Pass Validation part 1
– 7 mins 8
seconds

22 User presses
‘change
description’
button, inputs
a valid string

Typical Changes the
description and
displays it on the
window

Pass Validation part 1
– 7 mins 20
seconds

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

110

23 User presses
‘change
description’
button, inputs
nothing

Erroneous Asks the user to
input the
description again

Pass Validation part 1
– 7 mins 30
seconds

24 User presses
‘change price’
button, inputs
an integer

Typical Accepts the input
and displays the
new price on
window

Pass Validation part 1
– 7 mins 40
seconds

25 User presses
‘change price’
button, inputs
a float

Typical Accepts the input
and displays the
new price on the
window

Pass Validation part 1
– 7 mins 45
seconds

26 User presses
the ‘change
price’ button,
inputs a string

Erroneous Asks the user to
input the price
again

Pass Validation part 1
– 7 mins 55
seconds

27 User presses
the ‘change
price’ button,
inputs nothing

Erroneous Asks the user to
input the price
again

Pass Validation part 1
– 8 mins 2
seconds

28 User presses
the ‘change
postage price’
button, inputs
an integer

Typical Accepts the input
and displays the
new postage price
on the window

Pass Validation part 1
– 8 mins 10
seconds

29 User presses
the ‘change
postage price’
button, inputs
a float

Typical Accepts the input
and displays the
new postage price
on the window

Pass Validation part 1
– 8 mins 20
seconds

30 User presses
the ‘change
postage price’
button, inputs
a string

Erroneous Asks the user to
input the postage
price again

Pass Validation part 1
– 8 mins 30
seconds

31 User presses
the ‘change
postage price’
button, inputs
nothing

Erroneous Asks the user to
input the postage
price again

Pass Validation part 1
– 8 mins 35
seconds

32 User presses
‘change price’
button, input a
price below
0.99

Erroneous Asks the user to
input the price
again

Pass Validation part 1
– 8 mins 40
seconds

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

111

33 User presses
‘change price’
button, input a
price of 0.99

Extreme Accepts the input
and displays the
new price on the
window

Pass Validation part 1
– 9 mins 5
seconds

34 User presses
the ‘change
postage price’
button, input a
price below
0.01

Erroneous Asks the user to
input the postage
price again

Pass Validation part 1
– 9 mins 12
seconds

35 User presses
the ‘change
postage price’
button, input a
price of 0.01

Extreme Accepts the input
and displays the
new price on the
window

Pass Validation part 1
– 9 mins 25
seconds

36 User presses
the ‘list’
button

Typical Lists the item on
eBay

Pass Validation part 2
– 8 seconds

37 User presses
the ‘list’
button, with
no internet
connection

Erroneous Asks the user to
connect to the
internet first
before being able
to list the item

Pass Vid 2 – 30
seconds

38 User presses
the confirm
button with no
internet
connection

Erroneous Asks the user to
connect to the
internet first
before being able
to search through
previously sold
items

Pass Validation part 2
– 1 minute 10
seconds

39 Put a file name
that doesn’t
exist in line 3
of settings file

Erroneous End the program
with a message

Pass Validation part 2
– 1 minute 45
seconds

40 Put an
incorrect
number of
output nodes
in the setting
file at line7

Erroneous End the program
with a message

Pass Validation part 2
– 2 mins 35
seconds

41 Put a file path
which doesn’t
exist in
settings file on
line 4

Erroneous Ends the program
with a message

Pass Validation part 2
– 3 mins 10
seconds

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

112

42 Put a URL that
is incorrect in
the settings
file on line 1

Erroneous Tells user to
update settings
file and restart the
program

Pass Validation part 2
– 3 mins 50
seconds

43 Put a file path
that doesn’t
exist in
settings file on
line 5

Erroneous Ends the program
with a message

Pass Validation part 2
– 4 mins 50
seconds

44 Input a file
name that
doesn’t exist
for the weights
in the settings
file at line 6

Erroneous Ends the program
with a message

Pass Validation part 2
– 5 mins 30
seconds, I say
test 46 but mean
44

45 Make the
number of
clubs in the
club txt file
different to
the number of
output nodes
in the settings
file

Erroneous Ends the program
with a message

Pass Validation part 2
– 6 mins

46 Start the
program with
the clubs txt
file not
existing

Erroneous Ends the program
with a message

Pass Validation part 2
– 6 mins 30
seconds

47 Start the
program with
the settings txt
file not
existing

Erroneous Ends the program
with a message

Pass Validation part 2
– 6 mins 50
seconds

Videos for testing

Video running through code – https://www.youtube.com/watch?v=puf1-pwU_8A

Video of validation part 1 – https://www.youtube.com/watch?v=JwkNnsa6iq0

Video of validation part 2 – https://www.youtube.com/watch?v=fy9s2GheT0Y

Video of training the neural network –

https://www.youtube.com/watch?v=j5UU94mfsq8

https://www.youtube.com/watch?v=puf1-pwU_8A
https://www.youtube.com/watch?v=JWkNnsa6iq0
https://www.youtube.com/watch?v=fy9s2GheT0Y
https://www.youtube.com/watch?v=j5UU94mfsq8

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

113

The matrix calculations

Here I will compare handwritten matrix calculations by myself against the outputs my matrix

class produces, to show that the matrix class is performing as it should.

Showing it produces random matrices:

This is the code I used, I am generating 3 matrices and printing them to show they are

random (between -1 and 1):

1. for I in range(0,3):
2. m = Matrix(2,2)
3. m.MakeMatrix()
4. print m.matrix
5. m.RandomizeMatrix()
6. print m.matrix

And the output:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

114

Multiply:

Add:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

115

Subtract:

Dot product:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

116

Transpose:

Apply_function:

1. def double(x):
2. return x *2
3.
4. print “Matrix A doubled”
5. print A.apply_function(double)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

117

Apply_function_new_matrix:

1. def double(x):
2. return x *2
3.
4. print “Matrix A doubled new matrix”
5. new = A.apply_function_new_matrix(double)
6. print new.matrix

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

118

GUI

Here I am showing and explaining the user interface of my program:

1.

2.

3.

Option to input an image

Requirement 4

Option to end

the program

User can then

select an image

to input, but

can only be a

JPEG

After selecting an image, the

program then uses the neural

network to work out what club

the shirt inputted was, and

then asks the user to confirm if

the neural network got the club

correct

Requirements 4.3 and 4.4

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

119

4.

5.

6.

If the user says no, then they

are asked to input the actual

club, and then the neural

network will train with the

image inputted and the actual

club name and then will go to

stage 5.

Requirements 5.1, 5.2 and 5.3

This is the window the user will

be shown straight after

pressing ‘yes’ or after pressing

‘no’ once the neural network

has trained.

Here the user is asked to input

the year of the shirt

Requirement 6.1.1

The year inputted is then

shown on the window

And now the user is asked to

input their PayPal email, which

is used for listing the item on

eBay

Requirement 6.1.2

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

120

7.

8.

9.

The PayPal email inputted is

then displayed on the window

The user can then change the

size of the shirt and the weight

of the shirt

Requirements 6.1.3 and 6.1.4

When they are happy with the

details they have inputted they

can press the confirm button

Once they have pressed

confirm, the user is shown

what their current listing will

be, the title, image, description,

price and postage price –

Requirements 6.2, 6.3.1, 6.3.2,

6.4.1, 6.4.2

They also have the option to make

changes to their listing – Requirement

6.5

It also shows previously sold

items on eBay along with their

prices as requested in my

interview

Requirement 6.4.3

And the user then has the

option to press the ‘list’ button,

which will list the item on to

eBay

Requirement 6.5

The user then has the

option to list another shirt

or exit the program

Requirement 7

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

121

Training the neural network

Worked example of the back propagation for the neural network

Here is a handwritten example of me going through the calculations the neural network

should be doing and coming up with an output. Then I will compare my output against the

output of the neural network. This will show one iteration of training. I will be using a neural

network with 4 input nodes, 2 hidden layer 1 nodes, 2 hidden layer 2 nodes and 1 output

node (I can’t use the same number of nodes for my actual network because there’s too may

of them, however it is the same structure).

Weights before

training

Weights after training

(should be the same as

what I get for the

results of my

calculations)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

122

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

123

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

124

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

125

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

126

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

127

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

128

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

129

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

130

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

131

Here we can see that the weights produced after training the program were the same as the

weights after training that I calculated (circled in green). Hence, showing that the back-

propagation algorithm is working as it should.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

132

Images for training data:

Here I am running the neuralNetwork class to train the network to work for 6 different

shirts: Chelsea, Arsenal, Norwich, Man City, Tottenham and Newcastle.

For each club I have a folder,

called the club name, with

around 100 images of the shirt in

it

This is the folder of the Arsenal

images. Also as you can see each

image has been resized to 50 x 50

pixels.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

133

The code I used for the training:

1. training_inputs = []
2. for I in range(0, 113):
3. training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A Leve

l/Nea/133ewcast/pic” + str(i) + “.jpg”).toarray())
4. for I in range(0,108):
5. training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A Leve

l/Nea/arsenal/pic” + str(i) + “.jpg”).toarray())
6. for I in range(0,59):
7. training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A Leve

l/Nea/Norwich/pic” + str(i) + “.jpg”).toarray())
8. for I in range(0,106):
9. training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A Leve

l/Nea/mancity/pic” + str(i) + “.jpg”).toarray())
10. for I in range(0,87):
11. training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A Leve

l/Nea/133ewcastle/pic” + str(i) + “.jpg”).toarray())
12. for I in range(0,123):
13. training_inputs.append(Images(“C:/Users/Aaron/Documents/Homework/computing/A Leve

l/Nea/133ewcastle/pic” + str(i) + “.jpg”).toarray())
14.
15. training_targets = []
16. for I in range(0,113):
17. training_targets.append([1,0,0,0,0,0])#chelsea
18. for I in range(0,108):
19. training_targets.append([0,1,0,0,0,0])#arsenal
20. for I in range(0,59):
21. training_targets.append([0,0,1,0,0,0])#norwich
22. for I in range(0,106):
23. training_targets.append([0,0,0,1,0,0])#man city
24. for I in range(0,87):
25. training_targets.append([0,0,0,0,1,0])#tottenham
26. for I in range(0,123):
27. training_targets.append([0,0,0,0,0,1])#newcastle
28.
29. nn = neuralNetwork(7500,200,20,6)

Here is how I made the training_inputs array.

Each picture in the folder for each shirt is

converted to an array of 7500 numbers, and

that array is added to the training_inputs

array.

Here is how I made the

training_targets. There are 6

possible outputs (1 for each

shirt), so ive assigned an output

for each shirt. The number of

outputs for each shirt is the same

as the number of shirts for the

training data. The targets for the

shirts are added in the same

order as the inputs so that they

match up.

Instantiate neuralNetwork

class with 7500 input

nodes, 200 hidden layer 1

nodes, 20 hidden layer 2

nodes and 6 output nodes

All of what I

mention here will

be covered in more

detail in the video

at the end

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

134

1. for I in range(0,1):
2. inputs = random.choice(training_inputs)
3. index = training_inputs.index(inputs)
4. target = training_targets[index]
5. nn.train(inputs,target)
6. print “trained”

1. ind = 0
2. for I in range(0,1000):
3. ind +=1
4. inputs = random.choice(training_inputs)
5. index = training_inputs.index(inputs)
6. target = training_targets[index]
7. nn.train_with_existing_weights(inputs,target,nn)
8. print “trained” + str(ind)

For each club I have 10 test

images I got from google,

these are used to test the

neural network while it is

training and the results are

outputted to show me how

it is doing.

I then ran the code below

twice, so 2000 iterations of

training, printing the

outputs of the test images

every 100 iterations

This is the code I used first

for training, using the train

sub routine which then

writes the weights to the

file

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

135

9. if ind == 100 or ind == 200 or ind == 300 or ind == 400 or ind == 500 or ind == 6
00 or ind == 700 or ind == 800 or ind == 900 or ind == 1000:

10. print “135ewcast = [1,0,0,0,0,0]”
11. for I in range(1,11):
12. c = nn.run_with_existing_weights(Images(“chelseatest” + str(i) + “.jpg”).

toarray()).matrix
13. print softmaxtrainI
14. print “arsenal = [0,1,0,0,0,0]”
15. for I in range(1,11):
16. a = nn.run_with_existing_weights(Images(“arsenaltest” + str(i) + “.jpg”).

toarray()).matrix
17. print softmaxtrain(a)
18. print “135ewcast = [0,0,1,0,0,0]”
19. for I in range(1,11):
20. nor = nn.run_with_existing_weights(Images(“norwichtest” + str(i) + “.jpg”

).toarray()).matrix
21. print softmaxtrain(nor)
22. print “man city = [0,0,0,1,0,0]”
23. for I in range(1,11):
24. man = nn.run_with_existing_weights(Images(“mancitytest” + str(i) + “.jpg”

).toarray()).matrix
25. print softmaxtrain(man)
26. print “135ewcastle = [0,0,0,0,1,0]”
27. for I in range(1,11):
28. w = nn.run_with_existing_weights(Images(“135ewcastle” + str(i) + “.jpg”).

toarray()).matrix
29. print softmaxtrain(w)
30. print “135ewcastle = [0,0,0,0,0,1]”
31. for I in range(1,11):
32. new = nn.run_with_existing_weights(Images(“135ewcastle” + str(i) + “.jpg”

).toarray()).matrix
33. print softmaxtrain(new)

1. ind = 0
2.
3. for I in range(0,10):
4. ind +=1
5. inputs = random.choice(training_inputs)
6. index = training_inputs.index(inputs)
7. target = training_targets[index]
8. nn.train_with_existing_weights(inputs,target)
9. print “trained” + str(ind)
10.
11. cc = 0
12. print “135ewcast = [1,0,0,0,0,0]”
13. for I in range(1,11):
14. 135ewcast = nn.run_with_existing_weights(Images(“chelseatest” + str(i) + “.jpg”

).toarray()).matrix
15. cindex = 0
16. chigh = 0
17. chelseaout = softmaxtrain(135ewcast)
18. print chelseaout
19. for I in range(0,len(chelseaout)):
20. if chelseaout[i] > chigh:

I then ran the below code for 10 iterations,

which works out how many of the test images

gave the correct output. If all 6 clubs had 70%

or more correct test images then the program

would end and that file would be stored

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

136

21. chigh = chelseaout[i]
22. cindex= I
23. if cindex == 0:
24. cc+=1
25. print cc
26.
27. ac = 0
28. print “arsenal = [0,1,0,0,0,0]”
29. for I in range(1,11):
30. arsenal = nn.run_with_existing_weights(Images(“arsenaltest” + str(i) + “.jpg”).

toarray()).matrix
31. aindex = 0
32. ahigh = 0
33. arsenalout = softmaxtrain(arsenal)
34. print arsenalout
35. for I in range(0,len(arsenalout)):
36. if arsenalout[i] > ahigh:
37. ahigh = arsenalout[i]
38. aindex= I
39. if aindex == 1:
40. ac+=1
41. print ac
42.
43. nc = 0
44. print “136ewcast = [0,0,1,0,0,0]”
45. for I in range(1,11):
46. 136ewcast = nn.run_with_existing_weights(Images(“norwichtest” + str(i) + “.jpg”

).toarray()).matrix
47. nindex = 0
48. nhigh = 0
49. norwichout = softmaxtrain(136ewcast)
50. print norwichout
51. for I in range(0,len(norwichout)):
52. if norwichout[i] > nhigh:
53. nhigh = norwichout[i]
54. nindex= I
55. if nindex == 2:
56. nc+=1
57. print nc
58.
59.
60. mc = 0
61. print “man city = [0,0,0,1,0,0]”
62. for I in range(1,11):
63. mancity = nn.run_with_existing_weights(Images(“mancitytest” + str(i) + “.jpg”).

toarray()).matrix
64. mcindex = 0
65. mchigh = 0
66. mcout = softmaxtrain(mancity)
67. print mcout
68. for I in range(0,len(mcout)):
69. if mcout[i] > mchigh:
70. mchigh = mcout[i]
71. mcindex= I
72. if mcindex == 3:
73. mc+=1
74. print mc
75.
76. tc = 0
77. print “136ewcastle = [0,0,0,0,1,0]”
78. for I in range(1,11):
79. 136ewcastle = nn.run_with_existing_weights(Images(“136ewcastle” + str(i) + “.jp

g”).toarray()).matrix
80. tcindex = 0
81. tchigh = 0
82. tcout = softmaxtrain(136ewcastle)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

137

83. print tcout
84. for I in range(0,len(tcout)):
85. if tcout[i] > tchigh:
86. tchigh = tcout[i]
87. tcindex= I
88. if tcindex == 4:
89. tc+=1
90. print tc
91.
92. nec = 0
93. print “137ewcastle = [0,0,0,0,0,1]”
94. for I in range(1,11):
95. 137ewcastle = nn.run_with_existing_weights(Images(“137ewcastle” + str(i) + “.jp

g”).toarray()).matrix
96. neindex = 0
97. nehigh = 0
98. neout = softmaxtrain(137ewcastle)
99. print neout
100. for I in range(0,len(neout)):
101. if neout[i] > nehigh:
102. nehigh = neout[i]
103. neindex= I
104. if neindex == 5:
105. nec+=1
106. print nec
107.
108. if cc > 6 and ac > 6 and nc > 6 and mc > 6 and tc > 6 and nec > 6:
109. print “70% correct for each”
110. sys.exit()

Video for neural network training

I now have a video showing what happened when I trained the neural network, here I go

into more detail about the code I used and show how the outputs of the test images

changed throughout the training, plus a part at the end on showing the neural network

working for same colour shirts (below):

https://www.youtube.com/watch?v=j5UU94mfsq8

https://www.youtube.com/watch?v=j5UU94mfsq8

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

138

Showing the neural network works for the same colour shirts

For my eBay listing program, it could be thought that the neural network only works for

different colour shirts. However, here I disprove this and show that the neural network can

work out the difference between two red shirts (Arsenal and Liverpool), this is also shown in

the video of training the neural network just above.

Test

images

Output
s

Here this shows that 70% of the test

images have correct outputs so it is

working for telling the difference

between Arsenal and Liverpool shirts

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

139

Showing the eBay API connection works correctly

Images

Firstly, this shows the images and prices my program finds compared with what I find when

searching manually on the eBay website.

My program:

Actual eBay:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

140

My program:

Actual eBay:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

141

My program:

Actual eBay:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

142

My program:

Actual eBay:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

143

My program:

Actual eBay:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

144

My program:

Actual eBay:

eBay.co.uk 3

(eBay, n.d.)

This shows that the images and prices my program pulls out match up with the actual

images and prices on eBay, therefore the API is working correctly.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

145

Checking the title

Here I go through the titles from the actual eBay site and make a tally for each separate

word, picking out the most common words, making my own title and comparing it with the

title the program produces.

The code I use to create a suggested title:

1. try:
2. json_format_of_listings = apiresult.json()
3. array_for_prices =[]
4. array_for_images =[]
5. array_for_titles =[]
6. for item in (json_format_of_listings[“findCompletedItemsResponse”][0][“sear

chResult”][0][“item”]):
7. picture_of_listing = item[“galleryURL”][0]
8. ebay_title = item[“title”][0]
9. ebay_title_split = ebay_title.split()
10. array_for_titles.append(ebay_title)
11. array_for_images.append(picture_of_listing)
12. price_of_shirt = item[‘sellingStatus’][0][“convertedCurrentPrice”][0][‘

__value__’]
13. array_for_prices.append(price_of_shirt)
14. window.destroy()
15. price = calculate_price(array_for_prices, year)
16. words = []
17. word_array = []
18. word_count_array = []
19. if len(array_for_titles) > 0:
20. for title in range(0,len(array_for_titles)):
21. split_title = array_for_titles[title].split()
22. for word in split_title:
23. word = word.lower()
24. words.append(word)
25. for word in words:
26. if len(word_array) == 0:
27. word_array.append(word)
28. word_count_array.append(1)
29. else:
30. if word in word_array:
31. index = word_array.index(word)
32. word_count_array[index] = word_count_array[index] + 1
33. else:
34. word_array.append(word)
35. word_count_array.append(1)
36. title_words = []
37. index = 0
38. for num in word_count_array:
39. if num >= len(array_for_titles)/2.75:
40. title_words.append(word_array[index])
41. index +=1
42. for title_word in range(0,len(title_words)):
43. title_words[title_word] = title_words[title_word].capitalize()
44. title = “ “.join(title_words)
45. else:
46. title = club_name + “ Football Soccer Home Shirt Year “ + year + “ Size

 UK “ + size_actual + “ Good Condition”

1

2

4

3

Default title

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

146

These text boxes match up with the numbers above

1. For each item on eBay,

add the title to the

array_for_titles

2. Split all titles into

singular words and add

all those words to the

words array

3. Have an array for words called word_array and

a separate array for the number of occurrences of

each word called word_count _array. Go through

each word in the words array and either add it to

the words_array or increase the correct index of

the words_count_array by 1.

4. Pick out the most common words and add

them to title_words array, then go through

the title_words array and combine all the

words into one string and that is the title

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

147

How I worked out my title:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

148

So here we can see that the title

my program produces is the

same as the title I got, which

shows that the title suggesting

section of code is working as it

should.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

149

Checking the price

Here I go through the prices from the actual eBay site from the listing pulled out by my

program shown in the Images section just above. I take out the outliers and work out the

price.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

150

Here it shows that the price I

calculated is the same as the

price the program got, so the

program calculates the price

correctly.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

151

Quicksort algorithm

The quicksort algorithm is used to sort the prices of the existing eBay shirts in order, here is

the code I used:

1. def quicksort(array, start, end):
2. low = start
3. high = end
4. pivot = array[int((low+high)/2)]
5. while low<=high:
6. while array[low] < pivot:
7. low +=1
8. while pivot < array[high]:
9. high-=1
10. if low <= high:
11. temp = array[low]
12. array[low] = array[high]
13. array[high] = temp
14. low+=1
15. high-=1
16. if start<high:
17. quicksort(array, start, high)
18. if end > low:
19. quicksort(array,low, end)
20. return array

Here is the code for the calculate_price subroutine:

1. def calculate_price(array_for_prices, year):
2. total_price = 0
3. copy_of_array_for_prices = []
4. for I in range(0,len(array_for_prices)):
5. copy_of_array_for_prices.append(array_for_prices[i])
6. sorted_array = quicksort(copy_of_array_for_prices, 0, len(copy_of_array_for_pri

ces)-1)
7. length_of_array = len(array_for_prices)
8. lower_quartile_position = int(math.ceil(length_of_array/4))
9. upper_quartile_position = int(math.ceil((length_of_array/4)*3))
10. inter_quartile_range = float(sorted_array[int(upper_quartile_position)])-

float(sorted_array[int(lower_quartile_position)])
11. if int(year) < 1980:
12. difference = 0.05 * inter_quartile_range
13. elif int(year) < 2000:
14. difference = 0.1* inter_quartile_range
15. elif int(year) < 2010:
16. difference = 0.2*inter_quartile_range
17. elif int(year) < 2015:
18. difference = inter_quartile_range
19. else:
20. difference = 1.5*inter_quartile_range
21. lower_bound = float(sorted_array[int(lower_quartile_position)])-difference
22. upper_bound = float(sorted_array[int(upper_quartile_position)])+difference
23. for I in range(0,len(sorted_array)):
24. if float(sorted_array[i]) < lower_bound or float(sorted_array[i])>upper_bou

nd:
25. sorted_array[i] = 0
26. for I in range(0,len(sorted_array)):
27. total_price += float(sorted_array[i])
28. price = (math.ceil(total_price / length_of_array))-0.01
29. return price

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

152

To show the quicksort algorithm is working correctly I’m going to print the copy_of_array_for_prices

between lines 5 and 6 and then print the sorted_array between lines 6 and 7:

This shows that the quicksort algorithm is working as it should.

copy_of_array_for_prices

sorted_array

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

153

Evaluation

Meeting the requirements

Number Requirement Met? Proof

1.1 The program must be able to be
used by anyone that wants to list a
football shirt on eBay

Yes Very easy to use

1.2 Must have a good user-friendly
interface

Yes Simple to use and laid out well

1.3 There must be validation to avoid
any errors while the program runs

Yes 2 validation videos

2.1 get around 100 images for each
club, some clubs may be harder to
find lots of images

Yes Start of run through of code
video – 40 seconds

2.2.1 inappropriate images should be
deleted from the folders

Yes Start of run through of code
video – 1 min 10 seconds

2.2.2 images should then be renamed in
numerical order

Yes Start of run through of code
video – 1 min 20 seconds

3 The neural network should then
train

Yes Training the neural network
section in testing and the training
the neural network video

3.1 randomly selected images from the
training data will be selected along
with an output value, which will
then be used to train the neural
network

Yes Training the neural network
section in testing and the training
the neural network video

3.2 the weights from the outcome of
the training will be stored in a txt
file which will be used later in the
program

Yes Training the neural network
section in testing and the training
the neural network video

4 User must be able to input an
image

Yes Run through of code video – 3
mins 5 seconds

4.1 the images must be resized to a
50x50 pixel image

Yes Run through of code video – 3
mins 45 seconds

4.2 the image must then be converted
to an array of numbers, 3 numbers
representing each pixel in the
image

Yes The images are 50 x 50 pixels,
with 3 numbers for each pixel. So
50 x 50 x 3 is the length of the
array which is 7500. There are
7500 input nodes for the neural
network and as the network has
been seen training correctly this
show that the image is correctly
converted to an array of 7500
elements

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

154

4.3 this image must then be able to be
passed through the neural
network. An output should be
displayed of what football club the
computer thinks the shirt belongs
to using the weights stored in the
text file

Yes Run through of code video – 3
mins 30 seconds

4.4 The user must then be able to
confirm whether the computer got
the correct club for the picture of
the shirt they inputted

Yes Run through of code video – 3
mins 35 seconds

5.1 The user should input the actual
club for the shirt

Yes Run through of code video – 8
mins 10 seconds

5.2 The neural network should train
again using the image inputted by
the user, and therefore updating its
weights

Yes Run through of code video – 8
mins 10 seconds

5.3 The program should then continue
as it would from point 6

Yes Run through of code video – 8
mins 45 seconds

6.1.1 Input the year the shirt was from Yes Run through of code video – 3
mins 53 seconds

6.1.2 Input their PayPal email Yes Run through of code video – 4
mins

6.1.3 Input the size of the shirt Yes Run through of code video – 4
mins 10 seconds

6.1.4 Input the weight of the shirt Yes Run through of code video – 4
mins 19 seconds

6.2 The program should then use the
club, size and the year to search for
the item using the eBay API

Yes Run through of code video – 4
mins 30 seconds and showing the
ebay api connection works
correctly section

6.3.1 The program should look at
currently listed items and sold
items to decide on a title for the
item

Yes Run through of code video – 4
mins 30 seconds and checking
the title section

6.3.2 Should pull out keywords that
occur regularly and format
correctly

Yes Checking the title section

6.4.1 The program should look at
currently listed items and sold
items to work out a price for the
item

Yes Run through of code video – 4
mins 30 seconds and checking
the price section

6.4.2 Any outlier prices should not be
used

Yes Checking the price section

6.4.3 The user should also be able to see
recently sold items of their

Yes Run through of code video – 4
mins 35 seconds and the images
section in testing

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

155

particular shirt as requested in the
interview in my research

6.5 The user will then be shown the
listing and given the opportunity to
make any changes and confirm
they are happy for the item to be
listed

Yes Run through of code video – 4
mins 35 seconds

7 User then has option to exit
program or list another shirt

Yes Run through of code video – 5
mins 20 seconds

Possible improvements

From the table above it is shown that all the requirements have been met and the program

does everything that it was intended to do, however there are some possible improvements

that could be made in the future.

One improvement is that I could make the neural network work for more than 6 different

football teams. Currently I have trained the neural network for 6 football teams (Chelsea,

Arsenal, Norwich, Man City, Tottenham and Newcastle). To make the program more useful I

could train the neural network again for more football teams, but the more teams you have

to train the network for, the longer the network takes to train. By getting the neural

network to work for the 6 football clubs, this shows that a neural network can work out the

difference between different football clubs, and therefore would be able to for more than 6

clubs with further training.

Another improvement I could make is allowing the user to add more than one image. This

would enhance the listing for the user and allow buyers to see more details of the listing

instead of just one image. This would be fairly simple to implement and would bring

benefits to the seller. This however was not in my requirements and is not necessary for an

eBay listing, so I have chosen not to add this in. I could also add a feature that allows the

user to crop and rotate the images they input, as requested in my interview from my

research. This again is also not in my requirements, not required for an eBay listing and is

already available on the eBay website, therefore I have not chosen to implement it. Also

continuing with images, I could make it possible for users to input images other than JPEGs,

such as PNGs. This would make it simpler for the user because they wouldn’t have to make

sure that the image they have got is JPEG and can just use any image which is more

convenient.

Another improvement I could make is the way that the user inputs the year of the shirt.

Currently the user inputs one year, however a football season spans across two different

years. For example, if you input the year 2004, you will get shirt results for the season

2003/2004 and 2004/2005. This is a problem because there may be different shirts for these

two seasons, thus different prices for the two shirts. This means that the price and title are

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

156

not as accurate as they could be. However, the user is shown the shirts and prices of them

for recently sold shirts, therefore if they believe the title or price is incorrect they can make

changes themself before publishing the item on to eBay.

End user’s opinion of the solution

I asked the two end users I interviewed in my research what they thought about the

program after running and using it:

What did you like about the program?

End user 1 – I liked how it was quick and easy and compared to sold listings

W. Horsley – I liked the interface and found it easy to navigate around. Also, it is very quick

and simple to use. It’s useful how it saves time of searching for the title and price yourself,

and how the program puts the title words together and in a logical order. Also, I like how It

asks for all the key words and details that would maximise the number of views you get on

the product when it’s on eBay.

What didn’t you like about the program?

End user 1 – more choice in football shirts and also would have liked to see the format of

the email required.

W. Horsley – I would have preferred it if it took up the whole screen, and a greater choice of

football shirts would be useful.

Did you find the program easy to use?

End user 1 – Yes

W. Horsley – yes, the progress bar was useful. It went in a logical order and the buttons and

headings were clear

Which features did you like the most?

End user 1 – price comparison and where you input a size

W. Horsley – price comparison

How do you think it could be improved?

End user 1 – wider choice of shirts, maybe remove the background of photos

W. Horsley – full screen and more shirts

Did you find the listing process on the program quicker than using eBay online?

End user 1 – yes

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

157

W. Horsley – yes because I didn’t have to switch between tabs

Here we can see that both end users like the program and found it easy to use. They both

can see improvements like introducing more shirts but ultimately, they both found it quicker

to list through the program rather than using the eBay website which was the aim of the

project.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

158

Bibliography
A.Mehta. (2015). digitalvidya.com. Retrieved from https://www.digitalvidya.com/blog/types-of-

neural-networks/

ayearofai. (2016). Retrieved from ayearofai.com: https://ayearofai.com/rohan-4-the-vanishing-

gradient-problem-ec68f76ffb9b

Codeforwin. (2015, July). Retrieved from codeforwin: https://codeforwin.org/2015/07/c-program-

to-subtract-two-matrices.html

Codeforwin. (2017). Retrieved from codeforwin: https://codeforwin.org/2017/12/c-program-add-

two-matrix-using-pointers.html

Dataaspirant. (2017). Retrieved from DataAspirant:

https://dataaspirant.com/2017/03/07/difference-between-softmax-function-and-sigmoid-

function/

developer.ebay.com. (2020).

eBay. (n.d.). Retrieved from eBay.co.uk.

github, H. . (2018). Retrieved from github: https://hadrienj.github.io/posts/Deep-Learning-Book-

Series-2.2-Multiplying-Matrices-and-Vectors/

guru99. (n.d.). Retrieved from guru99.com: https://www.guru99.com/backpropogation-neural-

network.html

Java67.com. (2016). Retrieved from Java67.com: https://www.java67.com/2016/10/how-to-

transpose-matrix-in-java-example.html

machinelearningmastery. (2019). Retrieved from machinelearningmastery:

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-

neural-networks/

maths, I. (n.d.). Retrieved from Inquirymaths.com: http://www.inquirymaths.com/home/algebra-

prompts/matrices-inquiry

Mathworld. (n.d.). Retrieved from Mathworld.wolfram:

https://mathworld.wolfram.com/HyperbolicTangent.html

Regexr.com. (n.d.). Retrieved from https://regexr.com/

Sharma, S. (2017). Retrieved from towardsdatascience: https://towardsdatascience.com/activation-

functions-neural-networks-1cbd9f8d91d6

Towardsdatascience. (2017). Retrieved from Towards data science:

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Towardsdatascience. (2017). Retrieved from Towardsdatascience:

https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-networks-

f1e7b2cb3eef

Code Appendix

Get training data program

1. from urllib2 import urlopen
2. import json
3. import requests
4. from images import *
5. from PIL import Image
6. import os
7.
8. url = ('https://svcs.ebay.com/services/search/FindingService/v1\
9. ?OPERATION-NAME=findCompletedItems&paginationInput.pageNumber=1&GLOBAL-ID=EBAY-GB&listingType=FixedPrice&SERVICE-VERSION=1.0.0\
10. &SECURITY-APPNAME=AaronMoo-List-PRD-e4483927e-c89cf935&\
11. RESPONSE-DATA-FORMAT=JSON&REST-PAYLOAD&keywords=arsenal%20football%20shirt%20home')
12. #the URL used for searching for completed items using the eBay API
13. apiresult = requests.get(url)
14. api_return = apiresult.json()
15. #gets the result the URL in json format
16. index = 0
17. for item in (api_return["findCompletedItemsResponse"][0]["searchResult"][0]["item"]): #searching through each eBay item in the URL
18. pic = item["galleryURL"][0] #get the picture of the item
19. img = Image.open(urlopen(pic))
20. Images(urlopen(pic)).resize("picc" + str(index)) #save the image in specified folder
21. index+=1
22.
23. def rename(): #goes through each picture in specified folder and names the images in numerical order
24. i = 0
25. for filename in os.listdir("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/Arsenal/"):
26. if filename == "Thumbs.db":
27. print "not an image"
28. else:
29. new_name ="pic" + str(i) + ".jpg"
30. current_name ='C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/Arsenal/'+ filename
31. new_name ='C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/Arsenal/'+ new_name
32. os.rename(current_name, new_name)
33. i += 1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

1

Images.py

1. from PIL import Image
2. import sys
3.
4. settings_array = []
5. try:
6. settings_file = open("settings.txt", "r") #make sure the settings file exists
7. except:
8. print "the settings file doesn't exist, the program will end now"
9. sys.exit()
10. for line in settings_file:
11. settings_array.append(line.strip('\n')) #put settings file contents into an array
12.
13. class Images:
14.
15. '''''manage images'''
16.
17. def __init__(self, filename):
18. self.filename = filename
19.
20. def resize(self, filename2):
21. img = Image.open(self.filename)
22. new_img = img.resize((50,50)) #resize the image to 50 x 50 pixels
23. try:
24. new_img.save(settings_array[4] + filename2 + ".jpg") #save the resized image in the location passed in
25. except:
26. print "File path does not exist in the settings file, please update and then restart"
27. sys.exit()
28.
29. def toarray(self): #sub routine for converting the image to an array of numbers
30. img = Image.open(self.filename, 'r')
31. w, h = img.size #gets image height and width
32. pix = list(img.getdata())
33. x = [pix[n:n+w] for n in range(0, w*h, w)]
34. arr = []
35. for i in range(0, len(x)):
36. for j in range(0, len(x[i])):
37. for k in range(0, len(x[i][j])):
38. arr.append(round(3*((x[i][j][k]) / float(1000)),5)) #add the 3 rgb numbers for each pixel to the array
39. return arr

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

2

Matrix.py

1. import random
2. import math
3.
4. class Matrix:
5.
6. '''''Matrix class'''
7.
8. def __init__(self, rows, cols):
9. self.rows = rows
10. self.cols = cols
11. self.matrix = []
12.
13. def MakeMatrix(self):
14. for i in range(0,self.rows):
15. self.matrix.append([])
16. for j in range(0,self.cols):
17. self.matrix[i].append(j)
18. self.matrix[i][j]=0 #make every element in the matrix have a value of 0 for the default
19. return self.matrix
20.
21. def RandomizeMatrix(self):
22. for i in range(0,self.rows):
23. for j in range(0,self.cols):
24. self.matrix[i][j] = random.uniform(-1,1) #make every element in the matrix have a float value between -1 and 1
25. return self.matrix
26.
27. def multiply(self, n):
28. if isinstance(n, Matrix):
29. for i in range(0,self.rows):
30. for j in range(0,self.cols):
31. self.matrix[i][j] *= n.matrix[i][j] #times two matrices together
32. return self.matrix
33. else:
34. for i in range(0,self.rows):
35. for j in range(0,self.cols):
36. self.matrix[i][j] *= n #times each element in a matrix by a value n
37. return self.matrix
38.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

3

39. def add(self, n):
40. if isinstance(n, Matrix):
41. for i in range(0,self.rows):
42. for j in range(0,self.cols):
43. self.matrix[i][j] += n.matrix[i][j] #add two matrices together
44. return self.matrix
45. else:
46. for i in range(0,self.rows):
47. for j in range(0,self.cols):
48. self.matrix[i][j] += n #add n to each element in the matrix
49. return self.matrix
50.
51. def subtract(self, n):
52. result = Matrix(self.rows, self.cols)
53. result.MakeMatrix()
54. for i in range(0,result.rows):
55. for j in range(0,result.cols):
56. result.matrix[i][j] = self.matrix[i][j] - n.matrix[i][j] #subtract one matrix from another
57. return result
58.
59. def dotproduct(self, n): #dot product of two matrices
60. if isinstance(n, Matrix):
61. if self.cols != n.rows:
62. print "Not equal cols and rows"
63. else:
64. result = Matrix(self.rows, n.cols)
65. result.MakeMatrix()
66. for i in range(0, result.rows):
67. for j in range(0,result.cols):
68. total = 0
69. for k in range(0, self.cols):
70. total += self.matrix[i][k] * n.matrix[k][j]
71. result.matrix[i][j] = total
72. return result
73. else:
74. print "Not matrix"
75.
76. def transpose(self): #transpose a matrix
77. result = Matrix(self.cols, self.rows)
78. result.MakeMatrix()
79. for i in range(0, self.rows):
80. for j in range(0, self.cols):

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

4

81. result.matrix[j][i] = self.matrix[i][j]
82. return result
83.
84. def apply_function(self, fun): #apply a function to each element in the matrix
85. for i in range(0, self.rows):
86. for j in range(0, self.cols):
87. val = self.matrix[i][j]
88. self.matrix[i][j] = fun(val)
89. return self.matrix
90.
91. def apply_function_new_matrix(self, fun): #apply a function to each element in the matrix and return a new matrix containing thos

e values
92. result = Matrix(self.rows, self.cols)
93. result.MakeMatrix()
94. for i in range(0, result.rows):
95. for j in range(0, result.cols):
96. val = self.matrix[i][j]
97. result.matrix[i][j] = fun(val)
98. return result

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

5

Neuralnetwork.py

1. from matrix import *
2. import math
3. from images import *
4. import sys
5.
6. settings_array = []
7. try:
8. settings_file = open("settings.txt", "r") #make sure settings file exists
9. except:
10. print "the settings file doesn't exist, the program will end now"
11. sys.exit()
12. for line in settings_file:
13. settings_array.append(line.strip('\n')) #add contents of settings file to an array
14.
15. def same(x):
16. return x
17.
18. #activation functions
19. def sigmoid(x):
20. if x < 0:
21. return 1- 1 / (1 + math.exp(x))
22. return 1 / (1 + math.exp(-x))
23.
24. def dsigmoid(x):
25. return x * (1 - x)
26.
27. def relu(x):
28. if x < 0:
29. return x * 0.01
30. else:
31. return x
32.
33. def drelu(x):
34. if x < 0:
35. return 0.01
36. else:
37. return 1
38.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

6

39. def tanh(x):
40. t = math.exp(x)
41. s = math.exp(-x)
42. return (t - s) / (t + s)
43.
44. def dtanh(x):
45. return 1 - (x*x)
46.
47. def softmax(outputs): #produce softmax of output array
48. arr = []
49. denominator = 0
50. for i in range(0,outputs.rows):
51. for j in range(0,outputs.cols):
52. denominator += math.exp(outputs.matrix[i][j])
53. for i in range(0,outputs.rows):
54. for j in range(0,outputs.cols):
55. arr.append((math.exp(outputs.matrix[i][j]))/denominator)
56. return arr
57.
58. def softmaxtrain(outputs): #another softmax sub routine
59. arr = []
60. denominator = 0
61. for i in range(0,len(outputs)):
62. for j in range(0,1):
63. denominator += math.exp(outputs[i][j])
64. for i in range(0,len(outputs)):
65. for j in range(0,1):
66. arr.append((math.exp(outputs[i][j]))/denominator)
67. return arr
68.
69. class neuralNetwork:
70.
71. '''''neural network'''
72.
73. def __init__(self, inputnodes, hiddennodes1, hiddennodes2, outputnodes): #instantiation class, take the number of input, h

1, h2 and output nodes
74.
75. self.inodes = inputnodes
76. self.hnodes1 = hiddennodes1
77. self.hnodes2 = hiddennodes2
78. self.onodes = outputnodes
79.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

7

80. self.weights_ih = Matrix(self.hnodes1, self.inodes)
81. self.weights_h1h2 = Matrix(self.hnodes2, self.hnodes1)
82. self.weights_ho = Matrix(self.onodes, self.hnodes2)
83.
84. self.weights_ih.MakeMatrix()
85. self.weights_h1h2.MakeMatrix()
86. self.weights_ho.MakeMatrix()
87.
88. self.weights_ih.RandomizeMatrix()
89. self.weights_h1h2.RandomizeMatrix()
90. self.weights_ho.RandomizeMatrix()
91.
92. self.bias_h = Matrix(self.hnodes1, 1)
93. self.bias_h2 = Matrix(self.hnodes2, 1)
94. self.bias_o = Matrix(self.onodes, 1)
95.
96. self.bias_h.MakeMatrix()
97. self.bias_h2.MakeMatrix()
98. self.bias_o.MakeMatrix()
99.
100. self.bias_h.RandomizeMatrix()
101. self.bias_h2.RandomizeMatrix()
102. self.bias_o.RandomizeMatrix()
103.
104. self.learningrate = 0.01
105.
106. def write_weights_to_file(self, wih, bh1, wh1h2, bh2, wh3o, bo): #subroutine for writing the weights to a text file
107. f = open(settings_array[5], "w+")
108. for i in wih:
109. for j in i:
110. f.write(str(j)+",")
111. f.write("\n")
112. for i in bh1:
113. for j in i:
114. f.write(str(j)+",")
115. f.write("\n")
116. for i in wh1h2:
117. for j in i:
118. f.write(str(j)+",")
119. f.write("\n")
120. for i in bh2:
121. for j in i:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

8

122. f.write(str(j)+",")
123. f.write("\n")
124. for i in wh3o:
125. for j in i:
126. f.write(str(j)+",")
127. f.write("\n")
128. for i in bo:
129. for j in i:
130. f.write(str(j)+",")
131. f.write("\n")
132. f.close()
133.
134. def run_with_existing_weights(self, input_array): #run the neural network with weights from txt file
135. inputs = Matrix(len(input_array), 1)
136. inputs.MakeMatrix()
137. for i in range(0, len(input_array)):
138. inputs.matrix[i][0] = input_array[i] #convert the input array of the image to type matrix
139. try:
140. f = open(settings_array[5], "r") #make sure the weigths file exists
141. except:
142. print "Weights file in settings file does not exist or file path is incorrect, please update and restart"
143. sys.exit()
144. try: #retrieve the weights from the file
145. ih1 = f.readline()
146. ih1split = ih1.split(",")
147. ih1_weights = []
148. for i in range(0,len(ih1split)-1):
149. ih1_weights.append(ih1split[i])
150. weights_ih1 = Matrix(self.hnodes1,self.inodes)
151. weights_ih1.MakeMatrix()
152. count_ih1 = 0
153. for i in range(0,self.hnodes1):
154. for j in range(0,self.inodes):
155. weights_ih1.matrix[i][j] = float(ih1_weights[count_ih1])
156. count_ih1 += 1
157.
158. bh1 = f.readline()
159. bh1split = bh1.split(",")
160. bh1_weights = []
161. for i in range(0,len(bh1split)-1):
162. bh1_weights.append(bh1split[i])
163. weights_bh1 = Matrix(self.hnodes1,1)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

9

164. weights_bh1.MakeMatrix()
165. count_bh1 = 0
166. for i in range(0,self.hnodes1):
167. for j in range(0,1):
168. weights_bh1.matrix[i][j] = float(bh1_weights[count_bh1])
169. count_bh1 += 1
170.
171. h1h2 = f.readline()
172. h1h2split = h1h2.split(",")
173. h1h2_weights = []
174. for i in range(0, len(h1h2split)-1):
175. h1h2_weights.append(h1h2split[i])
176. weights_h1h2 = Matrix(self.hnodes2,self.hnodes1)
177. weights_h1h2.MakeMatrix()
178. count_h1h2 = 0
179. for i in range(0,self.hnodes2):
180. for j in range(0,self.hnodes1):
181. weights_h1h2.matrix[i][j] = float(h1h2_weights[count_h1h2])
182. count_h1h2 += 1
183.
184. bh2 = f.readline()
185. bh2split = bh2.split(",")
186. bh2_weights = []
187. for i in range(0,len(bh2split)-1):
188. bh2_weights.append(bh2split[i])
189. weights_bh2 = Matrix(self.hnodes2,1)
190. weights_bh2.MakeMatrix()
191. count_bh2 = 0
192. for i in range(0,self.hnodes2):
193. for j in range(0,1):
194. weights_bh2.matrix[i][j] = float(bh2_weights[count_bh2])
195. count_bh2 += 1
196.
197. h3o = f.readline()
198. h3osplit = h3o.split(",")
199. h3o_weights = []
200. for i in range(0, len(h3osplit)-1):
201. h3o_weights.append(h3osplit[i])
202. weights_h3o = Matrix(self.onodes,self.hnodes2)
203. weights_h3o.MakeMatrix()
204. count_h3o = 0
205. for i in range(0,self.onodes):

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

10

206. for j in range(0,self.hnodes2):
207. weights_h3o.matrix[i][j] = float(h3o_weights[count_h3o])
208. count_h3o += 1
209.
210. bo = f.readline()
211. bosplit = bo.split(",")
212. bo_weights = []
213. for i in range(0,len(bosplit)-1):
214. bo_weights.append(bosplit[i])
215. weights_bo = Matrix(self.onodes,1)
216. weights_bo.MakeMatrix()
217. count_bo = 0
218. for i in range(0,self.onodes):
219. for j in range(0,1):
220. weights_bo.matrix[i][j] = float(bo_weights[count_bo])
221. count_bo += 1
222.
223. f.close()
224. except:
225. print "Invalid weights file"
226. sys.exit()
227.
228. #feedforward the image inputted
229. hidden1 = weights_ih1.dotproduct(inputs)
230. hidden1.add(weights_bh1)
231. hidden1.apply_function(sigmoid) #get hidden 1 output
232.
233. hidden2 = weights_h1h2.dotproduct(hidden1)
234. hidden2.add(weights_bh2)
235. hidden2.apply_function(sigmoid) #get hidden 2 output
236.
237. output = weights_h3o.dotproduct(hidden2)
238. output.add(weights_bo)
239. output.apply_function(sigmoid) #get final output
240.
241. return output
242.
243. def feedforward(self, input_array):
244.
245. inputs = Matrix(len(input_array), 1)
246. inputs.MakeMatrix()
247. for i in range(0, len(input_array)):

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

11

248. inputs.matrix[i][0] = input_array[i]
249. #generating hidden output
250. hidden = self.weights_ih.dotproduct(inputs)
251. hidden.add(self.bias_h)
252. #activation function
253. hidden.apply_function(sigmoid) #get hidden 1 output
254.
255. hidden2 = self.weights_h1h2.dotproduct(hidden)
256. hidden2.add(self.bias_h2)
257. hidden2.apply_function(sigmoid) #get hidden 2 output
258.
259. output = self.weights_ho.dotproduct(hidden2)
260. output.add(self.bias_o)
261. output.apply_function(sigmoid) #get output
262.
263. output = softmax(output) #apply softmax to output array
264.
265. return output
266.
267. def train(self, inputs_array, targets_array,nn):
268.
269. inputs = Matrix(len(inputs_array), 1)
270. inputs.MakeMatrix()
271. for i in range(0, len(inputs_array)):
272. inputs.matrix[i][0] = inputs_array[i] #convert input image array to type matrix
273. #generating hidden output
274. hidden = self.weights_ih.dotproduct(inputs)
275. hidden.add(self.bias_h)
276. #activation function
277. hidden.apply_function(sigmoid)
278.
279. hidden2 = self.weights_h1h2.dotproduct(hidden)
280. hidden2.add(self.bias_h2)
281. hidden2.apply_function(sigmoid) #get hidden 2 output
282.
283. #generate output
284. outputs = self.weights_ho.dotproduct(hidden2)
285. outputs.add(self.bias_o)
286. #activation function
287. outputs.apply_function(sigmoid) #get output
288.
289. #put targets array into matrix

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

12

290. targets = Matrix(len(targets_array), 1)
291. targets.MakeMatrix()
292. for i in range(0, len(targets_array)):
293. targets.matrix[i][0] = targets_array[i]
294.
295. #calculate output errors
296. output_errors = targets.subtract(outputs)
297.
298. #calculate gradients
299. gradients = outputs.apply_function_new_matrix(dsigmoid)
300. gradients.multiply(output_errors)
301. gradients.multiply(self.learningrate)
302.
303. #calculate deltas
304. hidden2_transposed = hidden2.transpose()
305. weight_ho_deltas = gradients.dotproduct(hidden2_transposed)
306.
307. #adjust ho weights by deltas
308. self.weights_ho.add(weight_ho_deltas)
309. #adjust bias by deltas
310. self.bias_o.add(gradients)
311.
312. #calculate hidden2 layer errors
313. weights_ho_transposed = self.weights_ho.transpose()
314. hidden2_errors = weights_ho_transposed.dotproduct(output_errors)
315.
316. hidden2_gradient = hidden2.apply_function_new_matrix(dsigmoid)
317. hidden2_gradient.multiply(hidden2_errors)
318. hidden2_gradient.multiply(self.learningrate)
319.
320. hidden1_transposed = hidden.transpose()
321. weight_h1h2_deltas = hidden2_gradient.dotproduct(hidden1_transposed)
322.
323. self.weights_h1h2.add(weight_h1h2_deltas)
324. self.bias_h2.add(hidden2_gradient)
325.
326. weights_h1h2_transposed = self.weights_h1h2.transpose()
327. hidden_errors = weights_h1h2_transposed.dotproduct(hidden2_errors) #calculate hidden errors
328.
329. #calculate hidden gradients
330. hidden_gradient = hidden.apply_function_new_matrix(dsigmoid)
331. hidden_gradient.multiply(hidden_errors)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

13

332. hidden_gradient.multiply(self.learningrate)
333.
334. #calculate input to hidden deltas
335. inputs_transposed = inputs.transpose()
336. weight_ih_deltas = hidden_gradient.dotproduct(inputs_transposed)
337.
338. #adjust ih weights
339. self.weights_ih.add(weight_ih_deltas)
340. #adjust hidden bias by deltas
341. self.bias_h.add(hidden_gradient)
342.
343. #write the weights to the weights file
344. nn.write_weights_to_file(self.weights_ih.matrix, self.bias_h.matrix, self.weights_h1h2.matrix, self.bias_h2.matrix, se

lf.weights_ho.matrix, self.bias_o.matrix)
345.
346. def train_with_existing_weights(self, inputs_array, targets_array,nn):
347.
348. inputs = Matrix(len(inputs_array), 1)
349. inputs.MakeMatrix()
350. for i in range(0, len(inputs_array)):
351. inputs.matrix[i][0] = inputs_array[i] #convert the inputs image array to type matrix
352. try:
353. f = open(settings_array[5], "r") #make sure the weights file exists
354. except:
355. print "Weights file in settings file does not exist or file path is incorrect, please update and restart"
356. sys.exit()
357. try: #retrieve the weights from the file
358. ih1 = f.readline()
359. ih1split = ih1.split(",")
360. ih1_weights = []
361. for i in range(0,len(ih1split)-1):
362. ih1_weights.append(ih1split[i])
363. weights_ih1 = Matrix(self.hnodes1,self.inodes)
364. weights_ih1.MakeMatrix()
365. count_ih1 = 0
366. for i in range(0,self.hnodes1):
367. for j in range(0,self.inodes):
368. weights_ih1.matrix[i][j] = float(ih1_weights[count_ih1])
369. count_ih1 += 1
370.
371. bh1 = f.readline()
372. bh1split = bh1.split(",")

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

14

373. bh1_weights = []
374. for i in range(0,len(bh1split)-1):
375. bh1_weights.append(bh1split[i])
376. weights_bh1 = Matrix(self.hnodes1,1)
377. weights_bh1.MakeMatrix()
378. count_bh1 = 0
379. for i in range(0,self.hnodes1):
380. for j in range(0,1):
381. weights_bh1.matrix[i][j] = float(bh1_weights[count_bh1])
382. count_bh1 += 1
383.
384. h1h2 = f.readline()
385. h1h2split = h1h2.split(",")
386. h1h2_weights = []
387. for i in range(0, len(h1h2split)-1):
388. h1h2_weights.append(h1h2split[i])
389. weights_h1h2 = Matrix(self.hnodes2,self.hnodes1)
390. weights_h1h2.MakeMatrix()
391. count_h1h2 = 0
392. for i in range(0,self.hnodes2):
393. for j in range(0,self.hnodes1):
394. weights_h1h2.matrix[i][j] = float(h1h2_weights[count_h1h2])
395. count_h1h2 += 1
396.
397. bh2 = f.readline()
398. bh2split = bh2.split(",")
399. bh2_weights = []
400. for i in range(0,len(bh2split)-1):
401. bh2_weights.append(bh2split[i])
402. weights_bh2 = Matrix(self.hnodes2,1)
403. weights_bh2.MakeMatrix()
404. count_bh2 = 0
405. for i in range(0,self.hnodes2):
406. for j in range(0,1):
407. weights_bh2.matrix[i][j] = float(bh2_weights[count_bh2])
408. count_bh2 += 1
409.
410. h3o = f.readline()
411. h3osplit = h3o.split(",")
412. h3o_weights = []
413. for i in range(0, len(h3osplit)-1):
414. h3o_weights.append(h3osplit[i])

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

15

415. weights_h3o = Matrix(self.onodes,self.hnodes2)
416. weights_h3o.MakeMatrix()
417. count_h3o = 0
418. for i in range(0,self.onodes):
419. for j in range(0,self.hnodes2):
420. weights_h3o.matrix[i][j] = float(h3o_weights[count_h3o])
421. count_h3o += 1
422.
423. bo = f.readline()
424. bosplit = bo.split(",")
425. bo_weights = []
426. for i in range(0,len(bosplit)-1):
427. bo_weights.append(bosplit[i])
428. weights_bo = Matrix(self.onodes,1)
429. weights_bo.MakeMatrix()
430. count_bo = 0
431. for i in range(0,self.onodes):
432. for j in range(0,1):
433. weights_bo.matrix[i][j] = float(bo_weights[count_bo])
434. count_bo += 1
435.
436. f.close()
437. except:
438. print "Invalid weights file"
439. sys.exit()
440.
441. inputs = Matrix(len(inputs_array), 1)
442. inputs.MakeMatrix()
443. for i in range(0, len(inputs_array)):
444. inputs.matrix[i][0] = inputs_array[i] #convert input image array to type matrix
445.
446. #feedforward the input matrix
447. hidden1 = weights_ih1.dotproduct(inputs)
448. hidden1.add(weights_bh1)
449. hidden1.apply_function(sigmoid)
450.
451. hidden2 = weights_h1h2.dotproduct(hidden1)
452. hidden2.add(weights_bh2)
453. hidden2.apply_function(sigmoid)
454.
455. outputs = weights_h3o.dotproduct(hidden2)
456. outputs.add(weights_bo)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

16

457. outputs.apply_function(sigmoid)
458.
459. targets = Matrix(len(targets_array), 1)
460. targets.MakeMatrix()
461. for i in range(0, len(targets_array)):
462. targets.matrix[i][0] = targets_array[i]
463.
464. #calculate output errors
465. output_errors = targets.subtract(outputs)
466.
467. #calculate gradients
468. gradients = outputs.apply_function_new_matrix(dsigmoid)
469. gradients.multiply(output_errors)
470. gradients.multiply(self.learningrate)
471.
472. #calculate deltas
473. hidden2_transposed = hidden2.transpose()
474. weight_ho_deltas = gradients.dotproduct(hidden2_transposed)
475.
476. #adjust ho weights by deltas
477. weights_h3o.add(weight_ho_deltas)
478. #adjust bias by deltas
479. weights_bo.add(gradients)
480.
481. #calculate hidden layer errors
482. weights_ho_transposed = weights_h3o.transpose()
483. hidden2_errors = weights_ho_transposed.dotproduct(output_errors)
484.
485. hidden2_gradient = hidden2.apply_function_new_matrix(dsigmoid)
486. hidden2_gradient.multiply(hidden2_errors)
487. hidden2_gradient.multiply(self.learningrate)
488.
489. hidden1_transposed = hidden1.transpose()
490. weight_h1h2_deltas = hidden2_gradient.dotproduct(hidden1_transposed)
491.
492. weights_h1h2.add(weight_h1h2_deltas)
493. weights_bh2.add(hidden2_gradient)
494.
495. weights_h1h2_transposed = weights_h1h2.transpose()
496. hidden_errors = weights_h1h2_transposed.dotproduct(hidden2_errors)
497.
498. #calculate hidden gradients

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

17

499. hidden_gradient = hidden1.apply_function_new_matrix(dsigmoid)
500. hidden_gradient.multiply(hidden_errors)
501. hidden_gradient.multiply(self.learningrate)
502.
503. #calculate input to hidden deltas
504. inputs_transposed = inputs.transpose()
505. weight_ih_deltas = hidden_gradient.dotproduct(inputs_transposed)
506.
507. #adjust ih weights
508. weights_ih1.add(weight_ih_deltas)
509. #adjust hidden bias by deltas
510. weights_bh1.add(hidden_gradient)
511.
512. #write the updated weights to the weights file
513. nn.write_weights_to_file(weights_ih1.matrix, weights_bh1.matrix, weights_h1h2.matrix, weights_bh2.matrix, weights_h3o.

matrix, weights_bo.matrix)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

18

Training.py

1. from neuralnetwork import *
2. from images import *
3. import sys
4.
5. #settings file
6. settings_array = []
7. try:
8. settings_file = open("settings.txt", "r")
9. except:
10. print "the settings file doesn't exist, the program will end now"
11. sys.exit()
12. for line in settings_file:
13. settings_array.append(line.strip('\n'))
14.
15. #clubs file
16. clubs = []
17. try:
18. clubs_file = open("clubs.txt", "r")
19. except:
20. print "the clubs file does not exist, the program will end now"
21. sys.exit()
22. for club in clubs_file:
23. clubs.append(club.strip('\n'))
24.
25. if int(settings_array[6]) != len(clubs):
26. print "the txt files do not match up, the program will end now"
27.
28. def softmaxtrain(outputs): #sub routine for softmax
29. arr = []
30. denominator = 0
31. for i in range(0,len(outputs)):
32. for j in range(0,1):
33. denominator += math.exp(outputs[i][j])
34. for i in range(0,len(outputs)):
35. for j in range(0,1):
36. arr.append((math.exp(outputs[i][j]))/denominator)
37. return arr
38.

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

19

39. training_inputs = [] #training inputs of shirts
40. for i in range(0, 113):
41. training_inputs.append(Images("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/chelsea/pic" + str(i) + ".jpg").toarray())
42. for i in range(0,108):
43. training_inputs.append(Images("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/arsenal/pic" + str(i) + ".jpg").toarray())
44. for i in range(0,59):
45. training_inputs.append(Images("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/Norwich/pic" + str(i) + ".jpg").toarray())
46. for i in range(0,106):
47. training_inputs.append(Images("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/mancity/pic" + str(i) + ".jpg").toarray())
48. for i in range(0,87):
49. training_inputs.append(Images("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/tottenham/pic" + str(i) + ".jpg").toarray())

50. for i in range(0,123):
51. training_inputs.append(Images("C:/Users/Aaron/Documents/Homework/computing/A Level/Nea/newcastle/pic" + str(i) + ".jpg").toarray())

52.
53. training_targets = [] #training targets for shirts
54. for i in range(0,113):
55. training_targets.append([1,0,0,0,0,0])#chelsea
56. for i in range(0,108):
57. training_targets.append([0,1,0,0,0,0])#arsenal
58. for i in range(0,59):
59. training_targets.append([0,0,1,0,0,0])#norwich
60. for i in range(0,106):
61. training_targets.append([0,0,0,1,0,0])#man city
62. for i in range(0,87):
63. training_targets.append([0,0,0,0,1,0])#tottenham
64. for i in range(0,123):
65. training_targets.append([0,0,0,0,0,1])#newcastle
66.
67. nn = neuralNetwork(7500,200,20,settings_array[6]) #instantiate neural network
68.
69. for i in range(0,1): #train neural network once with random weigths and write to file
70. inputs = random.choice(training_inputs)
71. index = training_inputs.index(inputs)
72. target = training_targets[index]
73. nn.train(inputs,target, nn)
74. print "trained"
75.
76. ind = 0
77. for i in range(0,1000): #train neural network 1000 times using existing weights in file, print out results every 100 iterations
78. ind +=1

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

20

79. inputs = random.choice(training_inputs)
80. index = training_inputs.index(inputs)
81. target = training_targets[index]
82. nn.train_with_existing_weights(inputs,target,nn)
83. print "trained" + str(ind)
84. if ind == 100 or ind == 200 or ind == 300 or ind == 400 or ind == 500 or ind == 600 or ind == 700 or ind == 800 or ind == 900 or in

d == 1000:
85. print "chelsea = [1,0,0,0,0,0]"
86. for i in range(1,11):
87. c = nn.run_with_existing_weights(Images("chelseatest" + str(i) + ".jpg").toarray()).matrix
88. print softmaxtrain(c)
89. print "arsenal = [0,1,0,0,0,0]"
90. for i in range(1,11):
91. a = nn.run_with_existing_weights(Images("arsenaltest" + str(i) + ".jpg").toarray()).matrix
92. print softmaxtrain(a)
93. print "norwich = [0,0,1,0,0,0]"
94. for i in range(1,11):
95. nor = nn.run_with_existing_weights(Images("norwichtest" + str(i) + ".jpg").toarray()).matrix
96. print softmaxtrain(nor)
97. print "man city = [0,0,0,1,0,0]"
98. for i in range(1,11):
99. man = nn.run_with_existing_weights(Images("mancitytest" + str(i) + ".jpg").toarray()).matrix
100. print softmaxtrain(man)
101. print "tottenham = [0,0,0,0,1,0]"
102. for i in range(1,11):
103. w = nn.run_with_existing_weights(Images("tottenham" + str(i) + ".jpg").toarray()).matrix
104. print softmaxtrain(w)
105. print "newcastle = [0,0,0,0,0,1]"
106. for i in range(1,11):
107. new = nn.run_with_existing_weights(Images("newcastle" + str(i) + ".jpg").toarray()).matrix
108. print softmaxtrain(new)
109.
110. for i in range(0,10): #train neural network 10 times printing out the results for each iteration, and also printing the number

 of shirts it got correct
111. ind +=1
112. inputs = random.choice(training_inputs)
113. index = training_inputs.index(inputs)
114. target = training_targets[index]
115. nn.train_with_existing_weights(inputs,target, nn)
116. print "trained" + str(ind)
117.
118. cc = 0

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

21

119. print "chelsea = [1,0,0,0,0,0]"
120. for i in range(1,11):
121. chelsea = nn.run_with_existing_weights(Images("chelseatest" + str(i) + ".jpg").toarray()).matrix
122. cindex = 0
123. chigh = 0
124. chelseaout = softmaxtrain(chelsea)
125. print chelseaout
126. for i in range(0,len(chelseaout)):
127. if chelseaout[i] > chigh:
128. chigh = chelseaout[i]
129. cindex= i
130. if cindex == 0:
131. cc+=1
132. print cc
133.
134. ac = 0
135. print "arsenal = [0,1,0,0,0,0]"
136. for i in range(1,11):
137. arsenal = nn.run_with_existing_weights(Images("arsenaltest" + str(i) + ".jpg").toarray()).matrix
138. aindex = 0
139. ahigh = 0
140. arsenalout = softmaxtrain(arsenal)
141. print arsenalout
142. for i in range(0,len(arsenalout)):
143. if arsenalout[i] > ahigh:
144. ahigh = arsenalout[i]
145. aindex= i
146. if aindex == 0:
147. ac+=1
148. print ac
149.
150. nc = 0
151. print "norwich = [0,0,1,0,0,0]"
152. for i in range(1,11):
153. norwich = nn.run_with_existing_weights(Images("norwichtest" + str(i) + ".jpg").toarray()).matrix
154. nindex = 0
155. nhigh = 0
156. norwichout = softmaxtrain(norwich)
157. print norwichout
158. for i in range(0,len(norwichout)):
159. if norwichout[i] > nhigh:
160. nhigh = norwichout[i]

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

22

161. nindex= i
162. if nindex == 2:
163. nc+=1
164. print nc
165.
166. mc = 0
167. print "man city = [0,0,0,1,0,0]"
168. for i in range(1,11):
169. mancity = nn.run_with_existing_weights(Images("mancitytest" + str(i) + ".jpg").toarray()).matrix
170. mcindex = 0
171. mchigh = 0
172. mcout = softmaxtrain(mancity)
173. print mcout
174. for i in range(0,len(mcout)):
175. if mcout[i] > mchigh:
176. mchigh = mcout[i]
177. mcindex= i
178. if mcindex == 3:
179. mc+=1
180. print mc
181.
182. tc = 0
183. print "tottenham = [0,0,0,0,1,0]"
184. for i in range(1,11):
185. tottenham = nn.run_with_existing_weights(Images("tottenham" + str(i) + ".jpg").toarray()).matrix
186. tcindex = 0
187. tchigh = 0
188. tcout = softmaxtrain(tottenham)
189. print tcout
190. for i in range(0,len(tcout)):
191. if tcout[i] > tchigh:
192. tchigh = tcout[i]
193. tcindex= i
194. if tcindex == 4:
195. tc+=1
196. print tc
197.
198. nec = 0
199. print "newcastle = [0,0,0,0,0,1]"
200. for i in range(1,11):
201. newcastle = nn.run_with_existing_weights(Images("newcastle" + str(i) + ".jpg").toarray()).matrix
202. neindex = 0

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

23

203. nehigh = 0
204. newcastleout = softmaxtrain(newcastle)
205. print newcastleout
206. for i in range(0,len(newcastleout)):
207. if newcastleout[i] > nehigh:
208. nehigh = newcastleout[i]
209. neindex= i
210. if neindex == 1:
211. nec+=1
212. print nec
213.
214. if cc > 6 and ac > 6 and nc > 6 and mc > 6 and tc > 6 and nec > 6:
215. print "70% correct for each"
216. sys.exit()

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

24

Gui.py

1. import Tkinter
2. import tkMessageBox
3. import ttk
4. import tkFileDialog
5. import tkSimpleDialog as simpledialog
6. from PIL import ImageTk, Image
7.
8. import re
9. from urllib2 import urlopen
10. import json
11. import requests
12. import math
13. import io
14. import sys
15.
16. from ebaysdk.trading import Connection as Trading
17.
18. from neuralnetwork import *
19. from images import *
20.
21. continue_listing = True
22. #settings file
23. settings_array = []
24. try:
25. settings_file = open("settings.txt", "r") #make sure settings file exists
26. except:
27. print "the settings file doesn't exist, the program will end now"
28. sys.exit()
29. for line in settings_file:
30. settings_array.append(line.strip('\n')) #add contents of settings file to an array
31.
32. #clubs file
33. clubs = []
34. try:
35. clubs_file = open("clubs.txt", "r") #make sure clubs file exists
36. except:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

25

37. print "the clubs file does not exist, the program will end now"
38. sys.exit()
39. for club in clubs_file:
40. clubs.append(club.strip('\n')) #add contents of settings file to an array
41.
42. def main():
43. while continue_listing == True:
44. main_menu = Tkinter.Tk() #main menu window
45. main_menu.title("eBay Lister")
46. main_menu.geometry('500x400')
47. welcome_label = Tkinter.Label(main_menu, text = "Welcome To The Auto eBay Lister", font=("Arial Bold", 20))
48. welcome_label.grid(column=0, row=0)
49. input_image_button = Tkinter.Button(main_menu, text="Input image", font=("Arial Bold", 12), command=lambda: open_file(

main_menu))
50. input_image_button.grid(column=0,row=1, pady=50) #input image button
51. progress_bar = ttk.Progressbar(main_menu, length=200) #progress bar, makes it look better and more clear for user
52. progress_bar.grid(column=0,row=2, pady=50)
53. button_exit = Tkinter.Button(main_menu, text="Exit program", font=("Arial Bold", 12), command=lambda: end(main_menu))

54. button_exit.grid(column=0,row=3) #exit program button
55. main_menu.mainloop()
56.
57. def end(main_menu): #sub routine which ends the program when called
58. main_menu.destroy()
59. sys.exit()
60.
61. def window_for_info_being_added(file_path, club_name):
62. input_shirt_details_window = Tkinter.Tk() #make window where user can input details of shirt
63. input_shirt_details_window.title("Input details for shirt")
64. input_shirt_details_window.geometry('500x300')
65. valid_year = False
66. valid_email = False
67. label_year = Tkinter.Label(input_shirt_details_window, text="Year of shirt", font=("Arial Bold", 10))
68. label_year.grid(column=0,row=0)
69. label_size = Tkinter.Label(input_shirt_details_window, text="Select the size of the shirt", font=("Arial Bold", 10))
70. label_size.grid(column=0,row=1)
71. label_email = Tkinter.Label(input_shirt_details_window, text="PayPal email", font=("Arial Bold", 10))
72. label_email.grid(column=0,row=2)
73. label_weight = Tkinter.Label(input_shirt_details_window, text="Select the weight of the shirt", font=("Arial Bold", 10))
74. label_weight.grid(column=0,row=3)
75. label_year_number = Tkinter.Label(input_shirt_details_window,text="", font=("Arial Bold", 10))
76. label_year_number.grid(column=1, row=0)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

26

77. combo_size = ttk.Combobox(input_shirt_details_window) #drop down box for selecting size of shirt
78. combo_size['values']= ("XXS", "XS", "S", "M", "L", "XL", "XXL", "XXXL") #possible sizes
79. combo_size.current(0)
80. combo_size.grid(column=1,row=1)
81. label_email_display = Tkinter.Label(input_shirt_details_window,text="", font=("Arial Bold", 10))
82. label_email_display.grid(column=1, row=2)
83. combo_weight = ttk.Combobox(input_shirt_details_window) #drop down box for selecting weight of shirt
84. combo_weight['values']= ("w<1","1<w<2","2<w<10","10<w<15") #possible weights
85. combo_weight.current(0)
86. combo_weight.grid(column=1,row=3)
87. progress_bar = ttk.Progressbar(input_shirt_details_window, length=200)
88. progress_bar.grid(column=0,row=5) #update progress bar
89. progress_bar['value']=30
90. button_confirm_text = Tkinter.Button(input_shirt_details_window, text="Confirm", font=("Arial Bold", 10), command=lambda:

confirm_items(label_year_number.cget("text"), combo_size.get(),label_email_display.cget("text"),combo_weight.get(), input_shirt_detai
ls_window, file_path, club_name))

91. button_confirm_text.grid(column=0,row=4) #button for confirming if user is happy with details they have input
92. while valid_year == False:
93. try:
94. year = int(simpledialog.askstring('Year','Please input the year for the shirt', parent=input_shirt_details_window)

)
95. if year < 1900 or year > 2020: #valid range of years for the football shirts
96. tkMessageBox.showinfo('Invalid year', 'Please input a valid year')
97. else:
98. valid_year = True
99. except:
100. tkMessageBox.showinfo('Invalid year', 'Please input a valid year')
101. label_year_number.configure(text=str(year)) #display the year to the user
102.
103. while valid_email == False:
104. try:
105. email = str(simpledialog.askstring('Email','Please input your PayPal email', parent=input_shirt_details_win

dow))
106. regex = re.search("[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-

]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?", email)
107. if regex == None: #use regex to check is email is valid
108. tkMessageBox.showinfo('Invalid email', 'Please input a valid email')
109. else:
110. valid_email = True
111. except:
112. tkMessageBox.showinfo('Invalid email', 'Please input a valid email')
113. label_email_display.configure(text=str(email)) #display the email to the user

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

27

114.
115. def scroll_box(event):
116. canvas.configure(scrollregion=canvas.bbox("all"),width=500,height=450) #Tkinter scroll box
117.
118. def confirm_items(year, size, email, weight, window, file_path, club_name):
119. size_actual =''
120. if size == "S": #if statement for turning drop down box size to the actual word, used for the title
121. size_actual = "Small"
122. elif size == "M":
123. size_actual = "Medium"
124. elif size == "L":
125. size_actual = "Large"
126. if size_actual == '':
127. size_actual = size
128. postage_price = 0
129. if weight == "w<1": #if statement for turning the drop down box weight to the postage cost
130. postage_price = 2.89
131. elif weight == "1<w<2":
132. postage_price = 4.05
133. elif weight == "2<w<10":
134. postage_price = 6.49
135. else:
136. postage_price = 8.99
137. url = (settings_array[0] + club_name + "+shirt+home+" + str(year)+"+"+size_actual) #URL to be searched on eBay to find sim

ilar items using user's inputted information
138. internet_connection = False
139. while internet_connection == False: #make sure user is connected to internet, otherwise won't be able to search for the UR

L
140. try:
141. apiresult = requests.get(url) #result of searching for the URL using the requests import
142. internet_connection = True
143. except:
144. tkMessageBox.showinfo('No Internet Connection or invalid URL', 'Please connect to the internet or chnage the URL i

n the settings file and restart the program')
145. try:
146. json_format_of_listings = apiresult.json() #put URL return in json format
147. array_for_prices =[]
148. array_for_images =[]
149. array_for_titles =[]
150. for item in (json_format_of_listings["findCompletedItemsResponse"][0]["searchResult"][0]["item"]): #search through eac

h listing
151. picture_of_listing = item["galleryURL"][0] #get each picture

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

28

152. ebay_title = item["title"][0] #get each title
153. array_for_titles.append(ebay_title) #add title to titles array
154. array_for_images.append(picture_of_listing) #add images to images array
155. price_of_shirt = item['sellingStatus'][0]["convertedCurrentPrice"][0]['__value__'] #get each price
156. array_for_prices.append(price_of_shirt) #add price to prices array
157. window.destroy()
158. price = calculate_price(array_for_prices, year) #calculate the price of the item using calculate_price sub routine
159. words = []
160. word_array = []
161. word_count_array = []
162. if len(array_for_titles) > 0: #make sure there are titles in the array
163. for title in range(0,len(array_for_titles)):
164. split_title = array_for_titles[title].split() #split each title into words by spaces
165. for word in split_title:
166. word = word.lower()
167. words.append(word) #add each word in the titles to the words array
168. for word in words: #search through each word in the words array
169. if len(word_array) == 0:
170. word_array.append(word) #add the first word to the word array
171. word_count_array.append(1) #increase the count of that word by 1
172. else:
173. if word in word_array: #if the word already is in the word_array increase the count of that word by 1
174. index = word_array.index(word)
175. word_count_array[index] = word_count_array[index] + 1
176. else: #otherwise add the word to the words_array and add a new count for that word
177. word_array.append(word)
178. word_count_array.append(1)
179. title_words = [] #array for containing the words for the title
180. index = 0
181. for num in word_count_array:
182. if num >= len(array_for_titles)/2.75:
183. title_words.append(word_array[index]) #if the word occurs regularly then add the word to the title_words a

rray
184. index +=1
185. for title_word in range(0,len(title_words)):
186. title_words[title_word] = title_words[title_word].capitalize() #make each word have a capital at start
187. title = " ".join(title_words) #join the words together to make the title
188. else:
189. title = club_name + " Football Soccer Home Shirt Year " + year + " Size UK " + size_actual + " Good Condition" #de

fault title
190. show_listing_window = Tkinter.Tk() #window which shows the user's listing and previously sold items similar
191. show_listing_window.title("Listing")

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

29

192. show_listing_window.geometry('1000x1000')
193. show_listings(title, price, postage_price, show_listing_window, email, file_path)
194. except:
195. title = club_name + " Football Soccer Home Shirt Year " + year + " Size UK " + size_actual + " Good Condition" #defaul

t title
196. valid_price = False
197. price = 0
198. while valid_price == False:
199. try:
200. price = float(simpledialog.askstring('Price','No listings found, please input a price', parent=window)) #make

sure user inputs a valid price
201. if price < 0.99:
202. tkMessageBox.showinfo('Invalid price', 'Please input a valid price')
203. else:
204. valid_price = True
205. except:
206. tkMessageBox.showinfo('Invalid price', 'Please input a valid price')
207. window.destroy()
208. show_listing_window = Tkinter.Tk() #window which shows the user's listing and previously sold items similar
209. show_listings(title, price, postage_price, show_listing_window, email, file_path)
210. if len(array_for_images)>0: #make sure there are images in the array
211. scroll_window=Tkinter.Frame(show_listing_window,relief=Tkinter.GROOVE,width=500,height=500,bd=1)
212. scroll_window.grid(row=8,column=0)#making a scroll bar section with tkinter
213. global canvas
214. canvas=Tkinter.Canvas(scroll_window)
215. scroll_frame=Tkinter.Frame(canvas)
216. myscrollbar=Tkinter.Scrollbar(scroll_window,orient="vertical",command=canvas.yview)
217. canvas.configure(yscrollcommand=myscrollbar.set)
218. myscrollbar.pack(side="right",fill="y")
219. canvas.pack(side="left")
220. canvas.create_window((0,0),window=scroll_frame,anchor='nw')
221. scroll_frame.bind("<Configure>",scroll_box)
222. for i in range(0,len(array_for_prices)): #display each image of recently sold items in scrol bar
223. img = ImageTk.PhotoImage(Image.open(urlopen(array_for_images[i])))
224. panel = Tkinter.Label(scroll_frame, image = img)
225. panel.image = img
226. panel.grid(column=0,row=i)
227. Tkinter.Label(scroll_frame,text=str(array_for_prices[i])).grid(row=i,column=2) #display the price next to the imag

e
228.
229. def quicksort(array, start, end): #quicksort algorithm to order the prices
230. low = start

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

30

231. high = end
232. pivot = array[int((low+high)/2)]
233. while low<=high:
234. while array[low] < pivot:
235. low +=1
236. while pivot < array[high]:
237. high-=1
238. if low <= high:
239. temp = array[low]
240. array[low] = array[high]
241. array[high] = temp
242. low+=1
243. high-=1
244. if start<high:
245. quicksort(array, start, high) #recursively using the quicksort subroutine
246. if end > low:
247. quicksort(array,low, end) #recursively using the quicksort subroutine
248. return array
249.
250. def calculate_price(array_for_prices, year): #sub routine for calculating the price of the item
251. total_price = 0
252. copy_of_array_for_prices = []
253. for i in range(0,len(array_for_prices)):
254. copy_of_array_for_prices.append(array_for_prices[i]) #make a copy of the original array so the original array can be u

sed later on
255. sorted_array = quicksort(copy_of_array_for_prices, 0, len(copy_of_array_for_prices)-

1) #order the array using the quicksort sub routine
256. length_of_array = len(array_for_prices) #get the number of prices
257. lower_quartile_position = int(math.ceil(length_of_array/4)) #find lower quartile postition
258. upper_quartile_position = int(math.ceil((length_of_array/4)*3)) #finf the upper quartile position
259. inter_quartile_range = float(sorted_array[int(upper_quartile_position)])-

float(sorted_array[int(lower_quartile_position)]) #work out the inter quartile range
260. if int(year) < 1980: #the older the shirt, the greater the interquartile range usually due to some very expensive shirts,

so the difference between the bounds needs to be smaller for older shirts, otherwise there will be no outliers
261. difference = 0.05 * inter_quartile_range
262. elif int(year) < 2000:
263. difference = 0.1* inter_quartile_range
264. elif int(year) < 2010:
265. difference = 0.2*inter_quartile_range
266. elif int(year) < 2015:
267. difference = inter_quartile_range
268. else:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

31

269. difference = 1.5*inter_quartile_range
270. lower_bound = float(sorted_array[int(lower_quartile_position)])-difference #work out lower bound for outliers
271. upper_bound = float(sorted_array[int(upper_quartile_position)])+difference #work out upper bound for outliers
272. for i in range(0,len(sorted_array)): #get rid of any values in array that are lower than the lower bound or higher than th

e upper bound
273. if float(sorted_array[i]) < lower_bound or float(sorted_array[i])>upper_bound:
274. sorted_array[i] = 0
275. for i in range(0,len(sorted_array)):
276. total_price += float(sorted_array[i]) #add all the items in the array together
277. price = (math.ceil(total_price / length_of_array))-

0.01 #get average of prices, round up and take off 0.01 to get a 99p at the end
278. return price
279.
280. def show_listings(title, price, postage_price, show_listing_window, email, file_path): #sub routine for displaying the user's

listing
281. label_title = Tkinter.Label(show_listing_window, text=title, font=("Arial Bold", 10)) #contains lots of labels and buttons

 showing information
282. label_title.grid(column=0,row=0)
283. image_of_shirt = ImageTk.PhotoImage(Image.open(settings_array[2]))
284. panel = Tkinter.Label(show_listing_window, image = image_of_shirt)
285. panel.image = image_of_shirt
286. panel.grid(column=0,row=1)
287. label_description = Tkinter.Label(show_listing_window, text=title, font=("Arial Bold", 10))
288. label_description.grid(column=0,row=2)
289. label_price = Tkinter.Label(show_listing_window, text=str(price), font=("Arial Bold", 10))
290. label_price.grid(column=0,row=3)
291. label_postage_price = Tkinter.Label(show_listing_window, text=str(postage_price), font=("Arial Bold", 10))
292. label_postage_price.grid(column=0,row=4)
293. label_sub_heading = Tkinter.Label(show_listing_window, text="Recently sold shirts", font=("Arial Bold", 10))
294. label_sub_heading.grid(column=0,row=7)
295. button_change_title = Tkinter.Button(show_listing_window, text="Change title", font=("Arial Bold", 10), command=lambda: ch

ange_title(show_listing_window, label_title))
296. button_change_title.grid(column=1,row=0)
297. button_change_description = Tkinter.Button(show_listing_window, text="Change description", font=("Arial Bold", 10), comman

d=lambda: change_description(show_listing_window, label_description))
298. button_change_description.grid(column=1,row=2)
299. button_change_price = Tkinter.Button(show_listing_window, text="Change price", font=("Arial Bold", 10), command=lambda: ch

ange_price(show_listing_window, label_price))
300. button_change_price.grid(column=1,row=3)
301. button_change_postage_price = Tkinter.Button(show_listing_window, text="Change postage price", font=("Arial Bold", 10), co

mmand=lambda: change_postage_price(show_listing_window, label_postage_price))
302. button_change_postage_price.grid(column=1,row=4)

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

32

303. button_confirm_listing = Tkinter.Button(show_listing_window, text="List", bg="green", font=("Arial Bold", 10), command=lam
bda: list_item(label_title.cget('text'),label_description.cget('text'),label_price.cget('text'), label_postage_price.cget('text'), sh
ow_listing_window, email, file_path))

304. button_confirm_listing.grid(column=1,row=5)
305. progress_bar = ttk.Progressbar(show_listing_window, length=200)
306. progress_bar.grid(column=0,row=5)
307. progress_bar['value']=75
308.
309. def list_item(title, description, price, postage_price,window, email, file_path): #sub routine for listing an item on eBay
310. api = Trading(config_file="ebay.yaml", siteid=3)
311. with Image.open(file_path) as user_image: #upload the user's image to eBay so can be accessed by the API
312. user_image.thumbnail((1600,1600))
313. with io.BytesIO() as image:
314. user_image.save(image, "JPEG")
315.
316. files = {'file': ('EbayImage', image.getvalue())}
317. pictureData = {
318. "WarningLevel": "High",
319. "PictureSet":'Supersize',
320. "PictureName": "Test"
321. }
322. internet = False
323. while internet == False:
324. try: #make sure there is a connection to the internet
325. response = api.execute('UploadSiteHostedPictures', pictureData, files=files)
326. picture = (response.reply.SiteHostedPictureDetails.FullURL)
327. internet = True
328. except:
329. tkMessageBox.showinfo('No internet connection or invalid eBay token', 'Please connect to the internet or g

et new eBay token')
330.
331. api_request = { #information for the listing
332. "Item": {
333. "Title": title,
334. "Country": "GB",
335. "Location": "GB",
336. "Site": "UK",
337. "ConditionID": "3000",
338. "PaymentMethods": "PayPal",
339. "PayPalEmailAddress": email,
340. "PictureDetails": {"PictureURL": [picture]},
341. "PrimaryCategory": {"CategoryID": "123490"},

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

33

342. "Description": description,
343. "ListingType": "FixedPriceItem",
344. "ListingDuration": "GTC",
345. "StartPrice": price,
346. "Currency": "GBP",
347. "ReturnPolicy": {
348. "ReturnsAcceptedOption": "ReturnsAccepted",
349. "RefundOption": "MoneyBack",
350. "ReturnsWithinOption": "Days_30",
351. "ShippingCostPaidByOption": "Buyer"
352. },
353. "ShippingDetails": {
354. "ShippingServiceOptions": {
355. "FreeShipping": "False",
356. "ShippingService": "UK_myHermesDoorToDoorService",
357. "ShippingServiceCost": postage_price
358. }
359. },
360. "DispatchTimeMax": "2"
361. }
362. }
363. try:
364. api.execute("AddItem", api_request) #list the item on eBay
365. tkMessageBox.showinfo('Listing complete', 'Your item has been published on eBay')
366. except:
367. tkMessageBox.showinfo('Invalid listing', 'This listing already exists')
368. window.destroy()
369.
370. def change_price(window, existing_label): #subroutine for when user wants to change the price
371. valid_price = False
372. while valid_price == False:
373. try:
374. price = float(simpledialog.askstring('Change price','Please input a price', parent=window))
375. if price < 0.99:
376. tkMessageBox.showinfo('Invalid price', 'Please input a valid price')
377. else:
378. valid_price = True
379. except:
380. tkMessageBox.showinfo('Invalid price', 'Please input a valid price')
381. existing_label.configure(text=str(price))
382.
383. def change_title(window, existing_label): #subroutine for when user wants to change the title

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

34

384. valid_title = False
385. while valid_title == False:
386. try:
387. title = simpledialog.askstring('Change title','Please input a title', parent=window)
388. if title != '':
389. existing_label.configure(text=title)
390. valid_title=True
391. except:
392. tkMessageBox.showinfo('Invalid title', 'Please input a valid title')
393.
394. def change_description(window, existing_label): #subroutine for when user wants to change the description
395. valid_description = False
396. while valid_description == False:
397. try:
398. description = simpledialog.askstring('Change description','Please input a description', parent=window)
399. if description != '':
400. existing_label.configure(text=description)
401. valid_description=True
402. except:
403. tkMessageBox.showinfo('Invalid description', 'Please input a valid description')
404.
405. def change_postage_price(window, existing_label): #subroutine for when user wants to change the postage price
406. valid_price = False
407. while valid_price == False:
408. try:
409. price = float(simpledialog.askstring('Change postage price','Please input postage price', parent=window))
410. if price < 0.01:
411. tkMessageBox.showinfo('Invalid postage price', 'Please input a valid postage price')
412. else:
413. valid_price = True
414. except:
415. tkMessageBox.showinfo('Invalid postage price', 'Please input a valid postage price')
416. existing_label.configure(text=str(price))
417.
418. def open_file(main_menu):
419. if len(clubs) != int(settings_array[6]): #number of clubs in clubs text file should match the number of output nodes for t

he neural network
420. tkMessageBox.showinfo('Problem with clubs or settings file', 'The number of clubs and number of output nodes do not ma

tch in the settings and club files')
421. end(main_menu)
422. valid_file = False
423. while valid_file == False:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

35

424. file_path = tkFileDialog.askopenfilename(filetypes = [('Jpeg Files', '*.jpg')]) #window for inputting an image
425. if file_path != '': #checks file is actually inputted
426. img = Image.open(file_path)
427. width, height = img.size
428. if width >= 500 and height >= 500: #checks image is of an appropriate size
429. valid_file = True
430. else:
431. tkMessageBox.showinfo('Invalid image', 'Your image is too small, please input another')
432. resize = tkMessageBox.askquestion('Resize?', 'Would you like your image to be resized?\nIt is recommended you

get a better quality image')
433. if resize == 'yes':
434. img = Image.open(file_path)
435. width, height = img.size
436. new_img = img.resize((500, 500))
437. new_img.save(file_path) #resize image to a suitable size for eBay
438. valid_file = True
439.
440. Images(file_path).resize(settings_array[1]) #resize image to 50x50 so can be fed through the neural network
441. nn = neuralNetwork(7500,200,20,int(settings_array[6])) #instantiate the neural network class
442. try:
443. image = nn.run_with_existing_weights(Images(settings_array[2]).toarray()).matrix #pass the image through the neural ne

twork, which produces an output array
444. except:
445. tkMessageBox.showinfo('Problem with settings file', 'The number of output nodes in the settings file is incorrect or t

he file name is incorrect, please correct this and restart the program')
446. end(main_menu)
447. highest_index = 0
448. highest = 0
449. club_name = ""
450. image_softmax = softmaxtrain(image)
451. for i in range(0,len(image_softmax)):
452. if image_softmax[i] > highest: #work out the index with the highest value, each club has an index associated with it (ch

elsea is index 0, etc)
453. highest = image_softmax[i]
454. highest_index= i
455. if highest > 0.18: #if lower than 0.18, then the prediction of the club not clear
456. club_name = clubs[highest_index] #gets the club from the clubs.txt file
457. main_menu.destroy()
458. check_shirt_window = Tkinter.Tk() #window for confirming if the club predicted by the network is correct
459. check_shirt_window.title("club correct?")
460. check_shirt_window.geometry('200x200')
461. try:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

36

462. image_shirt = ImageTk.PhotoImage(Image.open(settings_array[2])) #display the image inputted by the user
463. except:
464. tkMessageBox.showinfo('Problem with settings file', 'The file path in the settings file does not exist, please upd

ate the settings file and then restart the program')
465. check_shirt_window.destroy()
466. sys.exit()
467. panel_shirt = Tkinter.Label(check_shirt_window, image = image_shirt)
468. panel_shirt.image = image_shirt
469. panel_shirt.grid(column=0,row=0, padx=50,pady=50)
470. progress_bar = ttk.Progressbar(check_shirt_window, length=200)
471. progress_bar.grid(column=0,row=2)
472. progress_bar['value']=20 #update progress bar
473. correct_shirt = tkMessageBox.askquestion('Shirt', club_name + '?')
474. if correct_shirt == 'yes':
475. check_shirt_window.destroy()
476. window_for_info_being_added(file_path, club_name) #if program gets the right club go to sub routine where user inp

uts information
477. elif correct_shirt == 'no': #if the program gets the wrong club
478. valid_title = False
479. while valid_title == False:
480. try:
481. club_name = simpledialog.askstring('Input actual club','Please input the actual club name of the shirt', p

arent=check_shirt_window) #user inputs actual club name
482. if club_name != '': #make sure user inputs something
483. if club_name in clubs: #check if the club inputted is one of the valid ones in the clubs.txt file
484. valid_title = True
485. else:
486. tkMessageBox.showinfo('Invalid club', 'Please input a valid club')
487. else:
488. tkMessageBox.showinfo('Invalid club', 'Please input a valid club')
489. except:
490. tkMessageBox.showinfo('Invalid club', 'Please input a valid club')
491. try:
492. inputs = Images(settings_array[3]).toarray() #input for training neural network with image inputted by user
493. except:
494. tkMessageBox.showinfo('Problem with settings file', 'The file path in the settings file does not exist, please

 update the settings file and then restart the program')
495. check_shirt_window.destroy()
496. sys.exit()
497. target = []
498. for club in clubs:
499. if club == club_name:

Aaron Moorey, Candidate Number: 9462, Center number:64395, Godalming College

37

500. club_index = clubs.index(club) #get the club index by finding its position in the clubs.txt file
501. for i in range(0,int(settings_array[6])):
502. target.append(0) #make an array of the length of the number of clubs
503. target[club_index] = 1 #make the club index a 1 for the target for the neural network
504. nn.train_with_existing_weights(inputs,target,nn) #train the neural network with the input and target
505. check_shirt_window.destroy()
506. window_for_info_being_added(file_path, club_name) #go to the sub routine where the user inputs details of shirt
507. else:
508. tkMessageBox.showinfo('Unknown shirt', 'Unsure what club this is, please try another photo')
509.
510. main()

