

 NEA Exemplar project: ‘RED’

NEA Exemplar Project

Project title:
‘RED (Reverse Engineering Database)’

GCE A-level Computer Science (7517)

2

 NEA Exemplar project: ‘RED’

Introduction
This NEA exemplar project is provided to give teachers an indication of the type of project that
students could complete. This A-level specification is for first assessment in June 2017.

This exemplar project should only be used to enable teachers to commence planning work for the
NEA. As a result teachers should use this only as a guide to the forthcoming live assessments.

This project is provided as an example only. It cannot be used to accurately determine standards in
the future.

Teacher Standardisation events will be used to prepare teachers for the first NEA assessment. At
these meetings teachers will be made aware of the standard.

Note
This is an exemplar project that has been produced from a project that was entered for the previous
specification. Sections from the old specification that are no longer required have been removed.
The subsections left might contain elements that are not fully required by the new specification but
give a good idea as to what the contents of a project might be. As this project has been adapted
from the old specification and not standardised we have indicated which level it would be marked in
for each section of the NEA.

3

NEA Exemplar project: ‘RED’
 Turn over

Project RED – (Reverse Engineer Database)

4

 NEA Exemplar project: ‘RED’

Analysis:

Introduction:

Entity-relationship models (ER) are a key part of software engineering and are used all the time in
big database projects, amongst other things. They are one of the core data models and they are
made up of two fundamental parts: the entities that exist in the database or system and the
relationships between these entities. The entities and relationships can also have attributes, which
can be anything that is useful to know about the entity or relationship.

For example, an entity could be an employee of a company; one attribute of the employee could be
that his name is Henry and another could be his home address. An example of a relationship would
then be that Henry works for Google, where Google is a different entity and the relationship is
highlighted in italics. This clearly shows how the two entities Henry and Google relate to each other.
Shown below is a visual example of an entity-relationship diagram.

There is also another notation called Crow’s Foot, where
Crow's Foot diagrams represent entities as boxes, and
relationships as lines between the boxes. Different shapes at
the ends of these lines represent the type of the
relationship.

Entity-relationship models can be used to map out the
relationships between different tables in a database and to show how the primary keys and foreign
keys match up, which is what makes them such an essential tool in software engineering. They can,

5

NEA Exemplar project: ‘RED’
 Turn over

however, be quite hard to produce without the correct software or knowledge, which means that
not everyone is able to utilise the advantages that they provide. This is mainly because the software
is very expensive and therefore it is quite hard to acquire. For people who are having this problem
there are several solutions, some of which I discuss below in the proposed solutions section.

Description of Current System:

The most common software used for maintaining and creating databases is the Microsoft SQL
Server software package, which allows you to edit your database as well as write and run SQL
queries. This product costs about £30001. However, this software does not include the ability to
create entity-relationship diagrams, which is where another software package is required. The most
commonly used one is Microsoft Visio, which is a generic diagramming tool which can be used to
create a diagram of the relationships in the database (called reverse engineering) and can also be
used for forward engineering, where you draw a diagram of the database and then it creates the
database for you. This second functionality is only available in the very expensive edition. Microsoft
Visio is also expensive, as the standard version costs about £300 and the professional version costs
£5002. The image below is an example of an entity-relationship diagram created in Microsoft Visio.

1 http://www.microsoftstore.com/store/msuk/en_GB/pdp/SQL-Server-2014-Standard-
Edition/productID.304681600
2http://www.microsoftstore.com/store?SiteID=msuk&Locale=en_GB&Action=DisplayProductSearchRes
ultsPage&result=&keywords=visio

http://www.microsoftstore.com/store/msuk/en_GB/pdp/SQL-Server-2014-Standard-Edition/productID.304681600
http://www.microsoftstore.com/store/msuk/en_GB/pdp/SQL-Server-2014-Standard-Edition/productID.304681600
http://www.microsoftstore.com/store?SiteID=msuk&Locale=en_GB&Action=DisplayProductSearchResultsPage&result=&keywords=visio
http://www.microsoftstore.com/store?SiteID=msuk&Locale=en_GB&Action=DisplayProductSearchResultsPage&result=&keywords=visio

6

 NEA Exemplar project: ‘RED’

Each box in the diagram represents a different table in the database with the primary key for each
one located at the top of each box. The arrows between the boxes represent the relationships
between the different tables in the database; note that some boxes don’t have any arrows
connected to them, which means that there are some tables in the database which are independent
of the others. Where it says FK1 or FK2 in the boxes, it is identifying foreign keys in the table. These
are primary keys from other tables and it is through these foreign keys that you can work out the
relationships in the database.

The software packages mentioned above are just the most frequently used ones and the ones that
my client is using. Microsoft SQL Server can be replaced with MySQL, which is a free alternative, but
it does not have the same amount of features as Microsoft SQL Server, for example it does not have
the same smoothness with Windows and other Microsoft software that SQL Server has. As for an
alternative for Microsoft Visio, there are lots of ER tools that are available online, such as Lucid
Chart3, but these programs do not let you connect a database to them and then draw a diagram of
your database; they are designed for people who are creating new databases who want to draw the
ER diagram first. However, there are others such as SchemaCrawler4, which can draw diagrams of
existing databases for you.

Identification of End Users:

The primary end user of this project is my father, Adrian; he is an IT consultant and often works with
databases. The software that he uses is mentioned above in the Description of Current System
section. After speaking with Adrian I have found out that he often encounters problems with
Microsoft Visio and that it often creates incorrect diagrams of his database. He has also
demonstrated this problem to me on his computer and shown me that when he attempts to create
an entity-relationship diagram, some of the relationships and foreign keys are missing. He has also
expressed his concern to me about the cost of Microsoft Visio and how the immense cost of it will
mean that lots of people will be unable to afford it. He has therefore asked me to devise a solution.

As well as Adrian, my project has other end users. The problem that I am solving is one that affects
lots of other database engineers who want to make an ER diagram. An ER diagram is necessary to
see how data flows through a database and how it is stored, so they will also be able to benefit from
my project, especially from Solution 1, which provides them with a free ER drawing tool that can
connect to their database.

3 https://www.lucidchart.com/documents/edit/2c51793e-bc22-4201-8897-2a6622be6fe5#?demo=on

4 http://schemacrawler.sourceforge.net/diagramming.html

https://www.lucidchart.com/documents/edit/2c51793e-bc22-4201-8897-2a6622be6fe5#?demo=on
http://schemacrawler.sourceforge.net/diagramming.html

7

NEA Exemplar project: ‘RED’
 Turn over

User Needs:

• A software tool that is preferably free to use, that allows them to connect their database to
it and then produces an ER diagram of the database.

• The software must be available online and be easy to download and run.
• Be able to save the diagram to their computer or keep track of the diagrams the user has

created, so they can view the diagrams they have created in the past.
• The ER diagram must have the same standards as other ER diagrams, so that the users can

understand it and can compare it to diagrams created with different programs.
• Some customisation of the diagram is allowed, e.g. changing colours or type of ER diagram

(Crow’s Foot or normal).

Acceptable Limitations:

• Database selected for reverse engineering must contain full 3NF relationships - i.e. for SQL
Server both Primary and Foreign Keys must be defined and the database must be normalised
to the 3rd level (for Solution 1).

• Program might not be able to connect to all databases.

• User’s DB must also be able to be accessed from outside the LAN the DB is hosted on.

• User must have sufficient privileges to access whichever database they want to connect to.

• Customisation of diagram will be limited due to complexity of programming.

Data Sources and Destinations:

The main data source for my program is the user’s database, from which my program will extract
the data that it needs to draw an ER diagram. The extracted data will then be stored locally in the
program in a C# data structure called a datatable, which is just like a normal table in a database, but
is stored within the program in RAM rather than on a server. Storing the data this way also allows
me to easily iterate through the datatable’s rows without having to do another SQL Connection in
my program. It is also much faster than a DB table.

The data that is coming out of my program is in the form of a JPEG image of the ER diagram that the
user will draw. They will also be able to save it for review later.

Data Volumes:

My program will be storing data locally in the program during runtime in the form of two
datatables, which will be filled with the results of the queries, and it will also be storing a JPEG
image of the diagram to a file location specified by the user. Both data volumes will vary depending
on the size of the database that the user has chosen to connect to.

For example, shown below is an example of some results that the tables query would return. This
query creates a list of all the tables in a given database, as well as some other information about

8

 NEA Exemplar project: ‘RED’

each table. Each field stores up to 20 characters apart from the description field which stores up to
50. So if a database has exactly 100 tables, the size of the results from the tables query stored in a
local datatable in my program will be around 11,000 bytes.

Analysis Data Dictionary:

Tables:

TableCatalog TableSchema TableName TableDescription

AdventureWorks HumanResources Employee Employee information

AdventureWorks HumanResources Department Department information

AdventureWorks Person Address Addresses for customers,
employees etc.

Foreign Keys:

FK_Name Schema_name Table Column Reference
d_schema

Reference
d_table

Reference
d_column

FK_Employee_Co
ntact_ContactID

HumanResour
ces

Employee ContactID Person Contact ContactID

FK_ProductInven
tory_Product_Pr
oductID

Production ProductIn
ventory

ProductID Productio
n

Product ProductID

9

NEA Exemplar project: ‘RED’
 Turn over

Data Flow Diagram:

ER Diagram:

My project will be querying the user’s database and then creating two tables of its own to store the
extracted data.

Object Analysis Diagram:

As I will not be creating any of my own classes for this project, an object analysis diagram is not
relevant.

Objectives:

1. Allow the user to enter configurations to connect to a remote database of their choice these
will include server name, database, username and password

2. Output an error message if the program fails to connect to the database, alerting the user
that they might have entered the wrong details.

3. Use SQL queries to extract the metadata and keys from all the different tables and then
store that data locally in a C# program written in Visual Studio.

4. Allow the user to choose which tables they want to include in the diagram.
5. Use the data from the database to draw a unique ER diagram of the database.
6. Give the user the option to save the diagram as an image.
7. Refine ER diagram drawing algorithm, so that the diagram is clearer and easier to read (i.e.

there are not so many lines crossing over each other).

Tables

Foreign Keys

10

 NEA Exemplar project: ‘RED’

Proposed Solution:

Create a custom program that is able to connect to a database, extract the metadata and foreign
keys using SQL queries and then read that data into a C# program that would create an ER diagram
based on the extracted data. This program would be open source and would be available for free on
the internet. The user would not have to download any other software to use it, but would have to
be using a Windows operating system. There would be some limitations as to the type of database
the program would be able to connect to, as specified in the acceptable limitations.

Evidence of Analysis:

So that I could properly understand the problem that my end user was facing, I decided to interview
him about it. During the interview he showed me the basics of Microsoft SQL Server and also some
examples of the problem in Microsoft Visio, where the ER diagrams are not being drawn correctly.
He also informed me that the latest update of Microsoft Visio does not allow you to create ER
diagrams at all, meaning that my project is ever more important. The interview is shown below:

What are you having problems with at the moment?

One aspect of my job as an IT Consultant is that, as we implement a new system for the customer,
we also need to move their data from their old system into the new one. This is known as Data
Migration and involves being able to understand how the data is stored in both the old and new
systems. It is almost always the case that the data will be structured differently and the best way to
review these before/after data structures is through the use of a user-friendly diagram. Entity
Relationship diagrams are one way of presenting this information in a manner that facilitates the
discussion with the business users about how they work with the data day to day in their old system
and how they will in the new system.

How do these problems affect your work?

Personally, I have a copy of Microsoft Visio, which has a reverse engineering facility, but
unfortunately a lot of my customers do not and it is often not possible for me to connect my laptop
to their corporate network. Additionally, they will not permit me to take a copy of the database to
restore onto my laptop.

Is there anything else that you don't like about the current software that you use?

Visio is also expensive to buy and I have quite an old version (2003) which can be buggy at times and
miss relationships. This is especially true when trying to connect to more recent versions of SQL
Server, like 2008 and 2012.

Would a custom program that lets you draw ER diagrams of your database solve the problems
that you are currently having?

A free-to-use web-based utility that performed this reverse engineering and produced an Entity
Relationship diagram would help me in these circumstances. In turn, the use of the ER diagrams
enables better understanding of existing business processes and data. Poor quality data is often

11

NEA Exemplar project: ‘RED’
 Turn over

cited as a principal reason for new systems' failure, so a tool that helps me understand data
structures within the DB and that is portable from customer to customer would be very beneficial.

Is there anything specific that you would like this program to do?

Ideally the program would have the following features:

• Be able to connect to many different databases by allowing the user to select server name,
username etc

• Be able to extract details of the tables, columns and relationships from the target DB

• Let me select the tables to be drawn in the ER diagram - for example, I may only be
interested in certain tables or schemas when migrating data

• Be able to draw an ER diagram representing the metadata information retrieved from the
database

• Let me save the diagram for future reference or for distributing to other team members.

Based on the results of the interview with my end user, it looks like I was correct to go with the
proposed solution, which is to write a custom program as that is also what the end user would like.
They have also explicitly said that they would like it to have certain features, such as being able to
choose which tables in the database are included in the diagram, so I will need to make sure that I
include that and the other features in my program. They have also requested that it will be a free-
to-use application, available for download on the internet, so I will have to find a way to do this –
either by creating my own small website with the file available for download or having it hosted on
a site like Github, where it can also be downloaded.

12

 NEA Exemplar project: ‘RED’

Documented Design

Overall System Design:

In order to make my project easier and so that the code works properly, I have split it into five
different stages, so that I can work on just one stage at a time rather than trying to do all the
different things at once. That way once I have completed programming one stage and tested that it
works properly, I can move onto the next stage, not having to worry whether the previous stage will
still work or not.

Stage 1:

The first stage of my program is to prompt the user for the details of the database that they want to
connect to and then to attempt to connect to the database using the details that they provided. If
their details are incorrect then the program will output an error message.

Stage 2:

The second stage is using the connection that the previous stage established to run two SQL queries
on the database and then to store the results of those queries locally in the program in a C# data
structure called a datatable, which is just like a table in a database with rows and columns. I will use
two datatables, one for the results of the tables query and another for the results of the foreign
keys query. The two queries can be seen below in the SQL Queries section.

Program Correct details entered by user Database

Connection

Successful connection

Output message alerting user that
connection was successful

Program Incorrect details entered by user
Connection

No database found

Output error message

Program Database
Tables and foreign keys queries

Return results of queries

13

NEA Exemplar project: ‘RED’
 Turn over

Stage 3:

In this stage the program will show the user a list of every table in the database that they chose to
connect to and give them the option of selecting which tables they want to include in their diagram.
It will also let them choose to select all of the tables. A prompt will then ask the user whether they
would like to save their diagram or just view it.

Stage 4:

Depending on what the user chose in the previous stage, the program will either draw the diagram
to the screen or draw the diagram as a bitmap. The size of the diagram will depend on the number
of tables that the user decides to include in stage 3.

Stage 5:

If the user chooses to save the diagram in stage 3, then they will be asked what location they want
to save their diagram. After clicking the save button their diagram will saved as a JPEG file to the
specified folder.

Give user option to save or display

Program User

Display list of tables

Selected tables

Program User

Choice

Program

User

Draw diagram to screen

Program
Folder to save diagram in

User

Save diagram and output message
alerting the user that the save was
successful

14

 NEA Exemplar project: ‘RED’

IPSO Chart:

Inputs Processes Storage Outputs
Database details to
connect to

Connect to database
server

Temporarily store
metadata obtained
from SQL queries in
local datatables in
the program

Show user list of
tables in their
database, so they
can choose ones to
be included in
diagram

Metadata from
database

Extract data Save created ER
diagram to location
specified by user

Display the created
ER diagram to the
screen

 Draw diagram

Modular Design:

• First Form (Main Menu)
o Connect and extract

 Second Form (Choose Tables)
• Confirm (use selected tables)

o Choose save
 Third Form (Save Form)

• Enter filepath and save
• Main menu (go back to first form)
• Exit program

o Choose to display
 Fourth Form (Drawing Form)

• Select all (use all tables)
o Choose save

 Third Form (Save Form)
• Enter filepath and save
• Main menu (go back to first form)
• Exit program

o Choose to display
 Fourth Form (Drawing Form)

• Main menu (go back to first form)
• Exit program

o Exit program

Definition of Data Requirements / Description of Record Structure(s):

My program will be storing data locally in datatables in RAM during runtime. Datatables are just like
normal tables in a database, but they are quicker to work with as I do not have to make an SQL
connection to be able to access them, as they are not hosted on a database. This means that it is

15

NEA Exemplar project: ‘RED’
 Turn over

easy for the program to loop through the rows in the datatables and it is able to quickly access the
data that is extracted from the database.

My program will also be storing data in several lists whilst it is running. The most important list will
be called TableList and this list will contain all of the tables in the database. When the user chooses
which tables will be included in the diagram, a new TableList will be made to replace this list. If the
user chooses to use all the tables then the list will remain the same. Other important lists are
ForeignKeysReferencedTable, ForeignKeysTable, relationships. These are all created and used in the
getRelationships function and they will store the names of the tables which contain foreign keys
and the names of the tables that have primary keys used as foreign keys in other tables, so that the
relationship can be mapped between the tables.

The column headings of the three datatables that will be used during runtime are as follows:

Tables datatable:

TableCatalog TableSchema TableName TableDescription

ForeignKeys datatable:

FK_Name Schema_name Table Column Reference
d_schema

Reference
d_table

Reference
d_column

TablePositions Datatable:

table_name x1 y1 x2 y2

Data Validation:

The data that the user will be entering is the details of the database that they want to connect to. If
their data is valid and they have entered correct value into all of the fields, then the program will
successfully connect to a database. Otherwise if the data that they entered is not valid, the program
will fail to connect to a database and will output an error message with information on why it failed.

The user will also be entering data when they are choosing what folder they want to save their
diagram in, if they enter in the wrong file path, then the save will not succeed and the program will
output an error message to the user.

16

 NEA Exemplar project: ‘RED’

SQL Queries:

Extract Tables:

Returns a list of all the tables in a database, as well as some information about each table such as
the description and the table schema. The query gets the data from the information tables. These
tables are automatically created when you make a database in SQL Server and are updated as you
add more tables and columns. They contain details about all of the tables in your database.

SELECT TableCatalog = tbl.table_catalog, TableSchema = tbl.table_schema, TableName =
tbl.table_name, TableDescription = prop.value FROM information_schema.tables tbl LEFT JOIN
sys.extended_properties prop ON prop.major_id = object_id(tbl.table_schema + '.' + tbl.table_name)
AND prop.minor_id = 0 AND prop.name = 'MS_Description' ORDER BY TableName ASC

Extract Foreign Keys:

Returns a list of all the foreign keys and what a table they are located in, as well as what table and
column they are referencing. This query also uses some automatically generated tables to retrieve a
list of all the foreign keys. It however requires that the foreign keys have been properly defined in
the database.

SELECT obj.name AS FK_NAME, sch.name AS [schema_name], tab1.name AS [table], col1.name AS
[column], sch2.name AS [referenced_schema], tab2.name AS [referenced_table], col2.name AS
[referenced_column] FROM sys.foreign_key_columns fkc INNER JOIN sys.objects obj ON
obj.object_id = fkc.constraint_object_id INNER JOIN sys.tables tab1 ON tab1.object_id =
fkc.parent_object_id INNER JOIN sys.schemas sch ON tab1.schema_id = sch.schema_id INNER JOIN
sys.columns col1 ON col1.column_id = parent_column_id AND col1.object_id = tab1.object_id INNER
JOIN sys.tables tab2 ON tab2.object_id = fkc.referenced_object_id INNER JOIN sys.schemas sch2 ON
tab2.schema_id = sch2.schema_id INNER JOIN sys.columns col2 ON col2.column_id =
referenced_column_id AND col2.object_id = tab2.object_id ORDER BY tab1.name ASC

[NOTE: these queries have been adapted from advice given on Stack Overflow and tested against an
SQL server]

17

NEA Exemplar project: ‘RED’
 Turn over

Algorithms:

Extract Data:

This part of the system will extract information about tables, columns and foreign keys from the SQL
database entered by the user, and will store the extracted data into local datatables for later use. It
will also make a list of all the tables and foreign keys in the database.

Sketch of form:

Process:

• Firstly a connection string is made using the information that the user enters into the first
form.

• Next an SQL connection is created using the connection string and then the program will
attempt to open the connection, catching any errors if they do occur.

• If it’s successful then it will say "connection successful", otherwise it will print an error
message with information on why it failed.

• An SQL command is then declared, called extractTables, which uses the SQL connection the
program just made and the tables query.

• An SQL data adapter is created, using the extractTables command, which allows for the
results of the tables query to be filled into a local datatable.

• The query is then executed on the database, with any errors being caught.
• After the data is extracted a list of all the table names in the database is created by looping

through the datatable that has just been filled.
• The program will then do the same thing again, but with the foreign keys query instead.

Server:
Database Name:
Username:
Password:

EXIT Connect

Will quit the
program

Will attempt to
connect and extract

18

 NEA Exemplar project: ‘RED’

Pseudo Code:

 Gather strings from entry form
 TRY
 connect to SQL databse using provided details (new SqlConnection)
 Message 'successful'
 CATCH
 Message 'unsuccessful'
 extractTables (run sql statement see earlier section)
 for each row in returned result
 add to tableList the table name
 extractForeignKeys (run sql statement see earlier section)
 for each row in returned result
 add to foreignKeyList

Find Relationships:

This part of the system will find all the primary key to foreign key relationships in the database and
returns them in an array.

The algorithm will be written as a function, so that it can be easily called multiple times.
The function takes a datatable as a parameter.

Process:

• Three lists are initialised (ForeignKeysReferencedTable, ForeignKeysTable, relationships),
which are filled in later in the function.

• The program then loops through all the rows in the datatable passed into the function and
adds data from each row into ForeignKeysReferencedTable and ForeignKeysTable.

• It adds the table in which the foreign key is located into one list and the table to foreign key
is referencing into another list.

• Next a count variable is initialised and then the program iterates through the values in both
lists adding them to another list, but it does it in a way that the corresponding tables and
referenced tables are located next to each other in the list, so the relationships can still be
easily read. It does this as it is much harder to return two lists than one.

Pseudo Code:

Create three new lists (ForeignKeysReferencedTable, ForeignKeysTable and relationships)
For each row in foreignKeys datatable
 Add ‘referenced_table’ to ForeignKeysReferencedTable list (adds data in ‘referenced_table’ field in foreignKeys
datatable to list)
 Add ‘table’ to ForeignKaysTable list (adds data in ‘table’ field in foreignKeys datatable to list)
Count = 0
For each table in ForeignKeysTable
 Add table to relationships list
 Add ForeignKeysReferencedTable[count] to relationships list
 Count = count + 1

19

NEA Exemplar project: ‘RED’
 Turn over

Draw Diagram:

This part of the program will draw a diagram of the database with a square representing every table
and lines between the tables where there is a primary key foreign key relationship. Also draws a
small yellow square on the table where the primary key is located in each relationship.

Sketch design:

Process:

• Iterates through the list of tables and draws a square for each one, with the name of the
table written inside each square.

• Each square is 100 pixels by a 100 pixels and a gap of 50 pixels is left in-between each
square.

• Draws a maximum of ten squares on each row (will use mod 10 to drop down a line by
adding 150 to the y co-ordinate)

• Saves the coordinates it drew each table at into a datatable.
• After it has drawn every table it draws in lines between two tables to represent a

relationship, using the datatable with the coordinates of where each table is located.
The algorithm will take each table one by one and then check to see if this primary key is a
foreign key in a different table (by iterating across all of the tables with foreign keys).
(the midpoint of the x co-ordinates and y co-ordinates will be calculated for each table thus
giving the starting and ending point of the line to be drawn)

• Without the datatable it would not know where all the tables are located, so it would not be
able to correctly draw the lines.

• Finally it draws a mini yellow square to represent which of the tables has the primary key in
each relationship.

Moves across 150 for each table.

Drops 150 for each row (every ten tables drawn)

Puts name of each table into centre of rectangle

20

 NEA Exemplar project: ‘RED’

Pseudo code:

 //draw a square for each table
 loop = 0
 for each table in TableList
 Create a new rectangle
 x1 = x
 y1 = y
 x2 = x + width {100}
 y2 = y + width {100}
 Draw rectangle
 Put text into rectangle of table name
 loop = loop + 1 {add one to count of tables drawn}
 if loop mod 10 = 0 {if we have drawn a multiple of 10 tables drop a line}
 y = y + 150 {drop down a line}
 x = 0 {reset x back to 0}
 else x = x + 150 {shift across for next rectangle}
 Add rectangle co-ordinates to tablePositions
 // draw in relationships
 for each referencedTable
 for each table in tablePositions
 if referencedTable name = tablePosition name
 calculate mid-point of rectangle
 if foreignKeyTable name = tablePosition name
 calculate mid-point of rectangle
 draw line between two mid-points
 draw yellow rectangle on first primary table mid-point

21

NEA Exemplar project: ‘RED’
 Turn over

User Interface:

Input Forms Prototyped in Visual Studio using the form tools:

This form will have text boxes for the
user to input their server name,
database name and a username and
password that will allow access to the
database that they want to connect to.

The text boxes are evenly spaced out
and have a label next to each one, so
that the user does not get confused
and they can easily tell what
information they are meant to be
inputting where.

This form will allow the user to enter where
they would like the save their diagram. They
can also leave the textbox blank and then it
will save it to a default location, which is on
their C: drive.

The forms all have the same style and
themes, so that the program has consistency
and has a professional look. It also means
that the program moves more smoothly from
one form to the other.

22

 NEA Exemplar project: ‘RED’

Outputs:

Security:

My program will need to securely connect to a database, so it will need to use user authentication.
Depending on the database, this will vary from just being a password to having a username as well
or other types of authentication. How secure the ER diagrams are, when saved on the user’s
computer, will depend on the security of their network and their computer, so it is up to them to
ensure appropriate protection. As the ER diagrams are not sensitive data, there is no point in
encrypting the data, as it would not matter if someone else saw it. The only thing that would need
encrypting would be the logins to the databases in the connection string, but seeing as those strings
are only used by the program during runtime and are not being saved to the user’s computer, there
is no need to encrypt them.

This form is a mixture between an
input form and an output form, as it
will show the user a list of all the tables
in their database and then asks them
to tick which ones they would like to
include in their diagram.

Confirm - moves onto save diagram
form

Select all - selects all tables in list and
moves onto save diagram form

Main menu - back to the SQL
connection form

Exit - quits the program

If the user chooses to just view
their diagram rather than save it,
then they will see something
similar to this.

As discussed earlier it will draw
one box per table across the
screen (in rows of ten).

Lines will be drawn between
tables to identify relationships and
boxes will be drawn on the
primary table.

[] Name of table 1
[] Name of table 2
[] Name of table 3
[] Name of table 4

23

NEA Exemplar project: ‘RED’
 Turn over

Design Explained Through Detailed Run Through of the Program with an Example
Database:

To demonstrate clearly how my program will work, I have created a very simple database called
Video Store, shown below. The database has three tables in it, called videos, customers and loans.
Each table has a primary key column, called VideoID, CustomerID and LoanID respectively. The loans
table has two further columns in it called VideoID and CustomerID, which are foreign keys from the
videos and customers tables respectively.

When the tables query and the foreign keys query are run on it in Microsoft SQL Studio, these are
the results:

Therefore when my program is run on this database, it should find out that there are only three
tables in the database and that there are only two relationships between those tables.

Firstly the details of the database are entered into the first form, which will look like this when it is
finished.

24

 NEA Exemplar project: ‘RED’

Then the connect and extract button is pressed and the connection successful message will pop up,
indicating that the details entered were correct and that the program has managed to connect to
the database.

After ok is clicked, the program will run the queries on the database and store the data it retrieves
into two datatables. The datatables created will be identical to the two tables created by running
the queries in Microsoft SQL Studio. The tableList list would currently have the values Customers,
Loans and Videos. This form will then be displayed with a list of the tables.

25

NEA Exemplar project: ‘RED’
 Turn over

When select all is clicked, a prompt will be shown, asking whether I would like to save the diagram
or just view it. In this example I will choose to just view it by pressing no.

After the button labelled no is clicked, the drawing form will be loaded and because no was clicked
instead of yes, the diagram will be drawn to a form instead of to a bitmap. As select all was pressed
all of the tables in the database will be used in the drawing, so tableList would still contain
Customers, Loans and Videos. A new datatable would then be created to store the location of each
table in the diagram, called tablePositions. This datatable would have the following columns;
table_name, x1, y1, x2 and y2. The reason why this datatable will used is so that I can draw a square
to represent each table and then draw in the relationships later. The list that will be returned from
the getRelationships function would have the following values in it; Loans, Customers, Loans,
Videos. This means that there is a foreign key in the Loans table that is the primary key in the
Customers table and that there is another foreign key in the Loans table that is a primary key in the
Videos table. This list will then be split into two lists called foreignKeyTables, which will have the
values; Loans, Loans, and referencedTables, which will have the values; Customers, Videos.

26

 NEA Exemplar project: ‘RED’

Next the program will loop through each of the referenced tables (the tables whose primary key is
used as a foreign key elsewhere) and then find the coordinates of each table using the
tablePositions datatable. Next it will loop through each of the foreign key tables (the tables that
have a foreign key) until it finds the correct table that matches up with the current referenced table.
For example the first referenced table in this example will be Customers and the corresponding
value in the foreignKeyTables list is Loans, so the program would get the coordinates of both tables
and then a line would be drawn between the midpoints of the two tables. In this example the
tablePositions datatable would look like this:

table_name x1 y1 x2 y2
Customer 0 0 100 100
Loans 150 0 250 100
Videos 300 0 400 100

And the created diagram would look like this:

Where there is a line going from Customers to Loans and a line going from Videos to Loans. The
yellow squares indicate that the primary keys are located in Customers and Videos.

The dimensions of each table will be 100x100 pixels and there will be a gap of 50 pixels between
each table. I will set up the program, so that there will be a max of 10 tables on a row, so after 10
have been drawn, the y coordinate will be incremented by 150, so that a gap of 50 pixels is left
between the bottom of each table on one row and the top of each table on the next row. This just
means that the diagram will be clearer to read, as the tables are nicely spread out.

27

NEA Exemplar project: ‘RED’
 Turn over

Technical Solution

Form 1

Design View:

Code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Data.SqlClient;

namespace Project
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 this.DoubleBuffered = true;
 }

28

 NEA Exemplar project: ‘RED’

 private void textBox1_TextChanged(object sender, EventArgs e)
 {
 // leave empty
 }

 private void textBox2_TextChanged(object sender, EventArgs e)
 {
 // leave empty
 }

 private void textBox3_TextChanged(object sender, EventArgs e)
 {
 // leave empty
 }

 private void textBox4_TextChanged(object sender, EventArgs e)
 {
 // leave empty
 }

 private void label1_Click(object sender, EventArgs e)
 {
 // leave empty
 }

 private void label2_Click(object sender, EventArgs e)
 {
 // leave empty
 }

 private void button1_Click(object sender, EventArgs e)
 {
 // creates boolean for whether to print lots of messages for use in testing to see how the code runs
 bool testing = false;
 // whether connecting to adventureworks for testing, or user database
 bool isAdventureWorks = false;
 // user input from textboxes
 string serverString = textBox1.Text;
 string databaseString = textBox2.Text;
 string usernameString = textBox3.Text;
 string passwordString = textBox4.Text;
 // initialise empty datatables
 DataTable tables = new DataTable();
 DataTable columns = new DataTable();
 DataTable foreignKeys = new DataTable();
 // initialise some lists
 List<string> tableList = new List<string>();
 List<string> foreignKeyList = new List<string>();

 //MessageBox.Show(serverString);
 //MessageBox.Show(databaseString);

 // create connection string for sql connection
 SqlConnectionStringBuilder connectionString = new SqlConnectionStringBuilder();
 if (isAdventureWorks)

29

NEA Exemplar project: ‘RED’
 Turn over

 {
 connectionString.DataSource = "red\\sqlexpress";
 connectionString.InitialCatalog = "video store";
 connectionString.IntegratedSecurity = true;
 }
 else
 {
 connectionString.DataSource = serverString;
 connectionString.InitialCatalog = databaseString;
 connectionString.IntegratedSecurity = false;
 connectionString.UserID = usernameString;
 connectionString.Password = passwordString;
 }
 connectionString.ConnectTimeout = 30;

 // use connection string to connect to database
 using (SqlConnection myConnection = new SqlConnection(connectionString.ConnectionString))
 {
 try
 {
 myConnection.Open();
 MessageBox.Show("Connection successful!");
 }
 catch (SqlException ex)
 {
 MessageBox.Show("You failed!" + ex.Message);
 }

 // SQL Queries
 string tablesString = "SELECT TableCatalog = tbl.table_catalog, TableSchema = tbl.table_schema, TableName =
tbl.table_name, TableDescription = prop.value FROM information_schema.tables tbl LEFT JOIN sys.extended_properties
prop ON prop.major_id = object_id(tbl.table_schema + '.' + tbl.table_name) AND prop.minor_id = 0 AND prop.name =
'MS_Description' ORDER BY TableName ASC";
 string foreignKeysString = "SELECT obj.name AS FK_NAME, sch.name AS [schema_name], tab1.name AS
[table], col1.name AS [column], sch2.name AS [referenced_schema], tab2.name AS [referenced_table], col2.name AS
[referenced_column] FROM sys.foreign_key_columns fkc INNER JOIN sys.objects obj ON obj.object_id =
fkc.constraint_object_id INNER JOIN sys.tables tab1 ON tab1.object_id = fkc.parent_object_id INNER JOIN sys.schemas
sch ON tab1.schema_id = sch.schema_id INNER JOIN sys.columns col1 ON col1.column_id = parent_column_id AND
col1.object_id = tab1.object_id INNER JOIN sys.tables tab2 ON tab2.object_id = fkc.referenced_object_id INNER JOIN
sys.schemas sch2 ON tab2.schema_id = sch2.schema_id INNER JOIN sys.columns col2 ON col2.column_id =
referenced_column_id AND col2.object_id = tab2.object_id ORDER BY tab1.name ASC";

 // define an sql command to extract the tables using the tables query
 using (SqlCommand extractTables = new SqlCommand(tablesString, myConnection))
 {
 using (SqlDataAdapter tableReader = new SqlDataAdapter(extractTables))
 {
 try
 {
 // use a data adapter to fill a local datatable with the results of the query
 tableReader.Fill(tables);
 if (testing)
 {
 MessageBox.Show("Tables extracted");
 }
 }

30

 NEA Exemplar project: ‘RED’

 catch (InvalidOperationException ex)
 {
 MessageBox.Show("Fail" + ex.Message);
 }
 // list of tables
 foreach (DataRow row in tables.Rows)
 {
 tableList.Add(row.Field<string>("TableName"));
 }
 if (testing)
 {
 MessageBox.Show("Table list created");
 }
 }
 }

 // command to extract info on foreign keys using foreign keys query
 using (SqlCommand extractForeignKeys = new SqlCommand(foreignKeysString, myConnection))
 {
 using (SqlDataAdapter foreignKeyReader = new SqlDataAdapter(extractForeignKeys))
 {
 try
 {
 // fill in another datatable with results of query
 foreignKeyReader.Fill(foreignKeys);
 if (testing)
 {
 MessageBox.Show("Foreign Keys extracted");
 }
 }
 catch (InvalidOperationException ex)
 {
 MessageBox.Show("Fail" + ex.Message);
 }
 if (testing)
 {
 MessageBox.Show("Foreign key list created");
 }
 }
 }

 // Get list of tables user wants to display
 Form4 chooseTables = new Form4();
 chooseTables.tableList = tableList;
 chooseTables.tables = tables;
 chooseTables.foreignKeys = foreignKeys;
 chooseTables.ShowDialog();
 }
 }

 private void button2_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }
 }
}

31

NEA Exemplar project: ‘RED’
 Turn over

Form 2

Design View:

Code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Project
{
 public partial class Form2 : Form
 {
 public Form2()
 {
 InitializeComponent();
 }

 public DataTable tables;
 public DataTable foreignKeys;
 public List<string> tableList;
 public bool save;

 private void Form2_Load(object sender, EventArgs e)
 {
 this.DoubleBuffered = true;
 // Sets size of form according to number of tables
 int height = getHeight(tableList);
 this.Width = 1500;
 this.Height = height;

32

 NEA Exemplar project: ‘RED’

 // if user chose to save form, draw diagram as a bitmap
 if (save)
 {
 this.drawBitmap();
 }
 // if user chose to display the diagram, draw diagram to a form
 else if (save == false)
 {
 this.Paint += new PaintEventHandler(DrawingForm_Paint);
 }
 }

 private void drawBitmap()
 {
 // datatable to store coordinates of each square representing a table in the diagram
 DataTable tablePositions = new DataTable();
 tablePositions = createDatatable(tablePositions);
 Bitmap bitmap = new Bitmap(this.Width, this.Height);
 Graphics g = Graphics.FromImage(bitmap);
 // give the bitmap a white background
 g.FillRectangle(Brushes.White, 0, 0, this.Width, this.Height);
 // values for drawing the rectangles
 int x = 0;
 int y = 0;
 int height = 100;
 int width = 100;
 // displays more info if testing is true
 bool testing = false;
 if (testing)
 {
 displayList(tableList);
 }
 // get the relationships and store them in a list
 List<string> relationships = getRelationships(foreignKeys, testing);
 List<string> foreignKeyTables = new List<string>();
 List<string> referencedTables = new List<string>();
 int count = 0;
 // get number of tables in database
 int tableListLength = getLength(tableList);
 foreach (string table in relationships)
 {
 if (count == 0 || count % 2 == 0)
 {
 foreignKeyTables.Add(table);
 }
 else
 {
 referencedTables.Add(table);
 }
 count += 1;
 }
 int loops = 0;
 if (save)
 {
 // draw a square for each table
 foreach (string table in tableList)

33

NEA Exemplar project: ‘RED’
 Turn over

 {
 Rectangle rectangle1 = new Rectangle(x, y, width, height);
 int x1 = x;
 int y1 = y;
 int x2 = x + width;
 int y2 = y + height;
 g.DrawRectangle(Pens.Black, rectangle1);
 g.DrawString(table, new Font("Tahoma", 7), Brushes.Black, rectangle1);
 DataRow row = tablePositions.NewRow();
 row["table_name"] = table;
 row["x1"] = x1;
 row["y1"] = y1;
 row["x2"] = x2;
 row["y2"] = y2;
 tablePositions.Rows.Add(row);
 loops += 1;
 // max of 10 squares on one row
 if (loops % 10 == 0)
 {
 y += 150;
 x = 0;
 }
 else
 {
 x += 150;
 }
 }
 int index = 0;
 // loops through all the tables where their primary key is used as a foreign key in other tables
 foreach (string table in referencedTables)
 {
 string foreignKeyTable = foreignKeyTables[index];
 foreach (DataRow row in tablePositions.Rows)
 {
 if (table == row.Field<string>("table_name"))
 {
 int xcoord1 = row.Field<int>("x1");
 int ycoord1 = row.Field<int>("y1");
 int xcoord2 = row.Field<int>("x2");
 int ycoord2 = row.Field<int>("y2");
 float mid1x = (xcoord1 + xcoord2) / 2;
 float mid1y = (ycoord1 + ycoord2) / 2;
 foreach (DataRow row2 in tablePositions.Rows)
 {
 if (foreignKeyTable == row2.Field<string>("table_name"))
 {
 int xcooord1 = row2.Field<int>("x1");
 int ycooord1 = row2.Field<int>("y1");
 int xcooord2 = row2.Field<int>("x2");
 int ycooord2 = row2.Field<int>("y2");
 float mid2x = (xcooord1 + xcooord2) / 2;
 float mid2y = (ycooord1 + ycooord2) / 2;
 // draws a line connecting the tables to represent a relationship
 g.DrawLine(Pens.Red, mid1x, mid1y, mid2x, mid2y);
 // draws a yellow square on the table that has the primary key in the relationship
 g.DrawRectangle(Pens.Yellow, mid1x, mid1y, 10, 10);

34

 NEA Exemplar project: ‘RED’

 }
 }
 }
 }
 index += 1;
 }
 // loads the save form
 Form3 saveForm = new Form3();
 saveForm.bitmap = bitmap;
 saveForm.ShowDialog();
 this.Close();
 }
 }

 // function to set the height of the form based on the number of tables in the database
 private int getHeight(List<string> list)
 {
 int height = 0;
 int numberOfTables = getLength(tableList);
 int requiredRows = (numberOfTables / 10) + 1;
 height = requiredRows * 100;
 int numberOfGaps = requiredRows - 1;
 height = height + (numberOfGaps * 50) + 50;
 return height;
 }

 // does the same as drawing the diagram as a bitmap, but draws it to a form instead, which can be immediately
diplayed to the user
 private void DrawingForm_Paint(object sender, System.Windows.Forms.PaintEventArgs e)
 {
 DataTable tablePositions = new DataTable();
 tablePositions = createDatatable(tablePositions);
 int x = 0;
 int y = 0;
 int height = 100;
 int width = 100;
 bool testing = false;
 if (testing)
 {
 displayList(tableList);
 }
 List<string> relationships = getRelationships(foreignKeys, testing);
 List<string> foreignKeyTables = new List<string>();
 List<string> referencedTables = new List<string>();
 int count = 0;
 int tableListLength = getLength(tableList);
 foreach (string table in relationships)
 {
 if (count == 0 || count % 2 == 0)
 {
 foreignKeyTables.Add(table);
 }
 else
 {
 referencedTables.Add(table);
 }

35

NEA Exemplar project: ‘RED’
 Turn over

 count += 1;
 }
 int loops = 0;
 if (save == false)
 {
 foreach (string table in tableList)
 {
 Rectangle rectangle1 = new Rectangle(x, y, width, height);
 int x1 = x;
 int y1 = y;
 int x2 = x + width;
 int y2 = y + height;
 e.Graphics.DrawRectangle(Pens.Black, rectangle1);
 e.Graphics.DrawString(table, new Font("Tahoma", 7), Brushes.Black, rectangle1);
 DataRow row = tablePositions.NewRow();
 row["table_name"] = table;
 row["x1"] = x1;
 row["y1"] = y1;
 row["x2"] = x2;
 row["y2"] = y2;
 tablePositions.Rows.Add(row);
 loops += 1;
 if (loops % 10 == 0)
 {
 y += 150;
 x = 0;
 }
 else
 {
 x += 150;
 }
 }
 int index = 0;
 foreach (string table in referencedTables)
 {
 string foreignKeyTable = foreignKeyTables[index];
 foreach (DataRow row in tablePositions.Rows)
 {
 if (table == row.Field<string>("table_name"))
 {
 int xcoord1 = row.Field<int>("x1");
 int ycoord1 = row.Field<int>("y1");
 int xcoord2 = row.Field<int>("x2");
 int ycoord2 = row.Field<int>("y2");
 float mid1x = (xcoord1 + xcoord2) / 2;
 float mid1y = (ycoord1 + ycoord2) / 2;
 foreach (DataRow row2 in tablePositions.Rows)
 {
 if (foreignKeyTable == row2.Field<string>("table_name"))
 {
 int xcooord1 = row2.Field<int>("x1");
 int ycooord1 = row2.Field<int>("y1");
 int xcooord2 = row2.Field<int>("x2");
 int ycooord2 = row2.Field<int>("y2");
 float mid2x = (xcooord1 + xcooord2) / 2;
 float mid2y = (ycooord1 + ycooord2) / 2;

36

 NEA Exemplar project: ‘RED’

 e.Graphics.DrawLine(Pens.Red, mid1x, mid1y, mid2x, mid2y);
 e.Graphics.DrawRectangle(Pens.Yellow, mid1x, mid1y, 10, 10);
 }
 }
 }
 }
 index += 1;
 }
 }
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 this.Refresh();
 }

 // returns the length of a list
 private int getLength(List<string> list)
 {
 int length = 0;
 foreach (string item in list)
 {
 length += 1;
 }
 return length;
 }

 // displays a list, by printing each element in it
 private void displayList(List<string> list)
 {
 foreach (string item in list)
 {
 MessageBox.Show(item);
 }
 }

 // initialises the tablepositions datatable
 private DataTable createDatatable(DataTable table)
 {
 table.Clear();
 table.Columns.Add("table_name", typeof(string));
 table.Columns.Add("x1", typeof(int));
 table.Columns.Add("y1", typeof(int));
 table.Columns.Add("x2", typeof(int));
 table.Columns.Add("y2", typeof(int));
 return table;
 }

 // gets relationships by finding the referenced tables in the foreign keys datatable, which was created by the
foreign keys query
 private List<string> getRelationships(DataTable foreignKeys, bool testing)
 {
 List<string> ForeignKeys = new List<string>();
 List<string> ForeignKeysReferencedTable = new List<string>();
 List<string> ForeignKeysTable = new List<string>();
 List<string> relationships = new List<string>();

37

NEA Exemplar project: ‘RED’
 Turn over

 foreach (DataRow row in foreignKeys.Rows)
 {
 ForeignKeys.Add(row.Field<string>("FK_NAME"));
 ForeignKeysReferencedTable.Add(row.Field<string>("referenced_table"));
 ForeignKeysTable.Add(row.Field<string>("table"));
 }
 if (testing)
 {
 displayList(ForeignKeys);
 displayList(ForeignKeysReferencedTable);
 displayList(ForeignKeysTable);
 }
 int count = 0;
 foreach (string table in ForeignKeysTable)
 {
 relationships.Add(table);
 relationships.Add(ForeignKeysReferencedTable[count]);
 count += 1;
 }
 if (testing)
 {
 displayList(relationships);
 }
 return relationships;
 }
 }
}

Form 3:

Design View:

38

 NEA Exemplar project: ‘RED’

Code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Project
{
 public partial class Form3 : Form
 {
 public Form3()
 {
 InitializeComponent();
 }

 public Bitmap bitmap;

 private void Form3_Load(object sender, EventArgs e)
 {
 this.DoubleBuffered = true;
 }

 private void button1_Click(object sender, EventArgs e)
 {
 // gets filepath from text user entered
 string filePath = textBox1.Text;
 // if it is empty save it to a default location
 if (filePath == "")
 {
 try
 {
 bitmap.Save("C:/img.jpg", ImageFormat.Jpeg);
 MessageBox.Show("Image successfully saved!");
 }
 catch (ArgumentNullException ex)
 {
 MessageBox.Show("Error!" + ex.Message);
 }
 catch (System.Runtime.InteropServices.ExternalException ex)
 {
 MessageBox.Show("Error!" + ex.Message);
 }
 }
 else
 {
 try
 {
 bitmap.Save(filePath, ImageFormat.Jpeg);
 MessageBox.Show("Image successfully saved!");
 }
 catch (ArgumentNullException ex)
 {

39

NEA Exemplar project: ‘RED’
 Turn over

 MessageBox.Show("Error!" + ex.Message);
 }
 catch (System.Runtime.InteropServices.ExternalException ex)
 {
 MessageBox.Show("Error!" + ex.Message);
 }
 }
 }

 private void button2_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

 private void button3_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 }
}

Form 4

Design View:

Code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

40

 NEA Exemplar project: ‘RED’

using System.Windows.Forms;

namespace Project
{
 public partial class Form4 : Form
 {
 public Form4()
 {
 InitializeComponent();
 }

 public DataTable tables;
 public DataTable foreignKeys;
 public List<string> tableList;

 private void Form4_Load(object sender, EventArgs e)
 {
 this.DoubleBuffered = true;
 // sets autoscroll to true so that the form is scrollable, otherwise the user might not be able to see all the tables in
the database
 this.AutoScroll = true;
 CheckBox box;
 int count = 0;
 // for each table in the database it creates a new checkbox and labels it with the name of the table
 foreach (string table in tableList)
 {
 box = new CheckBox();
 box.Tag = table;
 box.Text = table;
 box.AutoSize = true;
 box.Location = new Point(10, count);
 this.Controls.Add(box);
 count += 20;
 }
 }

 private void button1_Click(object sender, EventArgs e)
 {
 List<string> newTableList = new List<string>();
 // finds which checkboxes have been ticked by the user, and adds the labels of those checkbox to a list, which is
then the new list of tables
 foreach (Control control in Controls)
 {
 if (control is CheckBox)
 {
 if (((CheckBox)control).Checked == true)
 {
 newTableList.Add(control.Tag.ToString());
 }
 }
 }

 // loads the drawing form and prompts the user whether they would like to save or just view the diagram, if they
would like to save then it sets the save variable as true, otherwise it is false
 Form2 drawingForm = new Form2();
 drawingForm.tables = tables;
 drawingForm.foreignKeys = foreignKeys;
 drawingForm.tableList = newTableList;

41

NEA Exemplar project: ‘RED’
 Turn over

 DialogResult dialogResult1 = MessageBox.Show("Would you like to save your diagram or just display it? Press
yes to save and no to display", "Save or Display?", MessageBoxButtons.YesNo);
 if (dialogResult1 == DialogResult.Yes)
 {
 drawingForm.save = true;
 }
 else if (dialogResult1 == DialogResult.No)
 {
 drawingForm.save = false;
 }
 drawingForm.ShowDialog();
 this.Close();
 }

 private void button2_Click(object sender, EventArgs e)
 {
 // if they click select all, then it uses the original table list, including every table
 Form2 drawingForm = new Form2();
 drawingForm.tables = tables;
 drawingForm.foreignKeys = foreignKeys;
 drawingForm.tableList = tableList;
 DialogResult dialogResult1 = MessageBox.Show("Would you like to save your diagram or just display it? Press
yes to save and no to display", "Save or Display?", MessageBoxButtons.YesNo);
 if (dialogResult1 == DialogResult.Yes)
 {
 drawingForm.save = true;
 }
 else if (dialogResult1 == DialogResult.No)
 {
 drawingForm.save = false;
 }
 drawingForm.ShowDialog();
 this.Close();
 }

 private void button3_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void button4_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }
 }
}

42

 NEA Exemplar project: ‘RED’

System ‘Testing’

Introduction and overview:

Whilst I am programming my project I will be testing each stage on a database called Adventure
Works, which is a free open source database, provided by Microsoft. I will be hosting the database
locally on a server, so that I can make sure my code is able to successfully connect to a database and
so I can test each stage as I make it.

After I have finished creating my program, I will be testing it in three main areas. Firstly I will
attempt to connect it to lots of different databases that are hosted on different servers, so that I
can see if it has any problems in connecting to certain databases or servers. As I want to make sure
that when the program is released it is capable of connecting to whatever database the client want
it to.

Secondly I will get it to create ER diagrams of lots of databases to test that it is correctly mapping
the foreign keys to their respective primary keys. Preferably I want to be able to get it to draw it in a
way that none of the lines and boxes are overlapping, but this will require a lot of programming and
testing to make sure that I have done it correctly, therefore I might not have enough time to do this.

The third area that requires testing is to see if it correctly saves the diagram to where the user
wants to save it to and also saves it correctly. This will require me to create a lot of different ones
and then to save them to my computer, maybe even in different places on the computer, and then
to reload them and see if it works correctly.

I have also placed into the Design section a walk-through of the system showing the process from
connecting to a database, selecting tables and finally producing an ER diagram. This is cross
referenced back to the tables held in the SQL database to show the correctness of this diagram.

43

NEA Exemplar project: ‘RED’
 Turn over

Representative Test Table:

Test
Number

Description Data Type Expected Result Pass
/Fail

Cross Reference

1 Entering correct details
of a database and user

Typical Connection successful
message displayed

Pass Test 1 screenshots

2 Entering incorrect details
of database and user

Erroneous Error message Pass Test 2 screenshots

3 Entering correct details
of database, but not user

Erroneous Login failed for user
error message

Pass Test 3 screenshots

4 Clicking exit program
button on first form

Typical Program closes
cleanly

Pass Test 4 screenshots

5 Program correctly
creates list of tables and
views in database

Typical Tables in list same as
tables and views in
database

Pass Test 5 screenshots

6 Clicking main menu
button on choosing
tables form

Typical Goes back to first
form

Pass Test 6 screenshots

7 Clicking exit button on
choosing tables form

Typical Exits program Pass Test 7 screenshots

8 Ticking the boxes for
some tables and pressing
confirm

Typical Diagram only includes
selected tables

Pass Test 8 screenshots

9 Clicking select all Typical Diagram includes all
tables

Pass Test 9 screenshots

10 Choosing yes when
prompted

Typical Brings up save form Pass Test 10
screenshots

11 Choosing no when
prompted

Typical Displays diagram Pass Test 11
screenshots

12 Clicking save button on
save form with no data
in textbox

Typical Saves diagram to
default location and
success message

Pass Test 12
screenshots

13 Clicking save button on
save form with correct
filepath to already
existing folder entered in
textbox

Typical Saves diagram to
specified location and
success message

Pass Test 13
screenshots

14 Entering filepath to a
folder that doesn’t
already exist and clicking
save button on save
form

Erroneous Error message Fail Test 14
screenshots

15 Entering invalid filepath
on save form and clicking
save

Erroneous Error message Pass Test 15
screenshots

44

 NEA Exemplar project: ‘RED’

16 Pressing main menu on
save form

Typical Goes to first form Pass Test 16
screenshots

17 Clicking exit program on
save form

Typical Exits program Pass Test 17
screenshots

18 Selecting no tables and
clicking confirm on the
choose tables form

Erroneous Creates a blank
diagram

Pass Test 18
screenshots

19 Selecting only one table
and clicking confirm on
the choose tables form

Typical Creates a diagram
with only one
rectangle and no lines

Pass Test 19
screenshots

Screenshots of Tests:

Test 1:

Correct data entered into first form.

Connection successful message
displayed, when connect and
extract button is pressed.

45

NEA Exemplar project: ‘RED’
 Turn over

Test 2:

Incorrect details of a database
entered into first form. When
connect and extract button is
clicked and error message is
displayed.

46

 NEA Exemplar project: ‘RED’

Test 3:

Correct details of database, but
invalid login entered into form.

Login failed error message
displayed.

47

NEA Exemplar project: ‘RED’
 Turn over

Test 4:

Program running, then exit
button pressed.

The program exits and is no longer
running.

48

 NEA Exemplar project: ‘RED’

Test 5:

All the names in the list match the
names in the database shown
above.

49

NEA Exemplar project: ‘RED’
 Turn over

Test 6:

Clicking main menu button on
choosing tables form.

Goes back to first form

50

 NEA Exemplar project: ‘RED’

Test 7:

Test 8:

Clicking exit button on choosing
tables form safely closes the
program.

Only some tables are selected then,
the confirm button is pressed.
Created diagram only includes the
tables that were selected.

51

NEA Exemplar project: ‘RED’
 Turn over

Test 9:

Test 10:

The select all button is pressed.

Every table is included in the diagram.

Responding to the prompt by
clicking yes brings up the save
form.

52

 NEA Exemplar project: ‘RED’

Test 11:

Clicking no just displays
the diagram.

53

NEA Exemplar project: ‘RED’
 Turn over

Test 12:

Empty save form with no data
entered by user. When the save
button is pressed it will save the
diagram to the default location,
which is on the C drive.

54

 NEA Exemplar project: ‘RED’

Test 13:

Test 14:

The diagram is correctly saved to the folder called test.

55

NEA Exemplar project: ‘RED’
 Turn over

Test 15:

Test 16:

Instead of displaying an error message, the program saves an unreadable file straight onto
the C drive.

An error message is displayed

Pressing main menu on the save
form takes you back to the first
form.

56

 NEA Exemplar project: ‘RED’

Test 17:

Clicking the exit button on the save
form exits the program.

57

NEA Exemplar project: ‘RED’
 Turn over

Test 18:

No tables are selected, and then the
confirm button is pressed. An empty
diagram, as shown below, is then created.

58

 NEA Exemplar project: ‘RED’

Test 19:

Only one table is selected, and then
confirm is clicked. A diagram is then
created with only one table and no
relationships, as shown below.

59

NEA Exemplar project: ‘RED’
 Turn over

Evaluation

Objective Analysis

Objective Met? Comment
Allow the user to enter
configurations to connect to a
remote database of their choice

Yes Upon launching the program the user will be
met with a form where they can enter in the
details of the database they want to connect to.
They can input the server name, the database
name, a username and a password

Output an error message if the
program fails to connect to the
database, alerting the user that
they might have entered the
wrong details

Yes After entering the details and clicking the button
labelled connect and extract, if program is
unable to connect to the database using the
details that the user provided, then it will
display an error message

Use SQL queries to extract the
metadata and keys from all the
different tables and then store
that data locally in a C# program
written in Visual Studio.

Yes If the connection is successful, then two SQL
queries will be run on the database and the
results of the queries will be stored in two local
datatables during runtime

Allow the user to choose which
tables they want to include in the
diagram

Yes After the connection is successful and the
required data has been extracted from the
database, the user is presented a list of all of the
tables in the database and they can choose
which ones they want included in the diagram

Use the data from the database
to draw a unique ER diagram of
the database

Yes A diagram is drawn, using the tables that the
user has selected

Give the user the option to save
the diagram

Yes If the user chooses to they can save the diagram
to a folder of their choice

Refine ER diagram drawing
algorithm, so that the diagram is
more clear and easy to read (i.e.
there are not so many lines
crossing over each other)

No This was very hard to program and I ran out of
time, so it have not been included in the final
project, but it is a good idea for a possible
extension

60

 NEA Exemplar project: ‘RED’

User Feedback:

How easy is the system to use?

I found the system easy to use and deploy onto my machine. Connection to the target database
was easy, although I managed to mistype the server address and the system presented me with an
explanatory message. The first time I used it, I was connecting to a very large Database but only
interested in a small subset of tables, so the feature to restrict the process and diagram to required
tables was very useful. As this is a technical system, I do not foresee it being used by other types of
users as it provides a graphical view of a very technically complex environment and even the
diagram still requires specialist skills to understand and appraise.

How does the system meet their objectives?

The system delivers what was specified and required. Technically I find it very good and it easily
passed the test criteria I asked to be demonstrated. Interestingly for me, I asked for a few test cases
based on the AdventureWorks DB from Microsoft and in one case the solution did not deliver the
expected results. However, when we examined the results in detail it turned out that my expected
results for the test case were incorrect and the system was correct!

How easy was the system to set up?

The User Guide was very useful and I found it easy to follow. It clearly outlined the steps to follow
and the download and install process worked exactly as described in the documentation. I used a
Windows 2008 R2 Server VM to perform the installation and was pleasantly surprised there were no
installation issues.

Do you have any criticisms?

As I am not of the Internet generation I find it hard to be overly critical of free software. That said, if
I were to pretend this was a software product I had paid for then I would perhaps be critical of a
couple of things. Firstly, although the product performs exactly as prescribed, it is still quite difficult
to understand when many tables are presented. It would be much better if the diagram was laid
out with related tables clustered together. However, I do understand that this is a reduced
travelling salesman problem, therefore difficult to code. Additionally, I find the basic format of the
Entities (i.e. squares) and Relationships (i.e. lines) to be not to my personal taste. Entity
Relationship diagrams can be shown in many notations and I would prefer the “crowsfoot” notation
so that cardinalities and optionalities are clear. As a final point I’d like the GUI to provide more
options in terms of colours, fonts, sizes, flexibility etc - but given the time taken to develop the
solution and the fact it is 100% correct in technical terms I do feel this is a very harsh criticism.

What improvements or extensions would you recommend?

In the perfect world I would like this system to be a free version of Visio! That said, as a free
alternative it offers a significant time-saving over the very manually intensive procedure it
replaces. A major element of the Data Migration process is the understanding of the source (or old)

61

NEA Exemplar project: ‘RED’
 Turn over

system and often there are scarce resources available about the existing system. Improvements I
think would be mainly centred around the GUI interface and the information shown, for example it
would be nice to add column details into the Entity boxes and allow drag and drop of objects in the
diagram. As a customer I am sufficiently impressed by the solution delivered to request some
enhancements be made to the program - on a paid basis!

Analysis of User Feedback:

The feedback that I have retrieved from my main end user is very positive and has made me
confident in the fact that I have successfully met all the objectives that I set myself and the
requirements that the end user requested. It is also very reassuring to hear that they had no
problems installing the software and using it, which means that I was successful in programming the
software to be very user friendly and as simple as possible without losing any functionality.

There are however several things that the user did not like about the software, or things that the
user would like to be included in the software, such as customisation of the diagram after it has
been drawn and also for the diagram to have more detail on it in the first place.

Possible Extensions:

If I had had more time to do this project or I was to do it again, then there are several things that I
would do differently. The first things that I would attempt to do would be to add all the extra
features that my main end user would like in the software. One of these is to give the user more
customisation over their diagram, so that they would be able to choose which notation of Entity
Relationship diagrams is used in the diagram and to give them the option of changing the colours or
even size of the lines and rectangles in the diagram. I would also add more details to the diagram,
so instead of just saying the name of the table for each rectangle, it would also have all the columns
of that table, indicating which one was the primary key and which ones are foreign keys, if any.

Another extension that I would do is something I planned on doing from the start, but decided
against it as my project got underway, as I realised it would take too much time to do properly and
if I put all my effort on doing that then other areas of the project would have suffered. The thing I
was planning on doing was making the drawing algorithm better, so that the diagrams were easier
to look at and interpret. With the current state of the program you can easily get diagrams which
have lines crossing over each other and sometimes it is actually impossible to tell which rectangle a
line originated. Also, as my main end user stated, the tables in the diagram are not grouped
together in any special way currently, they are simply displayed in alphabetical order. The diagrams
would be much better if similar tables were grouped together, or if the tables were placed in a way
that meant that the lines representing relationships didn’t have to cross over each other. So if I was
to spend any more time working on this project, then this would be the first thing that I would be
looking to do, but it would probably men having to re-write large sections of my code.

62

 NEA Exemplar project: ‘RED’

Currently if the user wants to connect to the same database that they have previously connected to,
they have to go back to the first form and enter in all of the details again. A way to fix this problem
would be to save the details that the user enters in, so that when they next want to make a
connection they can just select one from a drop down list of previous connections, rather than
having to type it all out again. The connections would have to be stored locally on the user’s
computer, possibly to a text file or something similar, and the data would have to be encrypted, as
it would be very sensitive data because it would contain information on how to connect to several
different databases and if it was not encrypted someone else could access that data and then they
would be able to access those databases.

At the moment the queries count views in a database as tables, so when they are extracting a list of
all the tables in a database, the created list includes any views that are also in the database. A user
might not want the views to be included in the diagram, so instead of them having to manually
select all the tables other than the views, I could add in a prompt that asks them whether they
would like the views to be included or not. This would mean that I would have two versions of
queries, one that includes views and one that does not.

The way that the forms are named currently could be confusing to the user, as the first form is
called Form 1, but the second form that the user sees, the choose tables form, is called Form 4. This
is because this was the last thing I added to the program, so when I made the form in the code it
was called Form 4 by default, as forms 1-3 had already been created. To avoid confusing the user, it
would probably be better to name the forms in ascending order, so that the first form the user sees
is Form 1 and then Form 2 and so on. Or it would make it even clearer if I gave each form a separate
name, such as calling Form 1 the Main Menu, calling Form 4 the Choose Tables Form, calling Form 3
the Save Form and calling Form 2 the Drawing Form.

One final thing that I would like to change about my program is that I would like to change how the
program asks the user whether they would like to save their diagram or not. Currently it only allows
them to save it and not have a look at the diagram, or have a look at the diagram and not save it. If
the user wants to do both then they would have to run the program twice, using the same
database. When I was coding this bit initially I tried to do it so that the user would be able to do
both in one instance of running the program, but I could not get it to work without errors, so I
decided to do it the way it is currently, as it works perfectly fine, so that I could then move onto the
next bit of the project. If I had more time then I would have spent longer looking at this problem
and then I would have most likely found a way around it.

	GCE A-level Computer Science (7517)
	Introduction
	Teacher Standardisation events will be used to prepare teachers for the first NEA assessment. At these meetings teachers will be made aware of the standard.
	Note
	Introduction:
	Description of Current System:
	Identification of End Users:
	User Needs:
	Acceptable Limitations:
	Data Sources and Destinations:
	Data Volumes:
	Analysis Data Dictionary:
	Data Flow Diagram:
	ER Diagram:
	Objectives:
	Proposed Solution:
	Evidence of Analysis:

