
Non-confidential

A-level
COMPUTER SCIENCE
Object Oriented programming

PowerPoint slides

Published: Autumn 2017

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in

England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Contents

Contents Page

PowerPoint slides 4

Contact Page 51

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in

England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

Object oriented programming –
A practical approach

Christine Swan

Copyright © AQA and its licensors. All rights reserved.

About me

Copyright © AQA and its licensors. All rights reserved.

Christine Swan

Experienced teacher
(28 years total, 18 years Computer Science)
Computing at School Master Teacher
Member of Raspberry Pi Foundation
Specialist Leader in Education

4

Learning outcomes

What are your expected outcomes for today?

Aims:

• To enable you to understand the fundamental concepts of object oriented
programming and apply them in Visual Basic (the ideas will transfer to other
languages such as Java).

• To be able to create class diagrams and answer A-level standard questions.

• To have a basic understanding of some advanced OOP (object oriented
programming) concepts and be able to start applying them to scenarios.

Copyright © AQA and its licensors. All rights reserved.

Agenda

Copyright © AQA and its licensors. All rights reserved.

Time Session

09.45 Coffee and Welcome

10.15 Introduction to OOP

11.30 Coffee

11.45 Practical application of OO – setting
up classes and inheritance

12.45 Lunch

13.30 Class diagrams and advanced
concepts

14.30 Coffee

14.45 Specimen questions and further
practical work

15.30 Plenary and review

15.45 Close

5

Identify individual needs from the day

Now you have had a minute to think about your own needs.

It may be useful to edit this in throughout the day to track your progress.

Please ask questions as you need.

You have also been provided with a learning mat. This will be useful to use
with your students.

Copyright © AQA and its licensors. All rights reserved.

AQA A-level specification, page 42

Copyright © AQA and its licensors. All rights reserved.

6

Why object oriented programming?

The paradigm shift and the benefits of programming in object oriented
paradigm

Copyright © AQA and its licensors. All rights reserved.

Imagine you have a pile of books and I ask
you to find my DICTIONARY. It just so
happens to be the 5th one down in the pile
BUT I don’t want you to disturb any of the
other books and you don’t know where it is
yet.

Can you do it?

Not easily!

Imperative (procedural) programming

Copyright © AQA and its licensors. All rights reserved.

I have now put my books onto
two shelves.

Can you find the
DICTIONARY now?

Putting my books onto
shelves has made the task
much easier.

7

Imperative (procedural) programming paradigm

• In this paradigm, programs tell the computer exactly
what to do, line by line.

• Programs use sequence, selection and iteration to
control program flow and manipulate values of
variables and constants stored in memory directly.

• Procedures and functions are modules of code that
perform tasks.

• They use can be passed parameters and use local
variables.

• Functions, return a value or values to the
procedure/function that called it.

• Example languages: C, BASIC and Pascal

Copyright © AQA and its licensors. All rights reserved.

DATA
(Variables)

Task 2

Task 1

Task 3

Back to the book analogy

Copyright © AQA and its licensors. All rights reserved.

• The first imperative programs were just one long list of
commands. Just like our unsorted pile of books.

• Then tasks were modularised (put into procedures and
functions), just like our separate book shelves.

• However, this doesn’t prevent anyone going to each
shelf taking out a book and putting it on another shelf.
(Such as changing a variable in one function which
accidentally alters another).

• This could be a real problem if we have made a
reference for it’s location, as we would in a typical
library.

8

Book analogy

Copyright © AQA and its licensors. All rights reserved.

Now the book has
been moved we have
to find it then start
again with organising
into meaningful
piles/shelves or
modules.

Problems with imperative programming

Copyright © AQA and its licensors. All rights reserved.

This style of programming has been utilised successfully for many years but
there are some drawbacks:

• Programs can become very complex and convoluted. Some programs,
which solve real world problems, can end up with hundreds of functions
and procedures communicating with each other. They pass data to one
another through parameters and this can become very difficult to keep
track of.

• If data changes in one module (or our book is moved) but not in another,
this can result in disaster. With larger programs, it is also tempting to use
global variables but this goes against sensible programming techniques.

• Maintaining imperative programs can prove difficult, especially when
communicating modules make changes that have unforeseen
consequences in other parts of the code.

9

So why object oriented?

Copyright © AQA and its licensors. All rights reserved.

The basic unit of an object oriented program is a class.

Classes define the attributes (properties, data) and operations (methods,
behaviours) that an object of that class will have. As such, it can be thought of
as a blueprint.

An instance of the class is called an object.

Every object will have the same data associated with it and support the same
behaviours.

More importantly, the programmer doesn’t need to know the exact code that
carries out a particular operation and it only affects the particular object in
question.

In this way accidental changes are prevented and do not impact on anything
else in the program.

13

So why object oriented?

Copyright © AQA and its licensors. All rights reserved.

Reusability is key:

• Once a class has been written, created, and debugged, it can be used again
and again. It can be distributed to other programmers for use in their own
programs.

• In OOP an existing class can be used without modifying it and we can add
additional features and capabilities to it. This can be done by deriving a new
class from the existing one. The new class will inherit all the capabilities of
the old one, but we can add new features that are its own.

• Reusability is using a class over and over in different programs. The ease
with which existing software can be reused is an important benefit of OOP.

Let us find out how >>>>>>>>>>>>

10

Starter task

Copyright © AQA and its licensors. All rights reserved.15

An Introduction to objects

• Can you name some properties of a car?
• What can a car do?
• Are there other types of car?
• What do they have in common?

What is a Class?

• A class is a definition of the properties and operations associated with
objects of that class e.g. has 4 wheels, can move etc.

What is an Object?

• An object is an instance of a class – the picture shows a specific car.

Objects vs non-objects

Copyright © AQA and its licensors. All rights reserved.16

Task 1 - So what is an object?

Task 2 - Even more challenging – a non-object?

OBJECT

A red bicycle

A mini car

A 750cc motorbike

An A380 plane

NON-OBJECT

The bottom tube of the frame

The colour of the car

The noise of the motorbike

The number of seats on the
plane

11

Objects

• Objects in the real world have

• An identity (its name/identifier)
• A state (value of a property)
• Behaviour (methods … can do stuff

or have things done to it)

• Let’s look at the ball

Identity my_car

State colour = black

Behaviour move()

Copyright © AQA and its licensors. All rights reserved.17

Classes and objects

18 Copyright © AQA and its licensors. All rights reserved.

• A class can be thought of as a blueprint for objects.
• An object is an instance of a class.
• Instantiation is the process of creating an object of the class.

12

Objects

Rather than focus on real world objects, objects in an OO program share the
same characteristics.

• Let’s think about a program for holding student bank accounts:

Identity Dave Smith's account

State Balance = £5.00 OverdraftLimit = £100

Behaviour makeDeposit() checkBalance()

makeWithdrawal()

Copyright © AQA and its licensors. All rights reserved.19

Unified Modelling Language

Copyright © AQA and its licensors. All rights reserved.

• The Unified Modelling Language was developed in 1996 to
standardise object oriented software design

• The current version is 2

• There are many different types of diagram but your students
need to be able to draw CLASS DIAGRAMS

20

13

So how can we represent this diagrammatically?

Copyright © AQA and its licensors. All rights reserved.21

Ball Bank account

Data

Methods

Data

Methods

Size

Radius

Colour

Kick()

Throw()

Spin()

Balance

OverdraftLimit

GetBalance()

MakeWithdrawal()

Further examples

Copyright © AQA and its licensors. All rights reserved.

• A useful analogy for A-level students first getting to grips with OOP is the
car class.

• It is easy to understand the idea that there are many different types of car.

• All cars have properties such as colour, number of seats, make, engine
size.

• They all have common methods such as drive and park. Some of which
can be carried out in different ways.

• We can further expand to help explain more advanced concepts.

22

14

Task

Copyright © AQA and its licensors. All rights reserved.23

For the following classes, identify some properties and methods.

1. Car

2. Person

3. Dog

4. Customer

Now we have the basics let us think about classes

Copyright © AQA and its licensors. All rights reserved.24

• A class can be thought of as a blueprint or a
master copy of a related group of items. We can
liken this to a cookie cutter. There is only one
cookie cutter but we can use it to make many
cookies.

• In the example shown we can use the
gingerbread man cutter to make many
gingerbread cookies.

• Each gingerbread cookie is an individual as it is
made from a different piece of gingerbread
dough and even though each cookie has the
same basic properties (e.g. 2 eyes, a mouth
etc), each one can have different values. For
example one has blue smarties for eyes, the
other green smarties.

• You can create any amount of cookie objects
and you can also destroy them (yum, yum) but
this does not affect the cookie cutter; it can be
used again and again.

15

Classes, objects and encapsulation

Copyright © AQA and its licensors. All rights reserved.25

• The concept of grouping data and methods together within the same
object is known as Encapsulation or information hiding. This promotes
separation of the implementation and the interface and is a key principle
of OO programming.

• The subroutines (or methods) act on the data within the object.

• This helps overcome the issue seen in procedural languages where one
subroutine changes the value of data to be used in another, sometimes
with serious implications.

• In OO the data for an object can only be directly manipulated by the
methods of that object.

Encapsulation and information hiding

• Information Hiding is when the data within
an object can only be accessed or modified
by the methods within that object.

• Going back to our bank account class we
can see the data (properties) and methods
which act on it. This means that to withdraw
from the an account we can only use
MakeWithdrawal().

• The brackets will hold the parameter to be
passed to the method e.g. amount.

Copyright © AQA and its licensors. All rights reserved.26

Bank Account Class

Data

Methods

Balance

OverdraftLimit

Get Balance()

MakeWithdrawal()

16

Encapsulation and access modifiers

27
Copyright © AQA and its licensors. All rights reserved.

• Properties of a class are generally declared as private. This is so they
cannot be accessed outside the class.

• Methods (procedures and functions) can be declared as public, protected,
private and friend.

• The keywords (public, protected, private and friend) are known as Access
Modifiers.

• Access modifiers control the accessibility of types which includes classes,
their methods and properties (members).

• Class methods declared as public, enable the properties of the class to be
accessed from outside the class.

28 Copyright © AQA and its licensors. All rights reserved.

Access modifiers in Visual Basic

Access
modifier

Description

Public A public member of a class can be accessed from
any program that instantiates that class.

Private Private member declared within a class module is
accessible only from within that class module.

Protected This applies to class members only. This defines a
method that is accessible only from within its own
class or from a derived class.

Friend* Defines a type that is accessible only from within
the program in which it is declared. So all of the
classes in your program/project have access but
not those outside of it.

* Not required by AQA

17

Defining a class – a general approach

Follow these steps

1. Name the class.

2. Decide on the properties of the class.

3. Declare the properties as private or protected.

4. Declare the methods of the class (procedures and functions).

5. Declare the methods as public.

6. Write the code for the methods (if required).

29 Copyright © AQA and its licensors. All rights reserved.

Visual Basic example

Public Class BankAccount
Private _AccountNumber As String ‘data
Private _Balance As Decimal
‘property
Public Balance() As Decimal

Get
Return _Balance

End Get
End Property

‘method
Public Sub Deposit(ByVal Amount As Decimal)
Balance = Balance + Amount

End Sub

End Class

Copyright © AQA and its licensors. All rights reserved.30

18

Java example

class GoldAccount
{
// variable declarations
Private String accountNumber;
Private String accountHolder;
private int balance;

// methods
public int getBalance()
{
return balance ;

}
etc etc
}

NB Constructor not included in this program fragment

Copyright © AQA and its licensors. All rights reserved.31

Summary - for a typical OOP

• Properties of a class are declared as private.. This is so they cannot be
accessed outside the class.

• Methods (procedures and functions) are public and are written to enable
the properties of the class to be accessed from outside the class.

• Encapsulation is a term used to describe the combination of the object
and its methods. This promotes separation of the implementation and the
interface.

• Because the properties of the class are private, you can control changes to
the actual object. In addition, you have the flexibility to change the
implementation without affecting anything outside the class. This principle
is known as information hiding.

32 Copyright © AQA and its licensors. All rights reserved.

19

Practical Activity

Copyright © AQA and its licensors. All rights reserved.33

Let us try to get to grips what we have learned so far by trying our first OO
program.

Open the practical activity handout and try

Topic 1 – The Basics - Your first object oriented program

Topic 2 - Visibility

Constructors

Copyright © AQA and its licensors. All rights reserved.34

• A constructor is a special method which in OOP allows us to have some
control as to how objects are initialised.

• It instantiates objects of a class and allocates memory.

• Every defined class will have a default constructor.

• We can also define our own constructors.

• In Visual Basic a constructor method is always called Sub New.

• When using the New keyword we are also telling VB to allocate memory
for a new object of the class.

20

Practical activity

Copyright © AQA and its licensors. All rights reserved.35

Back to the practical activity handout and try

Topic 3 – Constructors

Basic class diagrams

• Class diagrams are used to depict the classes within a model or design for
a program.

• They are one diagram in the UML or Unified Modelling Language which is
the common method for modelling object oriented programs.

• There are many different UML diagram types but we will use some basic
class diagrams to consolidate ideas already covered and the concepts of
inheritance, aggregation and polymorphism.

Copyright © AQA and its licensors. All rights reserved.36

21

Basic class diagrams

Copyright © AQA and its licensors. All rights reserved.

Name

PropertiesProperties

MethodsMethods

Name

PropertiesProperties

MethodsMethods

Name

PropertiesProperties

MethodsMethods

Superclass

Subclass Subclass

37

Inheritance

Copyright © AQA and its licensors. All rights reserved.38

• Inheritance is where one class can inherit methods and properties from
another class. This promotes efficiency because code from one class can be
reused in its sub-class.

• The Superclass will consist of general properties and methods.

• The Subclass inherits all of the properties and methods from the superclass
but will also have its own that may be more specific.

• A class can have several subclasses for example, we could have a
superclass called Bank Account class with subclasses Student, Gold and
Platinum Accounts each with different account characteristics.

22

Inheritance

Copyright © AQA and its licensors. All rights reserved.39

• It will depend on which text book you pick up (and language used) as to the
naming conventions used for describing inheritance relationships.

• A parent can have many children but a child can only have one parent.

• Note the “is a” relationship.

Inheritance - basic class diagram

Copyright © AQA and its licensors. All rights reserved.40

Bank Account

Account No
Balance
Account No
Balance

GetBalance()
MakeDeposit()
GetBalance()
MakeDeposit()

Student

OverdraftOverdraft

SetOverdraft()
GetOverdraft()
SetOverdraft()
GetOverdraft()

Platinum

Credit_LimitCredit_Limit

SetCredit_Limit()
GetCredit_Limit()
SetCredit_Limit()
GetCredit_Limit()

Superclass or Parent
or Base Class

Gold

InterestInterest

SetInterest()
GetInterest()
SetInterest()
GetInterest()

Child, Sub or Derived Classes

is a
is a

is a

23

Back to the car analogy

Copyright © AQA and its licensors. All rights reserved.

• A Sports Car is a subclass of Car,
as is an Estate Car. The “is – a”
relationship is upheld as they are
both cars.

• There are some common properties
such as Colour, NoOfSeats.

• There are common methods such
as Drive and Park.

• Each class has will inherit the
properties and methods of the
Superclass but also have their own.

An object can be instantiated such as “MyCar”

Car

noOfDoors
noOfSeats

colour
transmission

make
model

Drive()
Park()
Reverse()

Estate car

storageCapacity

Tow()

Sports car

convertible

Race()

Inheritance hierarchy

Copyright © AQA and its licensors. All rights reserved.

• A subclass can itself be a superclass for another subclass leading to a
hierarchy of classes.

• Note that the “is-a” relationship is transitive, if a scalene triangle is a
triangle and the triangle is a shape, then it follows that a scalene triangle is
a shape.

Shape

Triangle

Isosceles Equilateral Scalene

Square Circle

42

24

Inheritance task June 2014 Q8

Copyright © AQA and its licensors. All rights reserved.43

Inheritance task June 2014 Q8

Copyright © AQA and its licensors. All rights reserved.44

25

Inheritance task June 2014 Q8

Copyright © AQA and its licensors. All rights reserved.45

Inheritance task June 2014 Q8

Copyright © AQA and its licensors. All rights reserved.46

Solution

26

Practical activity

Copyright © AQA and its licensors. All rights reserved.47

Open the practical activity handout and try

Topic 4 - Inheritance

Association

Copyright © AQA and its licensors. All rights reserved.48

• Association in OOP is how two or more objects are related to each other.
(Could be one to one, one to many).

• Generally the name of the association will specify the relationship between the
objects.

• In a class diagram this association is shown with a solid line

• In this situation a student can be instructed by many lecturers and a many
students can be instructed by a single lecturer. The key is that they are
independent and both can be created or destroyed independently of each other.

Student Lecturer

instructed by

association

27

Association aggregation

Copyright © AQA and its licensors. All rights reserved.49

Aggregation is a way of creating new objects that contain objects which already
exist.

Association aggregation is when an object which contains other objects is
destroyed, the other objects will still exist.

For example, if we have a teacher who belongs to a department, and the
department is destroyed, there is still a teacher object which exists.

ICT Dept Teacher

Association
aggregation

Notice the “open” arrow head

“has a”

Composition aggregation

Copyright © AQA and its licensors. All rights reserved.50

• This is when an object that contains other objects and if destroyed, then
the objects will no longer exist.

• In other words the child object cannot exist without the parent object, so
the association is strong.

• For example if we have a house object which contains room objects, if we
delete the house then the rooms can no longer exist.

House Room

Composition
Aggregation

Notice the “solid” arrow head

“can only exist in a”

28

Polymorphism

Copyright © AQA and its licensors. All rights reserved.51

• The word Polymorphism means “many forms”.

• In OOP it describes a situation when a method in the super class is
inherited in the subclass but is redefined to suit the data and purpose of the
sub-class.

• Fictional examples which are often used relate to animals, because the
principle is easier to understand.

– For instance the Mammal superclass.

– Subclasses which inherit from the superclass could be Human and
Wolf.

Polymorphism

Copyright © AQA and its licensors. All rights reserved.52

• In the example shown, the super class
and both subclasses have a Run() method.

• However, we know that humans and
wolves run in different ways.

• This is absolutely fine but the mechanism
for how the Run() method will function will
depend on which class you are using.

• The data required for the method may be different for the specific
method too.

• Polymorphism enables the original method (from the superclass) to be
redefined (in the appropriate sub-class) so that it can work with a new
algorithm/data.

29

Polymorphism

Copyright © AQA and its licensors. All rights reserved.

• Another example which can help
illustrate polymorphism is using a base
class Shape.

• Polymorphism enables the programmer
to define different area methods for any
number of derived classes, such as
circle, triangle and rectangle.

• Irrespective of the shape an object is,
applying the area method to it will return
the correct results.

53

Overriding

Copyright © AQA and its licensors. All rights reserved.54

• We have actually already been exploring a concept known as overriding.

• The most basic definition is “when a method in the sub-class class
provides a specific implementation of a method that is already
provided by the super class or parent class.”

• Let us look go back to our student example mentioned earlier and expand
on it.

30

Overriding

Copyright © AQA and its licensors. All rights reserved.55

• This simplified class diagram is called an inheritance diagram

• Consider the relationship shown in the diagram.

• For any of the classes an arrow points to it’s superclass (the arrow
designating the ‘is a’ relationship).

Overriding

Copyright © AQA and its licensors. All rights reserved.56

• Suppose the person class has properties name and age, as well as methods
such as GetName(), GetAge() and PrintName().

• Every one of the subclasses inherits these properties and methods.

• The Student class may have additional properties such as Student_ID and a
method CalcGrade(). These additional features are inherited by the subclasses
Graduate and UnderGrad.

• If we suppose that the Graduate and UnderGrad use different algorithms to
calculate the grades then these methods are redefined in these classes. This
concept is known as Overriding.

31

Overriding and polymorphism

Copyright © AQA and its licensors. All rights reserved.

• A method that has been overridden in at least one subclass is therefore
polymorphic.

• So polymorphism is really the mechanism used to select the most
appropriate method for a particular object.

• In practical terms in OO languages like Java and Visual Basic, method
calls are determined by the object (not a reference) therefore the
appropriate method is performed.

• For example :

– StudentX.CalcGrade()
– GraduateY.CalcGrade()
– UnderGradZ.CalcGrade ()

57

Practical Activity

Copyright © AQA and its licensors. All rights reserved.58

Open the practical activity handout and try

Topics 5 and 6 – Polymorphism

The Basics and Overriding

32

Inheritance/overriding - task

Copyright © AQA and its licensors. All rights reserved.59

• Past Paper Question – Consolidation

• June 2012 Q 7 parts a, b and c

Inheritance/overriding - task

Copyright © AQA and its licensors. All rights reserved.60

Write the class definition for Computer.

33

Inheritance/overriding - task

Copyright © AQA and its licensors. All rights reserved.61

Solution

Methods – Static, virtual and abstract

Copyright © AQA and its licensors. All rights reserved.62

• Static methods - are those which will perform and operation for the whole
class. In Visual Basic we can use the Shared keyword to achieve this.

The class methods that we have been learning about so far are known as
instance methods.

Instance methods include constructors, accessors (eg getRadius() and
mutators (eg newHeight += Height).

Instance methods operate on individual objects, eg

MyCircle.Circumference(4)

Student.ComputeGrade()

34

Methods – Static, virtual and abstract

Copyright © AQA and its licensors. All rights reserved.63

• Virtual methods - are those that can be overridden. In Visual Basic when
we define our base classes, unless otherwise stipulated, our methods can
be overridden in subsequent derived classes.

• In order to prevent a method from being overridden we can use the
NotOverridable Keyword.

• Abstract methods - this kind of method has no implementation, just a
header. It will appear in an abstract Base Class just to ensure
completeness. The method will have to be overridden in each of the
derived classes.

Methods – Static, virtual and abstract

Copyright © AQA and its licensors. All rights reserved.64

Card

Birthday
Card

Christmas
Card

Base Class - abstract

Derived Classes –
can be instantiated

For example

In the example the Card class is abstract. We cannot make an instance of
card but we can instantiate a Birthday card or a Christmas card from the
derived classes.

35

Practical activity

Copyright © AQA and its licensors. All rights reserved.65

Open the practical activity handout and try

Topic 7 – Static, Virtual and Abstract Methods

UML and class diagrams

Copyright © AQA and its licensors. All rights reserved.66

• Class diagrams are used to depict the classes within a model or design for a
program and they originate in UML or Unified Modelling Language.

So why do we use UML ?

– Helps us to express program design graphically

– Facilitates use of abstraction

– Is the de-facto standard for OO design

There are many types of UML diagram but for A-level we need to draw and
interpret class diagrams.

Object

Property Method

36

Class diagrams

Copyright © AQA and its licensors. All rights reserved.67

• A class diagram depicts classes and their interrelationships.

• They are useful for describing structure and behaviour.

• Provide a conceptual model of the system in terms of classes and their
relationships.

Class diagrams

Copyright © AQA and its licensors. All rights reserved.68

• Each class is represented by a rectangle subdivided into three
compartments

– Name

– Properties (Data)

– Methods (Procedures and Functions)

• Modifiers are used to indicate visibility of attributes and operations.

– ‘+’ is used to denote Public visibility (everyone)

– ‘#’ is used to denote Protected visibility (friends and derived)

– ‘-’ is used to denote Private visibility (no one)

37

Class diagram – the basics

Copyright © AQA and its licensors. All rights reserved.69

bankAccount

- customerName
- Balance

+deposit()
+withdraw()

Name

Properties

Methods

Key
+ Public
- Private
Protected

Generalisation

Copyright © AQA and its licensors. All rights reserved.70

Generalisation is the process of creating
a superclass by combining properties
and methods from two or more
subclasses.

In this case, we would look at common
characteristics of Boats and Cars.

Generalisation is rather like inheritance
“upside down”. Boat

Vehicle

Car

38

Specialisation

Copyright © AQA and its licensors. All rights reserved.71

Specialisation is the process of creating
a subclasses by refining the properties,
methods and associations from the
superclass.

In this case, we would look at what
makes Boats and Cars specific vehicles.

Boat

Vehicle

Car

Relationships - inheritance

Copyright © AQA and its licensors. All rights reserved.72

Boat

Vehicle

Car

As we have previously seen, the
Car and Boat subclasses inherit
all of the properties and methods
of the Vehicle superclass.

39

Multiple inheritance

Copyright © AQA and its licensors. All rights reserved.73

• Some languages, such as C++, Python, Perl and LISP support multiple

inheritance where a subclass can inherit from 2 or more superclasses.

• This can cause issues during compilation and memory allocation as well as

giving the programmer a headache!

• Fortunately, Visual Basic, Java and C# do not support it and knowledge of

MI is not required for A-level.

Relationships - association

Copyright © AQA and its licensors. All rights reserved.74

If two classes in a model need to communicate with each other, there
must be relationship between them.

An association denotes that link or relationship.

PupilTeacher

Association Diagram

Teaches

40

75

Association symbols

• Aggregation:
This is symbolised by a clear unfilled diamond
- The destruction of one object does not result in the destruction of the other
object in the relationship

• Composition:
This is symbolised by a black filled diamond
– this is a strong version of aggregation as the parts live and die with the whole

1

1

Student

aggregation
ID-Card Cover

Book

composition

*

1

Multiplicity values
(How many objects will
exist at each end of
relationsip)

• * = 0, 1 or more
• 1 = exactly 1
• 2..5 = between 2 and 5
• 5..* = 5 or more

75 Copyright © AQA and its licensors. All rights reserved.

Aggregation

Copyright © AQA and its licensors. All rights reserved.76

• We can model objects that contain other objects by way of special
associations called aggregation and composition.

• Association Aggregation is when an object which contains other
objects is destroyed, the other objects will still exist. These associations
are denoted by a hollow-diamond/arrow on the association.

Car
Engine

Transmission

Wallet Money

Association Aggregation Diagram

41

Composition

Copyright © AQA and its licensors. All rights reserved.77

A composition indicates a strong ownership and objects are created and
destroyed as a whole. Compositions are denoted by a filled-diamond on the
association. Notice : the notation is as in E-R diagrams to denote 1 to 1
and 1 to many relationships in this example.

Window

Scrollbar

Titlebar

Menu

1

1

1

1

1

1 .. *

Composition diagram

Task 1

Copyright © AQA and its licensors. All rights reserved.78

1. A small electrical company has engaged a number of departments. Each
department contains a number of employees.

We have 3 classes Company, Department and Employee.

Draw a class diagram to show how the three are related
(remember to use the correct symbols for aggregation).

42

Solution a)

Copyright © AQA and its licensors. All rights reserved.79

Company Department

Employee

1.. *

1

1

We can use the word
contains to describe the
relationship

1.. *

Task 2

Copyright © AQA and its licensors. All rights reserved.80

2. The Company Class has the following properties

(data fields) Name and Status

It also has the method MakeJob

The Department class and it has its own properties

Name and JobType

It also has its own method AllocateJob

The Employee class inherits from Department and has its own property
EmployeeNo

and its own methods CostJob and CompleteJob

Draw a class diagram showing inheritance and the access modifiers you
think will be most appropriate for this scenario.

43

Solution

Copyright © AQA and its licensors. All rights reserved.81

Department

#Name:String
#JobType:Char

+AllocateJob()

Employee

#EmployeeNum :Integer

+CostJob()
+CompleteJob()

Company

-Name:String
-Status:Char

+MakeJob()

Aggregation – past paper question

Copyright © AQA and its licensors. All rights reserved.82

• Find in your pack the past paper question on aggregation.

• Useful Link

44

Advanced Concepts - encapsulate what varies

Copyright © AQA and its licensors. All rights reserved.83

• This is the idea that where there is a variance, then there should be a class
for it.

• This is based on encapsulation and information hiding, so that the
properties and methods are appropriate to the real world scenario they
reflect.

• Looking at the Bank Account class for example, we could have Student,
Gold and Platinum sub-classes.

Encapsulate what varies

Copyright © AQA and its licensors. All rights reserved.84

• However, we could drill down further into say Student and have a
Graduate account and UnderGrad account.

• These accounts may have their own unique properties and methods
pertinent to them.

• This specialisation would continue until you were certain that a class had
been created for each set of unique properties and methods.

45

Favour composition over inheritance

Copyright © AQA and its licensors. All rights reserved.85

• We have looked at inheritance and aggregation and each has their merits.

• Inheritance allows objects to be created in the superclass and subclasses
can inherit them.

• This allows code reuse and saves time.

• We do need to be very clear on relationships and classes when using
inheritance however, as sometimes it can be prone to unintentional side
effects when new classes are created and methods in the superclass are
altered.

Useful Link - Composition

Favour composition over inheritance

Copyright © AQA and its licensors. All rights reserved.86

• Aggregation allows us to use existing objects to combine new ones. In
composition we can use relationships between classes rather than
inheritance.

• Favour composition over inheritance- uses composition as classes are
easier to maintain and test, they are often easier to understand in this
format and this approach can also be less prone to errors.

• If inheritance is used, a base class cannot be tested separately from the
derived class but composition allows each class to be tested separately.

• Look at the Monster Specimen Skeleton Program – the Game class
combines existing objects in this way. (It instantiates Grid and Enemy but
the classes can be dealt with individually).

46

Interface

Copyright © AQA and its licensors. All rights reserved.

• In object oriented programming, we define software objects that mimic
"real world" objects.

• This makes programs easier to think about and more reliable. However, in
the real world, we often think about an object in several different ways.

• An interface is a programming structure that allows the methods we want
to use on our objects (classes) to be defined.

• This can be a list of properties and method signatures. There is no
implementation of the methods (there is no method body).

• A class that implements an interface must implement each of the methods
listed in the interface but can do this in each way that suits each class
(object).

• Useful link

87

Interface

Copyright © AQA and its licensors. All rights reserved.88

• A class can use inheritance to inherit the methods and properties of a
superclass.

• A class can also implement an interface to gain additional methods and
constants. However, the additional methods must be explicitly written as
part of the class definition (as they have no body in the interface).

• The interface is a list of requirements that the class definition must
explicitly meet (using code, not through inheritance).

• It sometimes suggested that an interface is used where there is a “has-a”
relationship as opposed to the “is-a” relationship used in inheritance.

47

Program to interfaces, not implementation

Copyright © AQA and its licensors. All rights reserved.89

• This principle allows programs to be written based on the interface as
opposed to each individual implementation of a class.

• This allows us to alter individual classes, perhaps updating a method or
adding additional functionality. However, this is done with reference to the
interface and therefore there is little or no effect on the other classes in the
program.

• For example, if we have a Car class it may inherit from the Vehicle class.
Inheritance then gives it all the methods and variables of Vehicle.

Program to interfaces, not implementation

Copyright © AQA and its licensors. All rights reserved.90

• Cars however need to be insured and we could create an interface with
properties and methods to cater for this.

• If car then implements the Insurance interface, then its definition should
also include all the code for the methods in Insurance.

48

Practical Activity

Copyright © AQA and its licensors. All rights reserved.91

Open the Practical Activity Handout and try

Topics 8 – Interfaces

Consolidation and plenary

Copyright © AQA and its licensors. All rights reserved.92

New specification questions

• CS Paper 1 specimen questions based on the Monster Game

• You should now understand the specimen skeleton program and be
confident to complete all of the questions on this that relate to OOP.

Any questions?

49

Consolidation and plenary

Copyright © AQA and its licensors. All rights reserved.93

New specification additional questions

• Look at Q3 about the Estate Agents

• This will test your knowledge of inheritance and aggregation including
association and composition.

Any questions?

Learning review

Plenary

• Have your learning needs been met?

• Reflect on the most significant learning from today

• Think about how you will teach these concepts to your students

• Please complete the evaluation form

Thank you

Copyright © AQA and its licensors. All rights reserved.94

50

Contact points

Copyright © AQA and its licensors. All rights reserved.

Contact us

aqa.org.uk/contact-us

Customer Support Team

0161 957 3980

computerscience@aqa.org.uk

Events Team

0161 696 5994

events@aqa.org.uk

aqa.org.uk/professional-development

95

51

