AQAH

Realising potential

A-level
COMPUTER SCIENCE

Object Oriented programming

Practical activity booklet

Published: Autumn 2017

Non-confidential

Contents Page

The IDE 4
Topic 1 The basics 5-8
Topic 2 Visibility 9-10
Topic 3 Constructors 11-16
Topic 4 Inheritance 17-19
Topic 5 Polymorphism — introduction 20-23
Topic 6 Polymorphism — method of overriding 24-30
Topic 7 Static, virtual and abstract methods 31-36
Topic 8 Interfaces 37-39
Contact 24

Non-confidential

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in
England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

AQAK

Practical Object Oriented Programming in Visual Basic

The Integrated Development Environment (IDE)

These days most developers use an IDE. This is a term used to describe a
programming environment that has been packaged as an application program,
typically consisting of a basic text editor (where you write the code), a compiler (to
turn your code into binary), a debugger (to help fix errors), and a graphical user
interface (GUI) builder. The IDE may be a standalone application or often they are
included as part of a suite of compatible applications. We will be using Microsoft
Visual Studio community edition which includes Visual Basic, C#, C++ and
JavaScript. IDEs provide a user-friendly, integrated framework. Visual Studio is
supported by the .NET framework which means that whatever language the
application is coded in, they will execute consistently.

Visual Basic Community edition IDE

We are going to use the console version of Visual Basic. This is a more “back

to basics” approach to programming but it enables students to learn in a more formal
and structured manner, without having to worry too much about the programming
environment. It will also be compatible with preliminary material provided by the

exam board.

1. Open up Visual Studio and click on New Project

2a] Start Page - Microsoft Visual Studio
File

€& Start Page

Recent

iis month

=] WindowsAppi.sin
83-1 CaUsers\Lenovolsourcelrey

Edit View Project Debug Team Tools

Ctrl+Shift+S

Ctrl+Shift=N
Shift+Alt+N
CtrisN

—

Alt+Fa.

Open

en Project / Solution
Open Folder

Open Website

New project
Search project templates »p -
Recent project templates:

B8] Windows Forms Ap..

vB

new project.

2. Select Console Application

I New Project
b Recent = [INET Framework 4.6.1 _ ~| Sort by: [Default
4 Installed -
] Blank App (Universal Windows)
b Visual C# .
Visi [=7] weF App (NET Framework)
K Ve
[EY] windows Forms App (NET Framewor
Web
NET Core -Dﬁ Consalag _
NET Standard e —
Cloud ‘:\ { Console App (.NET Framework)
Test v
d wer i
b Visual C++ =\
SQL Server @'ﬁ ASP.NET Web Application (NET Frameworl
© JavaScript -
b TypeScript ;’é! Class Library (.NET Framework)
© Other Project Types e
T BT sharear
ared Project
Not finding what you are looking for?
Open Visual Studio Installer N Class Library (Legacy Portable)
L (Legacy
" Name: ConsoleApp1
Location: Ci\Users\Lenovo\source\repos
Solution name: ConsoleApp1

i)

asic

< < s < <M< < < s L

[¥] Create directory for solution
[] Add to Source Control

oK Cancel

WioTETEWS:: w

4

AQAK

Topic 1 — The Basics
Your first object oriented program

When you create a new Console Application project — you should see
the following in the code editor.

Module Modulel
Sub Main()
End Sub

End Module

3. We don’t want to add anything in sub main just yet so add the
following code just underneath End Sub:

Class Circle
'Declare variables or fields (data) OR MEMBERS
Public Radius As Integer

'Define methods (functions and procedures)
Public Function Area() As Double

Return (Radius ~ 2) * Math.PI
End Function

Public Function Circumference() As Double
Return Math.PI * (Radius * 2)

End Function

End Class

AQAK

NOTE : Variables and properties are known as DATA MEMBERS and

functions and procedures are known as METHODS.

4. Now we need to write something which will allow us to use the class
we have just created.

Remember from our theory — a class is just a ‘blue print’ or our
‘cookie cutter’. We now need to instantiate the class to create an
object.

Enter the following code and run the program using the play p
button :

Sub Main()

'"instantiate a new object
Dim MyCircle As New Circle

Console.Write("Please enter a radius : ")
MyCircle.Radius = Console.ReadLine

Console.Write(Format(MyCircle.Area(), "9.00"))
Console.WritelLine(" metres squared")

Console.Write(Format(MyCircle.Circumference(), "0.00"))
Console.WriteLine(" metres")

Console.Read()

End Sub

You should see a run screen as shown if you type in 5 at the prompt:

Please enter a radius =
78.54 metres squared
31.42 metres

AQAHY

A few things you hopefully have spotted.

e We have created an instance of the circle class, in other words an

object called MyCircle

e We can now call the functions from the class to act on our object
using the dot notation, eg MyCircle.Area() which calls the Area

function from the class.

¢ Notice that both functions used PI from the Math class. This is a
built in class in VB but it helps us realise how useful classes can

be, especially for code reuse.

All the fields and methods for the Math class can be

found at

http://tinyurl.com/gz5cuxj OR

In the example above, we have created the class within Modulel. We
can also add classes as a separate file. This will lend itself more easily
to code reuse in the future but is not overly important at this level.

A class file can be added to the project as follows

)| ConsoleApp1 - Microsoft Visual Studio

File Edit View | Project | Build Debug Team Tools Test
~ | 18 Add Windows Form...

11 Add User Control...

™ AR LA

iew Select = Edit

Modes

Ll circumference.vi
’ E-) AddC t..
& 2 B (%] ConsoleApp1 S
5O T = & AddModule..
. % Add Class...
m 7| *& Add New Data Source...
3 Add New ltem... Ctrl+Shift+A

‘3 Add Existing Item... Shift+Alt+A
Application Insights

Z2 Docker Support
Exclude From Project

@ Show Al Files
Add Reference...
Add Service Reference...

p Add Connected Service
Add Analyzer...

£ Set as StartUp Project
Export Template...

Show outputfrc # Manage NuGet Packages...

*ConsoleApp :
Consoleapp] & ConsoleApp1 Properties...

—

Solution Explorer v 1 x

WE-|o-5¢ B K=

Search Solution Explorer (Ctrl+; P~

sj00] dnsoubeiq

] Solution 'ConsoleApp1’ (1 project)
4 [ConsoleApp1
& My Project
P =W References
¢ App.config
4 VB circumferencevb
4 =, Modulel
® Main()
b #3 Circle

Solution Explorer JrElNsIIIEs

The code remains the same for the class and sub main.

5. Try this if you have time and run the program again.

AQA

6. You need to save your work.

Click File, Save All

ﬂ ConsoleApp1 - Microsoft Visual Studio
File | Edit View Project Bulld Debug Team Tools Test Analyze Window Help
New > |+ AnyCPU | P Sta

Open »
Start P
O il |, Modulet -
Add to Source Control
Add »
Close

B3 Close Solution

B Sove ciaumferencevo QS b enter in a radius for your circle: ")

sole.ReadLine
Ctrls Shift+S
e (MyCircle.Area(), "0.00"))
Source Contro » Btres squared”)
(MyCircle.Circumference(), "0.20"))
B Page Setup.. Etres®)
& Print.. Cul+P
Account Settings..
Recent Files »
Recent Projects and Solutions y [fields (data) OR HEMBERS
B it Alt+F4 eger

"Define methods (functions and procedures)

g Public Function Area() As Double
Return (Radius 2) * Hath.PI
£nd Function

c] Public Function Circumference() As Double
Return Math.PI * (Radius * 2)
End Function

32 End Class

Select an approbriate folder and name your project Circle and click
Save.

¢ Save File As X
1 « ConsoleApp1 > ConsoleAppl » v O r
Organise v New folder =T o I
G Name Type
3 Quick access -
bin File folder
I Desktop * . ©
My Project File folder
»
* Downloads obj File folder
5| Documents ¢ App.config XML Configuratio...
&= Pictures ol B circlevb Visual Basic Sourc...
151017 [8] Circle Visual Basic Projec..
GCSE_Independe B Modulel.vb Visual Basic Sourc...
NewGCE
00 Programmir
o Microsoft Visual S ¥ < >
I ETL RN C:\ Users\Lenovo\source\repos\ConsoleApp1\ConsoleAppT\circle M
Save as type: | All Files (*.%))
A Hide Folders Cancel -

AQAK

Topic 2 — Visibility

In our circle program we used Public accessibility for the
variable Radius. This was so we could access this variable
from anywhere in our program. However, this is not really
good practice, as it could be changed from anywhere and
with the OOP approach, we want to have control over our
properties within the class.

Look at the following code for the class:

Class Circle
‘Declare Variables (data)
Private _Radius As Integer

'Define methods (functions and procedures)
Public Function Area() As Double

Return (_Radius ~ 2) * Math.PI
End Function

Public Function Circumference() As Double
Return Math.PI * (_Radius * 2)
End Function

End Class

Note :
¢ | have declared Radius as Private
¢ | have also used an underscore on the left of the identifier
which is common practice to show that this is a private
member

Practical task — Make the change in your own code and run the
program.
What happens?

AQAK

Answer: The program will not run as it says that Radius in no longer a
member of the program (as we have changed the visibility).

Sub Main()
'Instantiate a new ob
Dim MyCircle As New

.Write("Please enter in a radius for your circle: ")
MyCirgle. Radius = .ReadLine

~ t
Write ® Structure System.

. :l-.‘ritg Represents 2 20,) R < is type, see the Reference Source.
Jiritge® A .
Weit ConsoleApp1.Modulel.Circle._Radius' is not accessible in this context because it is ‘Private’,

le.W

.Read()|

End Sub

In order to resolve this issue we need to create a property which will
enable us to control our variables in the way we would like.

Practical task

1. Inside the class, just below the declaration of radius, add the
following code - you will notice once you type Set, Visual Basic

will autocomplete the code for you:

Public Property Radius As Integer
Set(Value As Integer)
_Radius = Value
End Set
Get
Return —Radius
End Get
End Property

Now we have a public property which can be used outside of the class,
but these properties can only be accessed and modified in a way that we
control.

2. Run the program again and this time it should function correctly.
If we need to use the property in future programs, we can use

Radius()

3. Remember to save your work.

10

AQAH

Topic 3 - Constructors

A constructor is a special method which allows control over
the initialisation of objects. It is run when an object is created
(or instantiated).

In Visual Basic, a constructor method is always called Sub New.

This can be created anywhere in the class definition but you tend to see
it after the variables have been declared. (See the Monster Specimen
Skeleton Program — Game Class)

Remember from our Circle Class when we instantiated an object?

Dim MyCircle As New Circle

When using the New keyword we are also telling Visual Basic to
allocate some memory for the class. This is really telling the program
to construct the class and instantiate an object called MyCircle.

Constructors are really useful for initialising variables and they run as
soon as the object is created.

Going into the declarations section — you can add the Visual Basic
constructor method automatically as shown below (or you can just type it
in).

circle_property.vb® + X Appconfig m X «

©
3

o -

ol (%] Circle = | *3 Gircle (ConsoleApp1.Module1) * @ New -
3 S —

-3 £ thods (functions and procedur

2) OF (TUnctions and procedures @, Finalize

§ Public Function Area() As Double ¥ _Radius

g Return (Radius » 2) * .PI ® Arca

2

End Function @ Circumference

Public Function Circumference() As Double # Radius
Return th.PI * (Radius * 2)

End Function

Public Sub New()]
End Sub

snd Class

End Module —

11

AQAK

In our example, we might want to initialise the radius to zero. We can
change the code to do this:

Class Circle
‘Declare properties (data)
Private _Radius As Integer

Public Property Radius As Integer
Set(Value As Integer)
_Radius = Value
End Set
Get
Return _Radius
End Get
End Property

'Define methods (functions and procedures)
Public Function Area() As Double

Return (Radius ~ 2) * Math.PI
End Function

Public Function Circumference() As Double
Return Math.PI * (Radius * 2)
End Function

Public Sub New()
_Radius = 0
End Sub
End Class

This is quite powerful because each time the class is instantiated,
we initialise the variables.

Practical task

1. Set up constructor as shown above for your circle program:
o Initialise the radius =0

12

AQAK

2. Delete the user prompt to enter a radius and run the program:

Sub Main()
'instantiate a new object
Dim MyCircle As New Circle

Console.Write(Format(MyCircle.Area(), "9.00"))
Console.WriteLine(" metres squared")

Console.Write(Format(MyCircle.Circumference(), "0.00"))
Console.WriteLine(" metres™)

Console.Read()

End Sub
This will show that the radius has been set to zero:

0.00 metres squared
B.00 metres

3. Change the value in the constructor to = 3

Public Sub New()
_Radius = 3
End Sub

28.27 metres squared

18 .85 metres

However, constructors can be even more powerful when used with
parameters:

Public Sub New(Radius As Integer)
‘initialise variables
_Radius = Radius
End Sub

13

AQAK

Setting up a constructor with parameters allows us to pass values if
appropriate. Our Sub Main would now become:

Sub Main()

"instantiate a new circle object with parameter(s)
Dim MyCircle As New Circle(5)

Console.Write(Format(MyCircle.Area(), "0.00"))
Console.WriteLine(" metres squared")

Console.Write(Format(MyCircle.Circumference(), "0.00"))
Console.WriteLine(" metres")

Console.Read()

End Sub

In our circle example we only use one parameter but we can initialise
several parameters and methods, if required.

Look at the Monster -Specimen Skeleton Program once more.

The extract below shows the constructor:

Class Game
Const NS As Integer = 4
Const WE As Integer = 6
Private Player As New Character
Private Cavern As New Grid(NS, WE)
Private Monster As New Enemy
Private Flask As New Item
Private Trapl As New Trap
Private Trap2 As New Trap
Private TrainingGame As Boolean

Public Sub New(ByVal IsATrainingGame As Boolean)
TrainingGame = IsATrainingGame
Randomize()
SetUpGame()

Play()
End Sub

14

AQAK

Notice the constructor passes in the Boolean value IsATrainingGame
from Sub Main ().

Select Case Choice
Case 1
Dim MyGame As New Game(False)
Case 2
Dim MyGame As New Game(True)
End Select

Depending on whether the user wishes to play a brand new game or the
training game, it is initialised as the class is instantiated.

The constructor also initialises and calls some crucial methods such as
Play() and SetUpGame() to enable the game to set up for play.

Note : The Randomize() function in VB ensures that random numbers
are generated with a new seed.

Practical task

4. Set up a new constructor for your circle program as shown above,
passing the radius as a parameter.

Run your programs and check they work using different values for the
radius.

5. Save your work.

15

AQAK

Check your progress:

A+

Exercise

1. Write a program which implements a class called Box that calculates
the volume and surface area of a box given its height, width
and length.

. -
-

The volume is defined as the product of the height, width and length.

The surface area can be calculated from the sum of the areas of the
six sides. (SurfaceArea = 2(lw+wh+lh)

Remember to create a class, start with variables and associated
properties, followed by methods including any necessary
constructors.

Use Sub Main() to use your class effectively.

16

AQAHY

Topic 4 - Inheritance

From OO theory we know that inheritance is a useful way to reuse code
when our classes are related.

We are going to adapt our program so that we can make use of
inheritance.

To calculate the volume of a cylinder we can use the formula:

Practical task

1. Create a new project.
INewPrDJE:t ? X F

b Recent = [INET Framework 46,1 ~| Sort by: [Default 3 =F Search (Ctrl+E) P~
4 Installed Svj Blank App (Universal Windows) Visual Basic 5 1ype: Visual Basic
€ v Visualce A project for creating a command-line
4 Visual Basic I‘vj WPF App (.NET Framework) Visual Basic application
J Windows Universa I ¢ ’"
Windows Classic Desktop [T} Windows Forms App (NET Framework) Visual Basic
Web
\NET Core Dﬁ Console App (NET Core) Visual Basic
g NET Standard
) Cloud Console App (NET Framework)
Test
d WCF ES!B Class Library (NET Standard) Visual Basic
b Visual C++
SQL Server @'1 ASP.NET Web Application (.NET Framewor) Visual Basic
b JavaScript
b TypeScript '}g!v!a Class Library (NET Frameworl 1) Visual Basic
b Other Project Types _
J Shared Project Visual Basic

Not finding what you are looking for?

VB
Open Visual Studio Installer Exi! Class Library (Legacy Portable) Visual Basic +

2. Copy in the circle class from your previous work (the version shown
below) and change the visibility of the Radius variable from Private to
Protected

Class Circle

'declare variables or data
Protected _Radius As Integer

Public Property Radius As Integer
Set(Value As Integer)
_Radius = Value
End Set

17

AQAK

Get
Return _Radius
End Get
End Property

Public Function Area() As Double
Return (_Radius ~ 2) * Math.PI
End Function

Public Function Circumference() As Double
Return Math.PI * (_Radius * 2)
End Function

Public Sub New()
_Radius = ©
End Sub

End Class

Remember — a protected member will allow access within its own
class or a derived class. We need the
derived class to be able to access the Radius variable.

So we can say that the scope of this variable is the base class and any
derived classes.

3. We are now going to add a new class called Cylinder. Add the
following code just below the circle class:

Class Cylinder
Inherits Circle]

Protected _Height As Integer

Public Sub New()
MyBase.New() ’this calls the constructor from the base class

_Height = @ 'this initialises the height in the derived
‘class Cylinder
End Sub

Public Property Height As Integer
Set(Value As Integer)
18

AQAK

_Height = Value
End Set
Get
Return _Height
End Get
End Property

Note

e The use of the Inherits keyword enables the derived class to
inherit all the properties and methods of the base class.

e The use of MyBase . New()within the derived class’ constructor
enables the derived (Cylinder) class to utilise the constructor from
the base class (Circle).

e We cannot run the program yet because we have not created

Sub Main(). We need to carry out a couple more steps so let us
look at how the concept of polymorphism can be used.

19

AQAK

Topic 5 Polymorphism - Introduction

e The word Polymorphism means “many forms”.

e In OOP it describes a situation when a method in the base class is
inherited in the sub class but is redefined in some way to suit the
data and purpose of the sub class.

It is useful because it enables us to share/reuse methods.

Returning to the Circle and Cylinder classes, we know that we need a
method to calculate the volume of a cylinder. As the volume of a
cylinder can be calculated by multiplying the area of a circle by the
height so in this, we can make use of polymorphism.

Practical task

1. Underneath the Height property in the Cylinder class, add the
following method

Public Function Area() As Double
Return (Radius() ~ 2) * Math.PI * Height()
End Function

Now there are a couple of issues

¢ Notice how we use Radius() and Height()- we are using the
properties so that the private data members (_Radius and _Height)
remain private

e This function should really be called Volume (or CalculateVolume)
but let’'s leave it as Area to help explain out next concept.

e Visual Basic has given an error as it knows there is already a
function called Area in the base class, which has been inherited.

e The message asks if we want to overload this function, which we
do as we want to use this function in the Cylinder class.

20

AQAK

2. Change the function header as shown below

Public Overloads Function Area() As Double
Return (_Radius ~ 2) * Math.PI * Height
End Function

We now need to modify the code in Sub Main to make use of the
cylinder class.

21

AQAHY

3. Modify your Modulel, Sub Main() code as shown

AQAK

4. Run the program using the following test data
Radius : 3
Height : 5

You should see a similar output to the screen shot below

Please enter a radius : 3

Please enter a height = 5

Area of Circle 28.27 metres squared
Uolume of the cylinder 141.37 metres cubed

We have shown that we can use the same name for a method which
exists in the base class, but have changed it to suit our needs in the
derived class. — Polymorphism.

Note on Method Overloading: Generally in Visual Basic we use the
overloads key word when we have a different set of parameters or
return types.

To keep our code simple we have made some minor changes but if we
had used a parameter based constructor which needed to pass in both
the radius and the height, then the overloads keyword is crucial.

23

AQAK

Topic 6 Polymorphism - Method Overriding

Overriding methods will allow a derived class to alter the behaviour that
is inherited from the base class but to maintain the same method call
and signature. (In other words, its return type and parameter list must
stay the same but the algorithms can be different).

Remember the run method for humans and wolves? Same name but
implemented differently.

Let us make a new program. If you are working behind, or want to save
time, you can access the code for this program on the Blendspace link.

http://tinyurl.com/pabyarn or

Let us go back to the Student scenario.

We are going to create a base class called student and then our derived
classes Graduate and UnderGrad.

24

AQAK

Practical task

1. Open a new console program in VB and just above Sub Main() create
the Student Class as shown below.

Class Student
Protected _Forename As String
Protected _Surname As String
Protected _GPA As Double

'set up properties
Public Property Forename As String
Set(value As String)
_Forename = value
End Set
Get
Return _Forename
End Get
End Property

Public Property Surname As String
Set(value As String)
_Surname = value
End Set
Get
Return _Surname
End Get
End Property

Public Property GPA As Double
Set(value As Double)

_GPA = value
End Set
Get

Return _GPA
End Get

End Property

'add a constructor

Sub New()
_Forename =
_Surname =
_GPA = 0

End Sub

Public Sub ComputeGrade()

If GPA > 50 Then
25

AQAK

Console.WriteLine("You are Entry Level")
Console.WriteLine("Congratulations you have passed")
Else
Console.WriteLine("You are Entry Level")
Console.WritelLine("Commiserations you have failed")
End If
End Sub

End Class

As you will have noticed, the class only has three protected variables
Forename, Surname and GPA.

We are going to create a menu to create students, view their details and
find out if they have passed or failed their course.

2. Add the following code to Sub Main()

Sub Main()
Dim Response As Char
Dim Reply As Char

While Response <> "Q"

Console.WriteLine("Student Database™)
Console.WritelLine()

Console.WriteLine("Add a student, (A) ")
Console.WriteLine("View Student data, (V) ")
Console.WriteLine("Compute my grade, (C) ")
Console.WriteLine("Quit, (Q) ")

Response = Console.ReadLine.ToUpper

If Response = "A" Then
Console.Write("Enter the forename : ")
Studentl.Forename = Console.ReadLine
Console.Write("Enter the Surname : ")
Studentl.Surname = Console.ReadlLine
Console.Write("Enter the GPA : ")
Studentl.GPA = Console.ReadlLine

Console.WriteLine("Student data complete")

Console.ReadLine()
Console.Clear()

26

AQAK

ElseIf Response = "V" Then

Console.WriteLine("FirstName : " &
Studentl.Forename)

Console.WriteLine("Surname : " & Studentl.Surname)

Console.WritelLine("Grade Pont Average :" &

Studentl.GPA)
Console.ReadLine()
Console.Clear()

ElseIf Response = "C" Then
Studentl.ComputeGrade()
Console.ReadLine()
Console.Clear()
End If
End While
End Sub

3. Run the program and get used to using the menu and enter some
grades. You will need to make up some names, use (A) to add
students and (V) to view the data you have entered. P

4. Test to see if your ComputeGrade() method is working using a few
values, eg 64, 65 and 66.

5. We now want to ensure that we can compute grades for different
types of students, so we need to make our ComputeGrade() method
overridable. Change your code in the procedure header as shown.

Public Overridable Sub ComputeGrade()

If GPA > 50 Then
Console.WriteLine("You are Entry Level")
Console.WriteLine("Congratulations you have passed")
Else
Console.WriteLine("You are Entry Level")
Console.WritelLine("Commiserations you have failed")
End If
End Sub

Now we can create our two derived classes, each with a slightly different
algorithm for implementing ComputeGrade().

27

AQAK

6. Create the derived classes, just above the Student class as we did in
the Circle program. Both derived classes inherit from Student.

Notice : we have not used a constructor as we only need the method
in this example.

Class Graduate
Inherits Student

Public Overrides Sub ComputeGrade()
If GPA > 75 Then
Console.WritelLine("You are a Graduate")
Console.WriteLine("Congratulations you have passed")
Else
Console.WriteLine("You are a Graduate")
Console.WriteLine("Commiserations you have failed")
End If
End Sub
End Class

Class UnderGrad
Inherits Student

Public Overrides Sub ComputeGrade()
If GPA > 65 Then
Console.WriteLine("You are an UnderGrad")
Console.WriteLine("Congratulations you have passed")
Else
Console.WriteLine("You are an UnderGrad")
Console.WriteLine("Commiserations you have failed")
End If
End Sub

End Class

Notice the use over the Overrides key word in the method header, this
lets Visual Basic know to use the appropriate class method when it is
called.

So we now need to think about how we can call the
correct method, depending on the type of student.

28

AQAK

7. We need to add a new variable in Sub Main() . Declare a character
variable called Reply at the top of Sub Main().

Sub Main()
Dim Response As Char
Dim Reply As Char

8. We need to add to the code in the calculate grade option in Sub
Main(). Add the following code.

ElseIf Response = "C" Then

Console.WriteLine("Are you entry, undergrad or
graduate (E), (U) or (G) :" & Reply)

Reply = Console.ReadLine.ToUpper

If Reply = "E" Then
Studentl.ComputeGrade()
ElseIf Reply = "U" Then
Dim UnderGradl As New UnderGrad
UnderGradl.GPA = Studentl.GPA
UnderGradl.ComputeGrade()
ElseIf Reply = "G" Then
Dim Graduatel As New Graduate
Graduatel.GPA = Studentl.GPA
Graduatel.ComputeGrade()
End If

Console.ReadLine()

Console.Clear()
End If

Notice that we have an option for each type of student and that we use
the appropriate object to call the required version of ComputeGrade().

ie If | want to check a Graduate’s grade then | make an instance of that
class and call ComputeGrade() with it. Graduatel.ComputeGrade()

9. Run the program and devise some test data (or use the table below)
to check that each type of student gives the correct response.

29

AQAK

Typical Output

Student Database

Add a student,. (A
Uiew Student data.

Compute my grade.,
Quit, <Q>
C

Are you entry, undergrad or graduate (E).,
U

Congratulations you have passed

Student grades — Test data

U> or (G :

Type of Student Input Data Expected Response
Entry 49, 50,51 (E) Fail, Pass, Pass
Graduate 74,75, 76 (G) Fail, Pass, Pass
UnderGrad 64, 65, 66 (U) Fail, Pass, Pass

Task - The program output could more informative and user friendly. If
you have time adapt the code to show the test mark entered by the user.

Note

e Overloading in simple terms means two methods have the same
method name but may have different parameters/method signature.
This is often called static because, which method to be invoked will
be decided at the time of compilation.

e Overriding means a derived class is implementing a method of its
superclass, but can use a different implementation and which method
Is invoked is decided at run time.

30

AQAK

Topic 7 - Static, Virtual and Abstract Methods

The class methods that we have been learning about and using are
known as instance methods.

Instance methods include constructors, accessors (eg getRadius() and
mutators (eg newHeight += Height).

Instance methods operate on individual objects, eg
MyCircle.Area(5)

Student1.ComputeGrade()

Static methods - are those which will perform and operation
for the whole class. In Visual Basic we can use the Shared
keyword to achieve this.

Practical task

1. Create a new console project and add the following code

Module Modulel
Class Test
Public Shared Sub Write()
Console.WriteLine("Shared Sub called")
End Sub

Public Sub WriteClassMethod()
Console.WriteLine("Class Method Called")

End Sub

End Class

Sub Main()
Test.Write() 'NOTE : we use the class name (not the object)

31

AQAHY

'needed to create an object to use the class method
Dim MyTest As New Test

MyTest.WriteClassMethod() ‘here we use the objectname
Console.ReadlLine()

End Sub

End Module

The shared (static) method can be used without creating an object so it
is useful when we know all objects created will need to utilise that
method.

Abstract methods

This kind of method has no implementation, just a header. It will appear
in an abstract base class just to ensure completeness. The method will
have to be overridden in each of the derived classes.

“So what is an abstract class”? | hear you say... well it is a base class
which represents an abstract concept. An abstract class is a class from
which objects cannot be created. However, it is possible to create a
derived class from an abstract class and then it is possible to make
objects and therefore properties and methods.

For example

Base Class - abstract

Card

1

Christmas Derived Classes — can be

instantiated

|
Birthday
Card

Card

32

AQAK

Just because a class is abstract and cannot be created, it does not
mean that it cannot have constructors. An abstract class can have
constructors to initialise methods or pass values along to base class
constructors.

In Visual Basic the abstract class must have the keyword Mustinherit
and the abstract methods are overridable and therefore must be marked
with MustOverride.

A class that inherits from a class with abstract methods must provide
an implementation for the abstract methods or must be abstract itself.

Remember the exam question Device
about computers?

Device is an abstract class. Printer Computer

Laptop Desktop Server

Example

Module Modulel
'our base class
MustInherit Class Person
Protected Name As String
Protected Address As String
Protected Postcode As String

MustOverride Sub PrintName() ¢ abstract method header

Sub Print()
PrintName()
Console.WriteLine(Address)
Console.WritelLine(Postcode)
End Sub
End Class

Class Customer
Inherits Person

33

AQAK

Protected CustomerID As Integer
Overrides Sub PrintName() ‘method is defined in the
Console.Write("Customer ") ‘derived class
Console.WriteLine(Name)
End Sub
End Class

Class Employee

Inherits Person

Protected Salary As Integer

Overrides Sub PrintName() ‘method is defined in the
Console.Write("Employee ") ‘derived class
Console.WriteLine(Name)

End Sub

End Class

Sub Main()
End Sub

End Module

Notice how there is only the method header in the base class (no
implementation) and the keyword MustOverride is used.

Each derived class must provide an implementation and can do so in a
way that is appropriate to that class.

Virtual methods

These methods we have already used today. Virtual methods are those
that can be overridden. In Visual Basic when we define our base
classes,unless otherwise stipulated our methods can be overridden in
subsequent derived classes.

If we look back at our Student Class making the method ComputeGrade
overridable makes it a virtual method.

Public Overridable Sub ComputeGrade()
If Studentl.GPA > 50 Then
Console.WriteLine("Congratulations you have passed")
Else
Console.WritelLine("Commiserations you have failed")
End If
End Sub

34

AQAK

This means that this method may be implemented differently in derived
classes (which indeed it was).

In order to prevent a method from being overridden we can use the
NotOverridable Keyword.

Microsoft allows the following descriptions when dealing with inheritance
and overriding:

Inheritance modifiers

Statement/Modifier Description

Inherits Specifies the base class

Notinheritable Prevents programmers from using the
class as a base class

MustInherit Specifies that the class is intended for use

as a base class only. Instances of
MustInherit classes cannot be created
directly; they can only be created as base
class instances of a derived class. (ie.
Abstract classes in other languages)

By default, a derived class inherits properties and methods from its base
class. If an inherited property or method has to behave differently in the
derived class it can be overridden. That is, you can define a new
implementation of the method in the derived class.

35

AQAK

Overriding properties and methods in derived classes

Statement/Modifier Description

Overridable Allows a property or method in a class to
be overridden in a derived class

Overrides Overrides an Overridable property or
method defined in the base class

NotOverridable Prevents a property or method from being

overridden in an inheriting class. By
default, Public methods are
NotOverridable

MustOverride

Requires that a derived class override the
property or method. When the
MustOverride keyword is used, the
method definition consists of just the Sub,
Function, or Property statement. No other
statements are allowed, and specifically
there is no End Sub or End Function
statement. MustOverride methods must be
declared in Mustinherit classes

36

AQAK

Topic 8 - Interfaces

* Aninterface is a programming structure that allows the methods
we want to use on our objects (classes) to be defined.

The following demonstrates a simple example of how we can use an
interface in Visual Basic.

Practical task

We are going to go back to our student example but use an interface to
determine the methods we need to use.

1. Open a new console program in VB and just above Sub Main()
create the following code for our interface Studentinformation:

Interface StudentInformation
Sub AddStudent(FirstName As String, LastName As String)
Function NumberOfStudentsEnrolled() As Integer
Sub DisplayInfo()

End Interface

Notice we do not need to use any access modifiers for the methods.

2. Just below the interface, create a new class called Student.

Public Class Student : |Implements StudentInformation

Private FirstName As String, LastName As String
Private studentsEnrolled As Integer = ©

‘constructor
Public Sub New()
End Sub

End Class

Notice the Implements keyword. Showing that this class will use the
interface.

37

AQAK

By implementing the Studentinformation interface, the class needs to define the methods from the interface.

3. Add the code for the methods as shown below

Public Sub Add(FirstName As String, LastName As String) Implements StudentInformation.AddStudent
Me.FirstName = FirstName 'the Me keyword refers to the current object
Me.LastName = LastName

studentsEnrolled += 1
End Sub

Public Sub DisplayInfo() Implements StudentInformation.DisplayInfo
Console.WriteLine("{@} is now enrolled”, FirstName & " " & LastName)
End Sub
Public Function NumberOfStudentsEnrolled() As Integer Implements studentInformation.NumberOfStudentsEnrolled
Console.WriteLine("The total number students enrolled is " & studentsEnrolled)
Return studentsEnrolled

End Function

End Class

Notice that we are indicating in each method header that the method is implementing the interface.

38

AQAK

The last thing we need to do is to add code to sub main to instantiate the class and call
the methods.

4. Add the following code

Sub Main()

Dim studentsEnrolled As Integer
'Instantiate the Student Class
Dim MyStudent As New Student()

'add some students
MyStudent.Add("Davey", "Jones")
MyStudent.DisplayInfo()

MyStudent.Add("Julie", "Smith")
MyStudent.DisplayInfo()

MyStudent.Add("Albert", "Mason")
MyStudent.DisplayInfo()

studentsEnrolled = MyStudent.NumberOfStudentsEnrolled()

Console.ReadLine()
End Sub

5. Run the program and check that the Display method is producing the
relevant student data, as shown below.

Davey Jones is now enrolled

Julie Smith is now enrolled

Albert Mason is now enrolled

The total number students enrolled is 3

6. Add more students and to check the running total.

J Patterson 2015

Copyright © AQA and its licensors. All rights reserved.

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in
England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

39

