
Non-confidential

A-level
COMPUTER SCIENCE
Object Oriented programming

Aggregation Question & Specimen Section C & D

Published: Autumn 2017

Non-confidential

Contents Page

Aggregation Question 4

Specimen Section C
7

Specimen Section D
12

Contact
24

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in

England and Wales (number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

A‐level Computer Science

Object Oriented Programming

Aggregation Question

Name:

Class:

15

11

Author: AQA

Date:

Time:

Marks:

Comments:

4

Q1.
(a) In object-oriented programming, what is meant by aggregation?

..

..
(1)

(b) An object-oriented program is required to handle details of items of furniture that are
for sale. The furniture sold includes dining suites. A dining suite consists of a table
and a number of chairs.

Some fields required for the suites are
TableType
ChairType
NumberOfChairs

A method required for the suites is
DisplayDetails

Some fields required for the tables are
TableType
Size
Colour

Some fields required for the chairs are
ChairType
Colour

(i) Draw a class diagram of these classes, Suite, Table and Chair.

(2)

(ii) Write class definitions for Chair, Table and Suite.

..

..

..
(8)

(Total 11 marks)

5

M1.
(a) An object that contains other objects;

A a class containing other classes;
1

(b) (i)

1 mark for class entries
1 mark for connections
A circles or diamonds, filled or not

2

(ii)

A any sensible syntax
R implied inheritance Max 8

[11]

6

A‐level Computer Science

Object Oriented Programming

Specimen Section C

Name:

Class:

Author: AQA

15

12

Date:

Time:

Marks:

Comments:

7

Q1.
The class diagram below is an attempt to represent the relationships between some of the
classes in the MONSTER! Game.

(a) Explain what errors have been made in the class diagram.
(2)

(b) Give an example of instantiation from the Skeleton Program.
(1)

(c) State the name of an identifier for an array variable.
(1)

(d) State the name of an identifier for a subclass.
(1)

8

(e) State the name of an identifier for a variable that is used to store a whole number.
(1)

(f) State the name of an identifier for a class that uses composition.
(1)

(g) Look at the GetNewRandomPosition subroutine in the Game class in the Skeleton
Program.

Explain why the generation of a random position needs to be inside a repetition
structure.

(1)

(h) Look at the Game class in the Skeleton Program.

Why has a named constant been used instead of the numeric value 5?
(2)

(i) Describe the changes that would need to be made to the Game class to add a third
trap to the cavern. The third trap should have exactly the same functionality as the
other two traps. You do not need to describe the changes that would need to be
made to the SetUpGame subroutine.

(2)
(Total 12 marks)

9

M1.
(a) All marks AO2 (analyse)

1 mark: The arrow should be pointing towards the base class;
1 mark: There is no class called Monster / / it should say Enemy, not
Monster;

2

(b) Mark is for AO2 (apply)

VB.Net
Dim MyGame As New Game(False) / /
Dim MyGame As New Game(True) / /
Private Player As New Character / /
Private Cavern As New Grid(NSDistance, WEDistance) / /
Private Monster As New Enemy / /
Private Flask As New Item / /
Private Trap1 As New Trap / /
Private Trap2 As New Trap;

R If any additional code
R If spelt incorrectly
I Case

1

(c) Mark is for AO2 (apply)

VB.Net
CavernState;

R If any additional code
R If spelt incorrectly
I Case

1

(d) Mark is for AO2 (apply)

Trap / / Character / / Enemy;

A SleepyEnemy
R If any additional code
R If spelt incorrectly
I Case

1

(e) Mark is for AO2 (apply)

10

Choice / / NoOfCellsEast / / NoOfCellsSouth / / Count / / NSDistance
/ / WEDistance / / Count1 / / Count2;

R If any additional code
R If spelt incorrectly
I Case

1

(f) Mark is for AO2 (apply)

Game;

R If any additional code
R If spelt incorrectly
I Case

1

(g) Mark is for AO2 (analyse)

So that a position of (0,0) is rejected / / so that the item can't be in the player's
starting position;

1

(h) Marks are for AO1 (understanding)

Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the size of the cavern (in the game);
Max 2 points from the list above

2

(i) Marks are for AO2 (analyse)

1 mark: Create a new object (Trap3) of class Trap;
1 mark: Change the (3rd) If statement in the PlayGame subroutine by adding
conditions to check if the player is in the same cell as Trap3 and that Trap3
has not been triggered already;

2
[12]

11

A‐level Computer Science

Object Oriented Programming

Specimen Section D

Name:

Class:

60

35

Author: AQA

Date: Time:

Marks:

Comments:

12

Q1.
(a) This question refers to the subroutines CheckValidMove and Play in the Game

class.

The Skeleton Program currently does not make all the checks needed to ensure
that the move entered by a player is an allowed move. It should not be possible to
make a move that takes a player outside the 7 × 5 cavern grid.

The Skeleton Program needs to be adapted so that it prevents a player from
moving west if they are at the western end of the cavern.

The subroutine CheckValidMove needs to be adapted so that it returns a value of
FALSE if a player attempts to move west when they are at the western end of the
cavern.

The subroutine Play needs to be adapted so that it displays an error message to the
user if an illegal move is entered. The message should state "That is not a valid
move, please try again".

Evidence that you need to provide

(i) Your amended PROGRAM SOURCE CODE for the subroutine
CheckValidMove.

(3)

(ii) Your amended PROGRAM SOURCE CODE for the subroutine Play.
(2)

(iii) SCREEN CAPTURE(S) for a test run showing a player trying to move west
when they are at the western end of the cave.

(1)

(b) This question will extend the functionality of the game.

The game is to be altered so that there is a new type of enemy: a sleepy enemy. A
sleepy enemy is exactly the same as a normal enemy, except that after making four
moves it falls asleep again.

Task 1
Create a new class called SleepyEnemy that inherits from the Enemy class.

Task 2

13

Create a new integer attribute in the SleepyEnemy class called MovesTillSleep.

Task 3
Create a new public subroutine in the SleepyEnemy class called
ChangeSleepStatus. This subroutine should override the ChangeSleepStatus
subroutine from the Enemy class. The value of MovesTillSleep should be set to 4
in this subroutine.

Task 4
Create a new public subroutine in the SleepyEnemy class called MakeMove. This
subroutine should override the MakeMove subroutine from the Enemy class. When
called this subroutine should reduce the value of MovesTillSleep by 1 and then
send the monster to sleep if MovesTillSleep has become equal to 0.

Task 5
Modify the Game class so that the Monster object is of type SleepyEnemy (instead of
Enemy) .

Task 6
Check that the changes you have made work by conducting the following test:

• play the training game
• move east
• move east
• move south.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new SleepyEnemy class.
(8)

(ii) SCREEN CAPTURE(S) showing the requested test.
(2)

(c) This question refers to the Game and Character classes and will extend the
functionality of the game.

The game should be altered so that once per game the player can shoot an arrow
instead of making a move in the cavern. The arrow travels in a straight line, in a
direction of the player's choice, from the cell the player is in to the edge of the
cavern. If the arrow hits the monster then the player wins the game and a message
saying that they have shot the monster should be displayed.

14

For this question you are only required to extend the program so that it checks if the
monster is hit by the arrow when the user chooses to shoot an arrow northwards.
However, the user should be able to select any of the four possible directions.

In the diagram below, the two shaded cells show the cells which, if the monster is in
one of them, would result in the player winning the game, as long as the player is in
the cell five to the east and three to the south and chooses to shoot an arrow
northwards.

*

Task 1
Modify the DisplayMoveOptions subroutine in the Game class so that the option to
enter A to shoot an arrow is added to the menu.

Task 2
Create a new Boolean attribute called HasArrow in the Character class.

The value of HasArrow should be set to True when a new object of class Character
is instantiated.

Task 3
Create a new public subroutine called GetHasArrow in the Character class that
returns the value of the HasArrow attribute to the calling routine.

Task 4
Modify the CheckValidMove subroutine in the Game class so that:

• it is a valid move if A is selected and the player does have an arrow
• it is not a valid move if A is selected and the player does not have an arrow.

Task 5
Create a new public subroutine called GetArrowDirection in the Character class.

This subroutine should return a character to the calling routine.

15

The user should be asked in which direction they would like to shoot an arrow (N, S,
E or W) and the value entered by the user should be returned to the calling routine.

If an invalid direction is entered then the user should be repeatedly asked to enter a
new direction, until a valid direction is entered.

The value of HasArrow should then be changed to FALSE.

Task 6
Modify the Play subroutine in the Game class so that if the move chosen by the user
is not M it then checks if the move chosen is A.

If the move chosen was A, then there should be a call to the player's
GetArrowDirection subroutine. If the user chooses a direction of N then the
program should check to see if the monster is in one of the squares directly north of
the player's current position. If it is then a message saying "You have shot the
monster and it cannot stop you finding the flask" should be displayed. The
value of FlaskFound should then be set to TRUE.

After the arrow has been shot, if the monster is still alive and awake, it is now the
monster's turn to move, the player should remain in the same cell as they were in
before the arrow was shot.

There is no need to write any code that checks if the monster has been shot when
the player chooses to shoot either to the east, to the west or to the south.

Task 7: test 1
Test that the changes you have made work by conducting the following test:

• play the training game
• shoot an arrow
• choose a direction of N for the arrow.

Task 8: test 2
Test that the changes you have made work by conducting the following test:

• play the training game
• move east
• shoot an arrow
• choose a direction of N for the arrow
• shoot an arrow.

Evidence that you need to provide

16

(i) Your amended PROGRAM SOURCE CODE for the subroutine
DisplayMoveOptions.

(1)

(ii) Your amended PROGRAM SOURCE CODE for the subroutine
CheckValidMove.

(2)

(iii) Your amended PROGRAM SOURCE CODE for the class Character.
(8)

(iv) Your amended PROGRAM SOURCE CODE for the subroutine Play.
(6)

(v) SCREEN CAPTURE(S) showing the results of Test 1.
(1)

(vi) SCREEN CAPTURE(S) showing the results of Test 2.
(1)

(Total 35 marks)

17

M1.
(a) (i) Marks are for AO3 (programming)

1 mark: Selection structure with one correct condition;
1 mark: Both conditions correct and correct logical operator(s);
1 mark: Subroutine returns the correct True / False value under all
conditions;

A New conditions added to existing selection structure

VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As
Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S" Or Direction = "W"
Or Direction = "E" Or Direction = "M") Then
 ValidMove = False
 End If
 If Direction = "W" And
Player.GetPosition.NoOfCellsEast = 0 Then
 ValidMove = False
 End If
 Return ValidMove
End Function

3

(ii) Marks are for AO3 (programming)

1 mark: Selection structure with correct condition added in correct place
in the code;
1 mark: Correct error message displayed which will be displayed when
move is invalid, and only when the move is invalid;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
 ...
 ValidMove = CheckValidMove(MoveDirection)
 If Not ValidMove Then
 Console.WriteLine("That is not a valid move, please try
again")
 End If
Loop Until ValidMove
...

2

(iii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (a)(i) and (a)(ii), including

18

prompts on screen capture matching those in code. Code for (a)(i) and
(a)(ii) must be sensible.

Screen capture(s) showing the error message being displayed after the
player tried to move to the west from a cell at the western end of the
cavern;

A Alternative output messages if match code for (a)(ii)
1

(b) (i) Marks are for AO3 (programming)

1 mark: SleepyEnemy class created;
1 mark: Inheritance from Enemy class;
1 mark: MovesTillSleep property declared;
1 mark: Subroutine MakeMove that overrides the one in the base class;
1 mark: MovesTillSleep decremented in the MakeMove subroutine;
1 mark: Selection structure in MakeMove that calls ChangeSleepStatus
if the value of MovesTillSleep is 0; A Changing Awake property instead
of call to ChangeSleepStatus
1 mark: Subroutine ChangeSleepStatus that overrides the one in the
base class;
1 mark: Value of MovesTillSleep set to 4 in the ChangeSleepStatus
subroutine;

I Case of identifiers
A Minor typos in identifiers

VB.Net
Class SleepyEnemy
 Inherits Enemy
 Private MovesTillSleep As Integer

 Public Overrides Sub MakeMove(ByVal PlayerPosition As
CellReference)
 MyBase.MakeMove(PlayerPosition)
 MovesTillSleep = MovesTillSleep - 1
 If MovesTillSleep = 0 Then

ChangeSleepStatus()
 End If
 End Sub

 Public Overrides Sub ChangeSleepStatus()
 MyBase.ChangeSleepStatus()
 MovesTillSleep = 4
 End Sub
End Class

8

(ii) Marks are for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (b)(i), including prompts on
screen capture matching those in code. Code for (b)(i) must be sensible.

19

1 mark: Screen capture(s) showing the player moving east and then
east again at the start of the training game. The monster then wakes up
and moves two cells nearer to the player. The player then moves south;

1 mark: The monster moves two cells nearer to the player and then
disappears from the cavern display;

2

(c) (i) Mark is for AO3 (programming)

Appropriate option added to menu;

VB.Net
Public Sub DisplayMoveOptions()
 Console.WriteLine()
 Console.WriteLine("Enter N to move NORTH")
 Console.WriteLine("Enter S to move SOUTH")
 Console.WriteLine("Enter E to move EAST")
 Console.WriteLine("Enter W to move WEST")
 Console.WriteLine("Enter A to shoot an arrow")
 Console.WriteLine("Enter M to return to the Main Menu")
 Console.WriteLine()
End Sub

1

(ii) Marks are for AO3 (programming)

1 mark: Direction of A is allowed;
1 mark: Direction of A allowed only if player has got an arrow;

Maximum 1 mark: If any other invalid moves would be allowed or any
valid moves not allowed

VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As
Boolean
 Dim ValidMove As Boolean
 ValidMove = True
 If Not (Direction = "N" Or Direction = "S" Or Direction = "W"
Or Direction = "E" Or Direction = "M" Or Direction = "A") Then
 ValidMove = False
 End If
 If Direction = "A" And Not Player.GetHasArrow Then
 ValidMove = False
 End If
 Return ValidMove
End Function

2

(iii) Marks are for AO3 (programming)

1 mark: Property HasArrow created;
1 mark: HasArrow set to True when an object is instantiated;

20

1 mark: Subroutine GetHasArrow created;
1 mark: GetHasArrow returns the value of HasArrow;
1 mark: Subroutine GetArrowDirection created;
1 mark: GetArrowDirection has an appropriate output message and
then gets a value entered by the user;
1 mark: In GetArrowDirection, value keeps being obtained from user
until it is one of N, S, W or E;
1 mark: HasArrow is set to False in GetArrowDirection;

I Additional output messages
I Case of identifiers
A Minor typos in identifiers

VB.Net
Class Character
 Inherits Item
 Private HasArrow As Boolean
 Public Sub MakeMove(ByVal Direction As Char)
 Select Case Direction
 Case "N"

NoOfCellsSouth = NoOfCellsSouth - 1
 Case "S"

NoOfCellsSouth = NoOfCellsSouth + 1
 Case "W"

NoOfCellsEast = NoOfCellsEast - 1
 Case "E"

NoOfCellsEast = NoOfCellsEast + 1
 End Select
 End Sub

 Public Sub New()
 HasArrow = True
 End Sub

 Public Function GetHasArrow() As Boolean
 Return HasArrow
 End Function

 Public Function GetArrowDirection() As Char
 Dim Direction As Char
 Do

Console.Write("What direction (E, W, S, N) would you like
to shoot in?")

Direction = Console.ReadLine
 Loop Until Direction = "E" Or Direction = "W" Or Direction
= "S" Or Direction = "N"
 HasArrow = False
 Return Direction
 End Function
End Class

8

(iv) Marks are for AO3 (programming)

1 mark: Check for A having been entered – added in a sensible place in
the code;
1 mark: If A was entered there is a call to GetArrowDirection;
1 mark: Selection structure that checks if the arrow direction is N;

21

1 mark: Detects if the monster is in any of the cells directly north of the
player's current position;
1 mark: If the monster has been hit by an arrow then the correct output
message is displayed and the value of FlaskFound is set to True;
1 mark: The code for moving the player and updating the cavern display
is inside an else structure (or equivalent) so that this code is not
executed if the player chooses to shoot an arrow;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
If MoveDirection "M" Then
 If MoveDirection = "A" Then
 MoveDirection = Player.GetArrowDirection
 Select MoveDirection

Case "N"
If Monster.GetPosition.NoOfCellsSouth
Console.WriteLine("You have shot the monster and it

cannot stop you finding the flask")
FlaskFound = True

End If
 End Select
 Else
 Cavern.PlaceItem(Player.GetPosition, " ")
 Player.MakeMove(MoveDirection)
 Cavern.PlaceItem(Player.GetPosition, "*")
 Cavern.Display(Monster.GetAwake)
 FlaskFound = Player.CheckIfSameCell(Flask.GetPosition)
 End If
 If FlaskFound Then
 ...

6

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv),
including prompts on screen capture matching those in code. Code for
(c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.

Screen capture(s) showing the user shooting an arrow northwards at the
start of the training game and the message about the monster being
shot is displayed;

A Alternative output messages if match code for (c)(iv)
1

(vi) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv),
including prompts on screen capture matching those in code. Code for
(c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.

22

Screen capture(s) showing an arrow being shot, no message about the
monster being hit is displayed and then the invalid move message is
displayed when the player tries to shoot an arrow for a second time;

1
[35]

23

Contact points

Copyright © AQA and its licensors. All rights reserved.

Contact us

aqa.org.uk/contact-us

Customer Support Team

0161 957 3980

computerscience@aqa.org.uk

Events Team

0161 696 5994

events@aqa.org.uk

aqa.org.uk/professional-development

95

24

