CS608 Lecture Notes

Visual Basic.NET Programming

Object-Oriented Programming — Creating Custom Classes & Objects

(Part I)

(Lecture Notes 2A)

Prof. Abel Angel Rodriguez

CHAPTER 5 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMINGcccooiiiiiiiiiieee e, 3

5.1 Components of an ObjJeCt-OrieNted PrOgIaMcooiiiiiiii ettt e st et te st e s teeae et e e e e besbesbeereeneeseeneentees 3
5.1.1 Understanding ClaSSES & ODJECES.......cuiuirieiiitirieiiitiit ettt sttt ettt bbb bbb b e bbbt bt s e b e bt e bt et bbb b et b st b e enes 3
QLI LT 7SSOSR 3
(0]] 1= 0t £SO PO OO OO TP TS RSO PT TSRS PP PRSP 3
PrOPEITIES OF ALLIIDULESeeetiitieetit ettt bbb bbb bbb bbb h bbbt b e bbb e s e b e e At e b e b et e bt bt e bt b et et ae b 3

T 0o OSSPSR 3
YT o PRSI 4
5.1.2 Creating ODJECt-OFENTEU PrOGIAITISc.iveiiitiiteteiteiteteste sttt ettt st e et bbbt b e s es s b et es e eb e b e s e bt nb e st e bt nb e s b eb e s b e s e et e st et enenbennenes 4
5.2 Object-Oriented Program Implementation — A Three Part MEthod...........cocoiiiiiiiiiiiiici e 5
5. 2.1 PArt I - CrEALING @ CIASSeeviiuiiitiitiieiest ettt ettt b bt b bt b bt h bbb b€ bR £ bt bRt e bt bbbt b et e b bttt 5
L0 T3 @0 010 1T 0] PSRN 5
ACCesSiDility Of the Class COMPONENLScciiiiieieeie ettt et e e st et e s seese e e essesaeaseaseaaeeseeseenseseeseesteaneereenseeeneenres 5
General Rules for ASSIgNING ACCESSIDITITYc.vciiiiiiese sttt e s e st et e eesreste e e e eeseesteseestesreeneereeneenrenreas 5
Creating a Class Module — A Step-by-Step APProach — PArt |cccoviiiiiiiiecce et sresne s 6
Creating Data fOr the CIaSS — PAI Ic.oiiiieiece st st e s teere e s e e et e s teabeeteeseeseese e testeatesseenseseeeeneenrens 8
Declaring EVEnts fOr the Class — PArt Tcoiiiiieiiee sttt te e e s e sae st e s teese e s e e e e teseestesseeneeseeneeneesreas 9
Creating Properties for the Class — PArt IV ()cccceiiiiiiiiicieeie sttt sttt s be et e ne e s e e st e besteetaeneeneeseeneenee e 10
Creating Read-Only & Write-Only Properties for the Class — Part IV (10).....cc.coeiiiiiiiiecece e 13
Creating Class IMEtNOAS — PAM Wcci ittt sttt et st e s te e beeteese e s e se et e nbe e Reebeens e st e st e beseeateeneeneeeeneentees 15
Constructor Method (IMportant TOPIC) — PAIt Vl....c.oiiiiiie ettt sttt st et e e e se e besteeteebeene e e e e et e 23
Raising or Triggering the EVents 0f the Class — PArt V..ot sttt ste e nenr et s 28
Summary of Components for Creating @ Class MOUUIEcviiiiiiiii et r e re e e e sre e e 29
5.2.2 Part Il - Bringing a Class to Life by Creating ODjJECLS..........cviiiiiiicie ettt st sttt b e re e e e nr e e s 30
ODbjJeCt StALEMENT DIECIAIALION.c.eiviietiitiieetistiie ettt s bt s bt e st be s be s e s b e e st b et e st e b e b e st e be et e e e besbe st ebenbe e ane 30
5.2.3 PArt I = USING The OBJECLSeveieeiiiteietiite ettt sttt b et s bt e ke s b et e beebe st e b e ebe e e b e ebe st et e ebeneebeebenbe e ebesbe e abeneereas 34
SETTING or assigning Data to the ODJECt’S PTOPEITIEScueeivieiiieiiiieiie ettt sr e r e r e ne e e 34
GETTING or accessing Data from the Object’s PIOPETLIEScciiiiiiiiiiiiiieiie e ne s 35
Calling the ObJEct’s METNOMASoiviiiiiiiiiiiii e bbbt ne b e b b e e e e r s 36
Object to Object Interaction — Assigning One Object’s Reference to ANother ObJECt.........vvvviueiririrennieireee e 37
5.3.2 Summary of Implementing Object-Oriented PrOGraMSvivieiiirieiseite et ste e e st e st stesbe e e sbe e eresbesee e sbeseereabesbeeasesaesens 39
I Ao o Ty o] g = IO [ot=] o1 TN T 1 = SRS 40
5.3.1 Introduction to Object-Oriented Related STAtEMENTSooi ittt e e b et eesn b e 40
WIth BIOCK STAEEIMENT ..ottt et b et b et h e e skt h e e e bt e bbb e e Rt e e bt e E e e e R e e bt nb e s e e bt nb e s e ebenneseenenre e 40
I I N[04 1o 3G AT] (o OSSOSO P 41
5.3.3 Termination and Cleanup (DeStroying ODJECES)coueuiiiieiiiiiieiite ittt sttt et b et b ekt b e ek b bt ebesr et ebenne e 41
5.3.4 Testing Objects Prior to using them in a Program (Optional STEP)ccoveiiiiiiiiiieeere e 43
5.3.5 Sample Program 1 — Class TESE PIOGIAIM.........couetiirieiiteiieieetestee et st ettt sttt sttt sb ettt sb et ek e b e ekt ab et es e abenb e e ebenbe e abenreseabenre e 48
Creating and Testing a Person Class Using Console APPIICALION ..o 48
5.3.6 CLASSROOM LABORATORY EXERCISE — TESt PrOGIAMucutiiiuriiirieienisieiesesteiesiste e sesiese bbb ss st sesse s besesssssseesna 55
Creating and Testing an INVOICE Class Using Module-Driven Windows ApPlICALIONccoiiiiiineinenese e 55
5.3.5 Sample Program 2 — Working With Forms & Custom Objects (VERSION 1) ..ot 57
Form Driven Application — Small Business Application Using Person CIass ... 57
5.3.6 Sample Program 3 — Working With Forms & Custom Objects (VERSION 2) ..ot 87
Form Driven Application — Small Business Application Using Person CIass ... 87

Chapter 5 Introduction to Object-Oriented Programming

5.1 Components of an Object-Oriented Program

5.1.1 Understanding Classes & Objects

0 Real world objects have attributes or properties that define the objects.

O Also, real world objects are based on some mold or template.

O In Object-Oriented programming, the objects are based on a class or template. In this section we take a look at the
components that make up an Object-Oriented Program

The Class

O The mechanism VB.NET provides to implement Objects is the Class.

A Class is a template or blueprint that defines what Object of the class look like.

A Class is a plan or template that specifies what , & [SVEE will reside in objects

The objects of the class contain data and the Methods (member functions & procedures) that operate on such data
For example:

000D

= We can have a Class called Automobile, and from this class, we can define the Properties, Methods and Events of this class.
= From this Automobile class we can create Objects of this class such as a Car Object, Truck Object, SUV Object etc.

Objects

O Think of Objects as a thing or a noun. Obijects are the items that represent real-world entities, such as a person, place or thing in a
program.
0 Inaprogram an Object is a software representation of a real-world entity.

Objects - vs - Class
= The concept of a Class an Object can be very confusing. A Class is NOT an Object. An Object is not a Class
= DO NOT confuse a Class with the Objects, they are two different things.
» Objects are the manifestation or instance of a Class specification.
= Aclass IS NOT the object, but the template in which Objects will be created from!
» Think of the class as the architectural floor plan of a house, and the gbjects as the houses that are built from that
plan.
= Objects behave exactly as they were specified in the Class. No more, no less

Properties or Attributes

O Properties represent the Data of the Object.

O Inreality, the Property is the way the outside world access the actual data directly.

O This is confusing; in reality, the property is not the data, but a vehicle to access the data. The actual data is private and cannot be
seen by the outside world, but to the outside world, the property is what they see as the data.

O For example a Car Class Object may have a color property, as well as a Make & Model property. But inside the Object, the
actual data may be private variables called carColor, carMake & carModel etc. but to the outside world, when they want to use the
data they see the property Color, Make & Model.

Methods

O Methods are actions that the Objects can take. Where Objects are the Nouns, Method are the verbs or actions of an Object.
O For example a Car Class Object can take the following actions: Start, Stop, Speed Up, Slow Down, turn left, turn right etc.
0 Methods are Functions and Sub Procedures that you write to make the object do things or take some kind of action

Events

O Events are actions taken upon the object by an outside force (User, Program code etc).

O Events or actions upon the object will automatically trigger specialized Methods known as Event-Handlers

0 Do not confuse events with regular Methods. Events are the action taken by an outside source upon the object, while Methods are
action taken by the Object itself.

O Events & methods may work hand in hand, but they are two different things.

= This can be confusing. For example an Object such as a Car Object can have a method called Stop(). You can explicitly call
the Car.Stop() method to so the car will stop itself.

= Now suppose your Car Object also has a method called Drive(), and you can explicitly call the Car.Drive() method so the car
will drive.

= On the other hand, The Car Object can also have an Event programmed into it called OnCrash and lets supposed that we
program this event to trigger or raise during the Drive() method only if there is an accident.

= Now, in the event that the car is hit by another car or crashes during the execution of the Drive() method, the OnCrash event
will automatically trigger and an Event-handler Object_OnCrash() will appear in the Form the object was created in.

= When the OnCrash() event executes you can code in what ever you like inside this Event-Handler Object_OnCrash(). For
example you may want to put in a statement to call the Car.Stop() method to stop the car. Makes sense right? Here an Event
occurs, triggers the Event-handler, in the Event-Handler we call a Method.

»= Confused yet? ©

5.1.2 Creating Object-Oriented Programs

O Object-Oriented Programs (OOP) are written based on the Class Objects and not on the functionality of the program
Q The three steps required to creating an Object-Oriented Programs are shown below:

Create the class specification or Class Module
= Private Data, Properties & Methods

Create Object of the Class

Use the Object of the Class
= Write the program to manipulate, access or modify the objects
data & Call the Methods & and Trigger Events

5.2 Object-Oriented Program Implementation — A Three Part Method

5.2.1 Part | - Creating a Class

Class Components

Q
Q

1

2)

3)
4)

The components, which make up a class are: 1) Data, 2) Property’s, 3) Methods & 4)Events
You are probably confused with the word Property & Data, it seems that the Properties & Data are the same thing? They are
NOT, lets look at the components definition:

Data: The variables & Data Structures (Arrays etc) or other Objects that hold the information or data we want to manipulate
and store. Usually a private variable

Property: Specialized procedures or routines whose sole purpose it to give you access to the private data inside the class, in
other words it is through these Property that you can modify and extract the private data of a Class Module. Through the
outside world, the data is represented via the Properties.

Methods: The functions/procedures that make the object of the class do things or take an action.

Events: Declaration of the action that when taken upon the object will trigger an Event-Handler Procedure

Therefore in a Class, the variables store the Data while the Methods & Property are both procedures whose difference is that
Methods are called to make the Object do things or take an action upon the data, while Properties allow you set & get the
values of the private data directly.

Accessibility of the Class Components

Q
Q

Accessibility refers to what type of access does the Data, Property or Method allows to the outside world.
VB.NET Classes offer the following access characteristics:

Public - public or can be access by anyone outside of the class or to other objects
Private - Private or accessible only to members of the class. No one from the outside world can see it or access it.

Protected - Allows subclasses or inherited children to have direct access but only the children or derived classes. In
other words, public for children, private for everyone else.

Friend - Accessible to classes in the same Assembly. An Assembly is a collection of project deployed together as an
application.

General Rules for Assigning Accessibility

Q
Q

In order to implement the Data Encapsulation feature of an object there are rules that must be followed when creating classes.
The rules are as follows:

Private Data Variables: Variables declared using the Private keyword.

Public Properties: Property procedures are declared using the Public keyword, so the outside world has access to the data.
Public Methods: Methods procedures are declared using the Public keyword, so the outside world can execute them
Public Events: Events are declared using the keyword Public.

Protected Data Variables & Methods: Declare variables/methods as protected only when you want the inherited children to
have direct access.

¢+ Note that Property & Methods can be Private as well, but this means they cannot be accessed outside the class and can only be

used internally in the class. There are circumstances where you want them to be private, more on this on later lectures.

Creating a Class Module — A Step-by-Step Approach — Part |

O Inorder to create Object for your programs, you need to first create the object template or Class or Template.
O AClass is atemplate or blueprint that define what object of the class look like
O AClassis aplan or template that specifies what , and that will reside in gbjects

O The syntax for creating a class is as follows:

‘Class Header
Public Class ClassName

Data Definitions

Properties Definitions

Methods

End Class

Example:

O Creating a Classes:
Example 1 - Creating a Video Class:
Public Class Video
‘Properties, Methods & Event-Procedures here
End Class

Example 2 - Creating a class for a Form Object:

Public Class Forml
‘Properties, Methods & Event-Procedures here

End Class

% Note that inside the body of a Class is where you find all properties, methods & event-procedures
for that object.

O The actual steps required to create a class using the VB.NET IDE environment are as follows:

‘ Step 1: If not yet created, create a New Project and if necessary the Forms, Controls, Program Code etc.

\ Step 2: In the Menu bar use Project | Add Class, and select the Class icon, give the class a Name and click Open:

Add Mew Item - BasicClassNotes

Templates:

[E]windaws Farm
EMDI Parent Farm
[==|5plash Screen

g&é Intetface

|FoIDataset

QerystaI Report

i Inherited User Contral
\SaResources File

!% Class Diagram

(2! waLT File

|4 Bitmap File

=] Application Configuration Fil
o] Windows Service

¥isual Studio installed templates

[Zpialag

[=5] About Box

1e] Class
Component Class

L_j 50L Database

3] User Cantrol

[Custom Control

=] Settings File

|<_gj *ML File

=] Texk File

@Cursor File

%] Transactional Component

|72 Explarer Form
=2 Login Form
<t Madule

2w COM Class

|j Report
[F5|Inherited Form
EﬂWeb Custom Control
Y& Code File

| 2] #ML schema
Iﬂ HTML Page
|3 Tean File

o] Installer Class

I &n empty class definition

Mame: I clsPerson|vb

Step 3: The Class code window will appear ready for you to begin to enter the program code:

= Also, a listing of the Class file will appear in the Solution Explorer Window
= Property Windows will display the Class Properties.

+ | [# obiChid

Solution Explorer - Soluti

DEEA

| Q)

E:

‘(1 project) - I X

2% BasicClassMotes - Microsoft Visual Studio
File Edit ‘iew Project Buld Debug Data Tools Window Community Help
A-E-EHd & & b Debug * Any CPU
h = 3] 1B @5 A
i/ ~clsPerson.vb | Forml.vh [Design] | Start Page | - X
|<>[g clsPerson j I@(Declarations) A
[Public Class clsPerson T2

lxoq|00_|_ %l Jauo|dag saadag

ol

End Class

D Solution 'BasicClasshokes' {1 project)

- E BasicClassMotes
[=d| My Project
i | clsPerson. vb
[=E] Formi vb

Show output From:

@

Properties

clsPerson.¥b File Fropetties

=3l =

Build Action

Copy ko Output Directary
Custom Tool

Custom Tool Namespace
File Mame

Full Path

Compile
Do nok copy

clsPerson.vb
CriDocuments and Settingsrodrig_

Build Action

How the File relates to the build and deployment processes.

Ready

Creating Data for the Class — Part Il

O The top or declaration section of the Class Module is where the data variables are declared.

These variables are usually declared private and therefore can only be seen by the code within the class.
Note that this class data can be any of the following:

Variables

Data structures such as arrays etc..

= Other Objects such as Class Objects & Collections etc.

00D

O Continuing our step by step approach, the syntax is as follows:

Step 4: In the Class Module Code Window enter the Private Data Variables:
O This is simply creating variables as you have done before:

Private VariableName As DataType

Example 1:
O Declaring private data members of the class:

Public Class clsInvoice
Private m Name As String
Private m Total As Decimal
Private m_SubTotal As Decimal
Const Private m TAX As Decimal = 0.825
Private m objInvoiceItems As New clsInvoiceltems ‘Class Object

End Class

0 In Example 1, we created the following private data for the clsinvoice Class:

= Regular variable such as string, and decimals.

= An object variable of the clsIinvoiceltems class. This means objects of the INVOICE CLASS ALSO HAVE A CHILD
OBJECT NAME OBJINVOICEITEMS

Example 2:

a Declaring private data members of the class:

Public Class clsCustomer
Private m FirstName As String
Private m LastName As String
Private m CustomerID As Integer

Private m BirthDate As Date

Private m objCreditCard As clsCreditCard ‘CreditCard Class POINTER
Private m objInvoice As New clsInvoice ‘Invoice Class OBJECT

End Class

0 In Example 2, we created private data for the clsCustomer Class as follows:

= Regular variable such as string, integer & date.

= This class also contains declarations for two CHILD OBJECTS, one the objCreditCard Object is actually a POINTER TO A
clsCreditCard OBJECT not an object, yet. Eventually is expected that this pointer will point to a clsCreditCard object

» The second CHILD OBJECT is a full object of the clsInvoice class.

Naming Convention for Private Data
O There are several naming conventions used today to name the data.
O Asshown in the examples above, one popular convention uses m_ as a prefix to the private data name to indicate a module
level variable (variable only seen within the Class module)
O I will use this as well in most of my examples. In addition, for private data that are objects, | will also use a combination of the

m_ and the obj prefix as well, to indicate the variable is an object. This is not standard, but I like to be able to identify private
data that are object types right away.

Declaring Events for the Class — Part llI
O The top or declaration section of the Class Module is where the declaration of the Events associated with this class is
declared.
O This will be covered in future lectures.
O Continuing our step by step approach, the syntax is as follows:

Step 5: In the Class Module make the declarations for the Events:

Q Covered in future lecture:

Creating Properties for the Class — Part IV (a)
O The Properties Procedures are the vehicles for the outside world to access the private data in the class.

O Fromthe outside of the object, what the program sees is just the name of the property.

O The Property Procedure allows you to GET & SET the attributes or private data of the class.
« Normally you will need a property for each private data member!

O Continuing our step by step approach, the syntax is as follows:

Step 6: Create the Class Property Procedures

O Syntax for Public Property Procedures:

Public Property PropertyName () As DataTypeOfPrivateData
Get
Return PrivateData
End Get

Set (ByVal VariableName As DataType)
PrivateData = VariableName
End Set
End Property

0 Note that using the Visual Studio ID, once you begin and type the header of the property and hit return, the remaining syntax
will appear automatically, you simple need to modify it. Let’s see how this works with an example:

1. Assuming we have the following Class with a m_Name private data;
Public Class clsPerson
Private m Name As String

End Class

2. Now we will create a public property for this private data.
3. First type the header of the property you want to create:

Public Class clsPerson
Private m Name As String

Public Property Name () As String

End Class

4. Hitthe RETURN key and the following syntax appears automatically:
Public Class clsPerson
Private m Name As String
Public Property Name () As String

Get

End Get
Set (ByVal value As String)

End Set

End Property
End Class

10

5. Now modify the property by adding the Get code to return the private data, and the SET code to modify the private data:

Public Class clsPerson
Private m Name As String

Public Property Name() As String
Get
Return m Name
End Get
Set (ByVal value As String)
m Name = value
End Set
End Property

End Class

a Since normally you have one property for every private data, it can be cumbersome to have to create all these properties. Using
this short-cut we can save some time during the creation of the properties.

Example 1: Property for regular private data member
Q Declaring Property Procedures for a Name Property which allows access to a private string variable
m_Name. Note that the outside world sees only the Name of the property:

Public Class clsPerson
Private m Name As String

Public Property Name () As String
Get
Return m_Name
End Get

Set (ByVal Value As String)
m_Name = Value
End Set
End Property
End Class

a Now from the outside world you can make the following statements assuming you created an object
named objEmployee of the Class clsPerson:

'‘Example of Setting the object’s property:
objEmployee.Name = “Joe Smith”

'‘Example of Getting the object’s property:
Dim strEmployeeName As String

strEmployeeName = objEmployee.Name
‘Example of displaying the object’s property using two different ways:
MessageBox.Show (“The Employee Name is “ & strEmployeeName)

MessageBox.Show (“The Employee Name is “ & objEmployee.Name)

11

Example 2: Properties for Private Object Data
a Declaring Property Procedures for a CreditCard Property which allows access to a private Object
variable objCreditCard. We assume that this object variable is of the class clsCreditCard Class:

Public Class clsCustomer
Private m FirstName As String
Private m LastName As String
Private m CustomerID As Integer
Private m BirthDate As Date
Private m objCreditCard As New clsCreditCard ‘'Class Object

Public Property CreditCard () As clsCreditCard
Get
Return m_objCreditCard
End Get

Set (ByVal Value As clsCreditCard)
m_objCreditCard = Value
End Set
End Property
End Class

a Now from the outside world you can make the following statements assuming you created two objects

named objNewCreditCard and objCurrentCreditCard of the Class clsCreditCard and an Object
objCustomer of the clsCustomer Class:

'‘Example of setting an object’s property that is an object as well:
objCustomer.CreditCard = objNewCreditCard

'‘Example of Getting the object’s property:

objCurrentCreditCard = objCustomer.CreditCard

12

Creating Read-Only & Write-Only Properties for the Class — Part IV (b)

Read-Only Properties
Q There are times when we may want a property to be Read-Only or it cannot be changed.
O In this case we simply remove the Set portion of a Property Procedures.
O Continuing our step by step approach, the syntax is as follows:

Step 7: Create the Class Property Procedures

O Syntax for Public Read-Only Property Procedures:

Public Property PropertyName () As DataTypeOfPrivateData
Get
Return PrivateData
End Get

End Property

Example 1: Read-Only Property
a Declaring Property Procedures for a Age Property which allows retrieval only of a private integer variable strAge:

Public Class clsPerson
Private m_Age As Integer

Public Property Age () As Integer
Get
Return m_Age
End Get
End Property
End Class

O Now from the outside world you can make the following statements assuming you created an object named objEmployee of
the Class clsPerson and somewhere in the class the m_Age variable was populated with data:

‘Example of getting the object’s property:
Dim employeeAge As Integer

employeeAge = objEmployee.Age
MessageBox.Show (“"The Employee Name is “ & employeeAge)

‘Another alternative:
MessageBox.Show (“The Employee Name is “ & objEmployee.Age)

'‘Example of setting the object’s Read-Only property:
objEmployee.Age = 22 ‘#ERROR..THIS WILL GENERATE COMPILER ERROR - READ-ONLY!!

13

Write-Only Properties
Q There are times when we may want a property to be Write-Only or the value can be written, but not read.
O Inthis case we simply remove the Get portion of a Property Procedures.
O Continuing our step by step approach, the syntax is as follows:

Step 8: Create the Class Property Procedures
O Syntax for Public Write-Only Property Procedures:

Public Property PropertyName () As DataTypeOfPrivateData

Set (ByVal Value As DataType)
PrivateData = Value
End Set
End Property

Example 1: Write-Only Property
a Declaring Property Procedures for a PinNumber Property which allows setting of a private integer variable strPinNum:

Public Class clsPerson
Private m PinNumber As String

Public Property PinNumber () As String

Set (ByVal Value As String)
m_PinNumber =Value
End Set
End Property
End Class

a Now from the outside world you can make the following statements assuming you created an object named objEmployee of
the Class clsPerson:

'‘Example of Getting the object’s property:
Dim myPin As String

objEmployee.PinNumber = “1122r”

‘Example of getting the object’s Read-Only property & generating error:
myPin = objEmployee.PinNumber '#ERROR..GENERATE COMPILER ERROR - WRITE-ONLY!!

14

Creating Class Methods - Part V

O The Class Methods make the object do or perform some action or task. Methods are usually public and as with any forms,
module etc, methods are composed of the following:

= Public Sub Procedures()
= Public Functions Procedures()
= Public Event-Handlers()

0 Continuing our step by step approach, the syntax is as follows:

‘ Step 9: Create Class Methods

O Use the syntax shown in previous notes for Public Sub Procedures and Function declarations.

Public Sub Procedure Methods with No Parameters:
O Syntax for Sub Procedure with no arguments:

‘Syntax for Sub Procedure with no arguments:
Public Sub ProcedureName ()

‘Body Code goes here!

End Sub

Example 1:
O Declaring procedure to print the content of the person class:

Public Class clsPerson
Private m Name As String
Private m_ IDNumber As Integer

Public Sub PrintPerson ()
‘code to print the person object goes here!

End Sub

End Class

Q Assuming you created an object named objEmployee of the Class clsPerson, you can execute its PrintPerson() method so
the object can perform the action:

‘Example of calling the method:
objEmployee.PrintPerson ()

15

Example 2:
a Declaring a Sub Procedure to calculate the total charge for a customer. In this example it is assumed that the variables
being processed are private data variables of the class:

Public Class clsInvoice
Private m Name As String
Private m Total As Decimal
Private m SubTotal As Decimal
Const Private m TAX As Decimal = 0.825
Private m objInvoiceltems As New clsInvoiceItems ‘Class Object

Public Sub CalculateTotal ()
m_Total = m_SubTotal + (m_SubTotal * m_TAX)
End Sub

End Class

a Assuming you created an object named objlnvoice of the Class clsInvoice, you can execute its CalculateTotal() method so

the object can perform the action:

‘Example of calling the method:
objInvoice.CalculateTotal ()

‘Example of «calling the method, and getting the results of the calculation
assuming the clsInvoice Class has a Property named Total that can return the
value, we can make the following statement:

Dim decTotalCharges As Decimal

objInvoice.CalculateTotal ()

decTotalCharges = objInvoice.Total

MessageBox.Show (“The total charges are “ & decTotalCharges)

16

Public Sub Procedure Methods with Parameters:
O Syntax for Sub Procedure with arguments:

‘Syntax for Sub Procedure with argument list:
Public Sub ProcedureName (ByRef|ByVal variable As Type, ByRef|ByVal variable As Type.....)

‘Body Code goes here!
End Sub

Example 1:
0 Declaring a Sub Procedure to calculate the total charge for a customer. In this example the values for decTotal and decTax

are NOT part of the Class but are passed as argument to the method. The only internal private class data is the decSubTotal
variable. Note the pass-by-reference & pass-by-value:

Public Class clsInvoice
Private m Name As String
Private m_SubTotal As Decimal
Private m objInvoiceltems As New clsInvoiceItems ‘Class Object

Public Sub CalculateTotal (ByRef total As Decimal, ByVal m_Tax As Decimal)
m_Total = m_SubTotal + (m_SubTotal * m_Tax)
End Sub

End Class

O Assuming you created an object named objlnvoice of the Class clsinvoice, you can execute its CalculateTotal() method so
the object can perform the action:

‘Example of calling the method:
Dim totalCharges, salesTax As Decimal

salesTax = 0.825
objInvoice.CalculateTotal (totalCharges, salesTax)

'The decTotalCharges argument stores the total charge due to passed-by-reference
MessageBox.Show (“The Customer Total Charge is “ & totalCharges)

17

Example 2:

a Declaring Sub Procedure that sets or overwrites the private data m_FirstName. These types of methods are called Setter
methods since they set the private data. Using setter methods are an alternative to using Property procedures. In this
course we will be using Property Procedures:

Public Class clsCustomer
Private m FirstName As String
Private m LastName As String
Private m CustomerID As Integer
Private m BirthDate As Date
Private m objCreditCard As clsCreditCard ‘'Class Object

Public Sub SetFirstName (ByVal fName As String)
m_FirstName = fName
End Sub

End Class

a Assuming you created an object named objBankCustomer of the Class clsCustomer, you can execute its SetFirstName()
method so the object can perform the action:

‘Example of calling the method:
objCustomer.SetFirstName (“Joe”)

‘Example of calling the method:
Dim fName As String

fName = “Joe”

objCustomer.SetFirstName (fName)

18

Public Function Methods with No Parameters:
O Syntax for Function with no arguments:

‘Syntax for Function with no arguments:
Public Function FunctionName () As ReturnType
‘Body Code goes here!

Return ReturnValue

End Function

Example 1:

O Declaring Function that gets or returns the private data strFirstName. These types of methods are called Getter methods
since they get the private data. Using Getter methods are an alternative to using Property procedures. In this course we
will be using Property Procedures:

Public Class clsCustomer
Private m FirstName As String
Private m LastName As String
Private m_IDNumber As Integer
Private m BirthDate As Date
Private m objCreditCard As New clsCreditCard 'Class Object

Public Function GetFirstName () As String
Return m_FirstName
End Function

End Class

O Assuming you created an object named objBankCustomer of the Class clsCustomer, you can execute its GetFirstName()
method so the object can perform the action and return the strFirstName private data:

‘Example of calling the method:
Dim fName As String
fName = objCustomer.GetFirstName ()
MessageBox.Show (“"The Customer First Name is “ & fName)

'‘Example of calling the method:
MessageBox.Show (“The Customer First Name is “ & objCustomer.GetFirstName ())

19

Example 2:
a Declaring Function to calculate the total charge for a customer and returns the total charge to the calling program. The
variables being processed are private data:

Public Class clsInvoice
Private m Name As String
Private m Total As Decimal
Private m SubTotal As Decimal
Const Private m TAX As Decimal = 0.825

Public Function CalculateTotal () As Decimal
m_Total = m_SubTotal + (m_SubTotal * m_TAX)
Return decTotal

End Function

End Class

a Assuming you created an object named objlnvoice of the Class clsinvoice, you can execute its CalculateTotal() function
so the object can perform the action and return a value:

‘Example of calling the method:
Dim totalCharges As Decimal
totalCharges = objInvoice.CalculateTotal ()

MessageBox.Show (“The total charges are “ & totalCharges)

‘Example of calling the method:

MessageBox.Show (“The total charges are “ & objInvoice.CalculateTotal())

20

Public Function Methods with Parameters:
O Syntax for Function with arguments:

‘Syntax for Function with argument list:
Public Function FunctionName (ByRef|ByVal variable As Type, ByRef|ByVal variable As Type...) As ReturnType

‘Body Code goes here!
Return ReturnValue

End Function

Example 1:

o Declaring a Sub Procedure to calculate the total charge for a customer. In this example the values for subTotal and Tax are NOT
part of the Class but are passed as argument to the method. The only internal private class data is the m_SubTotal variable.
Note the pass-by-value the default:

Public Class clslnvoice
Private m Name As String
Private m Total As Decimal

Public Function CalculateTotal (ByVal subTotal As Decimal, ByVal Tax As Deciaml) As Decimal
m_Total = subTotal + (subTotal * Tax)
Return m_Total

End Function

End Class

O Assuming you created an object named objlnvoice of the Class clsInvoice, you can execute its CalculateTotal() function so the
object can perform the action and return a value:

‘Example of calling the Function with Arguments:
Dim totalCharges, subCharges, salesTax As Decimal

salesTax = 0.825
subCharges = 99.95

totalCharges = objInvoice.CalculateTotal (subCharges, salesTax)

MessageBox.Show (“The total charges are “ & totalCharges)

‘Example of calling the Function with Arguments:

MessageBox.Show (“The total charges are ™ &
objInvoice.CalculateTotal (totalCharges, salesTax))

21

Example 2:
O Declaring a Function in the employee’s class which authenticates an employee username & password. Employee Object contain
a Function that performs the authentication by comparing its internal username/password to values passed as arguments:

Public Class clsEmployee
Private m FirstName As String
Private m LastName As String
Private m_IDNumber As Integer
Private m BirthDate As Date
Private m UserName As String
Private m PassWord As String

Public Function Authenticate (ByVal User As String, ByVal Pass As String) As Boolean

If m_UserName = User And m_PassWord = Pass Then
Return True

Else
Return False

End If

End Function

End Class

O Assuming you created an object named objEmployee of the Class clsEmployee, you can execute its Authenticate() function so the
object can perform the action and return the results of the authentication:

'‘Example of calling the Function with Arguments:
Dim UserName, PassWord As String
Dim Access As Boolean

Dim objLoginForm As frmLogin
objLoginForm = New frmLogin ()

'‘Assuming we extract values from text boxes of a login form that is displayed
objLoginForm.ShowDialog ()

strUserName = objLoginForm.txtUserName.Txt

strPassWord = objLoginForm.txtPassWord.Txt

Access = objEmployee.Authenticate(strUserName, strPassWord)
If Access Then

MessageBox.Show (“Access Granted”)
Else

MessageBox.Show (“Access Denied”)
End If

22

Constructor Method (Important Topic) — Part VI

O The constructor method is a special method that is always invoked as an Object is created.

O What this means is that every time an object is created, this method is automatically executed, thus the name Constructor.

a This method will contain Initialization code or code that you want executed when the object is created. For example you may
want to initialize data with entry strings, 0 values, etc.

O The Constructor Method has the following characteristics:

= Itis named Public Sub New()

= Automatically executes before any other methods are invoked in the class
= Only runs once for an object

= Doe not return a value

= Can contain parameters

*= You can add any code that you wish to execute upon creation of the object

O Continuing our step by step approach, the syntax is as follows:

‘ Step 10: Creating the Class Constructor:

Constructor Method with No Parameters(DEFAULT CONSTRUCTOR):
O Syntax for Constructor Procedure with no arguments:

‘Syntax for Constructor Method with no Parameters:
Public Sub New ()

‘Initialization Code goes here!

End Sub

Example 1:
a Declaring a Constructor to initialize the private data members of the person class:
Public Class clsPerson

Private m Name As String

Private m_ IDNumber As Integer

Private m BirthDate As Date

Public Sub New ()
m_Name =’
m_IDNumber =0
m_BirthDate = #1/1/1900#
End Sub

End Class

a In this example we created an object named objEmployee of the Class clsPerson, we assume this object contain properties for
each of the private data above. The constructor will automatically execute upon creation of the object:

‘Assuming Object is created as follows:
Dim objEmployee As clsPerson = New clsPerson/()

‘Viewing the content of an object after creation using properties:
MessageBox.Show (objEmployee.Name) ‘result is a blank

MessageBox.Show (objEmployee.IDNumber) '’ results 0

MessageBox.Show (objEmployee.BirthDate) ’'results 1/1/1900

Constructor Methods with Parameters:
O A constructor method can contain a list of parameters that can be passed to the object.
O This is done by simply adding a parameter list to the header.
O This parameter list can be used for what ever functionality the programmer wants to implement, for example the values can be
used to initialize the private data members:
= Normally we want one parameter for each of the private data if we would like to be able to initialize all private data members.
= But again this is optional; we can create a parameter list just for those data variables we wish to initialize.
O Syntax for Constructor Procedure with arguments:

Syntax for Constructor Method with Parameters:
Public Sub New (ByVal variable As Type, ByVal variable As Type.....)

‘Body Code goes here!

End Sub

Example 2:

O Declaring a Constructor to initialize the private data members of the person class via arguments:
Public Class clsPerson

Private m Name As String

Private m_ IDNumber As Integer

Private m BirthDate As Date

‘Constructor assigns parameters to each private data member

Public Sub New (ByVal Name As String, ByVal ID As Integer, ByVal BDate As Date)
m_Name = Name
m_IDNumber = ID
m_BirthDate = BDate

End Sub

End Class

a In this example we created an object named objEmployee of the Class clsPerson, we assume this object contain properties for
each of the private data above. The constructor will automatically execute upon creation of the object and parameters are passed
as argument during the creation:

'‘Assuming Object is created as follows:
Dim objEmployee As clsPerson = New clsPerson(“Joe Smith”, 111, #12/12/1965%#)

‘Viewing the content of an object after creation using properties:
MessageBox.Show (objEmployee.Name) ‘result is Joe Smith

MessageBox.Show (objEmployee.IDNumber) ’results 111

MessageBox.Show (objEmployee.BirthDate) 'results 12/12/1965

24

Do we Assign Parameters Values to Private Data or Class Properties?
O Inthe previous example, we assigned the parameter variables directly to the private data as follows:

‘Constructor assigns parameters to each private data member

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)
strName = strNn
intIDNumber = intID
dBirthDate = dBDate

End Sub

a This works just fine, but there is a better alternative that gives us more flexibility. That assigning the Constructor Parameters
to the Class Public Properties instead of the private data as follows:

‘Constructor assigns parameters to Public Properties (We assume that Name, IDNumber & Birthdate are Property Procedures
Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)

Name = strNn

IDNumber = intID

BirthDate = dBDate
End Sub

O Doing this gives us the flexibility to add code inside the Property Procedure that would allow us to validate or check the
values before assigning it to the private data. This process is known as Validation. More on this in future lecture

Example 3:
a Declaring a Constructor to initialize the private data members of the person class via arguments:
Public Class clsPerson

Private m Name As String

Private m_ IDNumber As Integer

Private m BirthDate As Date

‘Property Declarations
Public Property Name () As String
Get
Return m_Name
End Get

Set (ByVal Value As String)

‘Enter code here to validate or check value before it is assigned to private data
‘Validation code here
‘Now assign value to private data
m_Name = Value
End Set
End Property

‘Other Property Declarations here for IDNumber & BirthDate....

‘Constructor assigns parameters to each private data member

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)
Me.Name = strNn
Me.IDNumber = intID
Me.BirthDate = dBDate

End Sub

O Note that in example 3, in the Constructor, | use the ME keyword to identify the properties. This is optional, it would work
without the use of this keyword, but it makes reading and understanding the property call easier.

25

The Default Constructor:
O Youdon’t have to create a constructor for your class, but if you don’t, VB.NET will automatically create on for you in the
background. This Constructor is called the Default Constructor.
O The Default Constructor is a no-parameter constructor that is automatically created for you if you don’t create your own!
Q This constructor does not do anything. It’s syntax is:

‘Syntax for Sub Procedure with no arguments:

Public Sub New ()
End Sub

0 So keep in mind that if you create a class without a constructor, VB in the background will create this Default Constructor for
its use. This will be totally transparent to you.

Using a Parameterized Constructor and the Default Constructor:

o IMPORTANT! If you create a Parameterized Constructor Method inside your class, then when you create Objects of the
class, you must send data to each Object upon creation. You CANNOT create the object WITHOUT giving it data to
match each of the parameters!

O So what happens if you want to create an Object with data as argument and regular objects? In this case you would need to
add two Constructor Methods in the class, a Default Constructor or a standard No-Parameter Constructor and the
Parameterized Constructor.

O The syntax the same as before, just add both constructors to the class, the default, No-Parameter and the Parameterized:

‘Syntax for Constructor Method with no Parameters:
Public Sub New ()

‘Initialization Code goes here! If NO Code is added it is then a Default Constructor

End Sub

‘Syntax for Sub Procedure with argument list:
Public Sub New (ByVal variable As Type, ByVal variable As Type.....)

‘Body Code goes here!

End Sub

0 GOING FORWARD, ALL CLASSES IN MY HWS, PROJECTS AND EXAMS SHOULD INCLUDE BOTH THE
DEFAULT AND PARAMETERIZED CONSTRUCTORS!

26

Example 4:
a Declaring a Constructor to initialize the private data members of the person class via arguments:

Public Class clsPerson
Private m Name As String
Private m_ IDNumber As Integer
Private m BirthDate As Date

Public Sub New ()
m_Name = “”
m_IDNumber = 0
m_BirthDate = #1/1/1900#
End Sub

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)
Me.Name = strNn
Me.IDNumber = intID
Me.BirthDate = dBDate

End Sub

End Class

a In this example we created an object named objEmployee of the Class clsPerson, we assume this object contain properties for

each of the private data above. The constructor will automatically execute upon creation of the object and parameters are passed
as argument during the creation:

‘Creating Objects with no Parameters and with Parameters:
Dim objEmployeel As clsPerson = New clsPerson/()
Dim objEmployee2 As clsPerson = New clsPerson(“Joe Smith”, 111, #12/12/1965#)

‘Viewing the content of the No-Paremeter object after creation using properties:
MessageBox.Show (objEmployeel.Name) ‘result is a blank

MessageBox.Show (objEmployeel.IDNumber) ’'results 0

MessageBox.Show (objEmployeel.BirthDate) ’'results 1/1/1900

‘Viewing the content of the Parameterized object after creation using properties:
MessageBox.Show (objEmployee2.Name) ‘results in a Joe Smith

MessageBox.Show (objEmployee2.IDNumber) ’'results 111

MessageBox.Show (objEmployee2.BirthDate) ’'results 12/12/1965

27

Raising or Triggering the Events of the Class — Part VI

O At this point we can raise or trigger the events declared prior anywhere we want in the class:
O We will cover this in future lecture

‘ Step 8: Raise or Trigger Events where desired

Q Covered in future lecture.

28

Summary of Components for Creating a Class Module

Q

1)
2)
3)
4)
5)
6)
7)

To summarize, the steps required to build a class are:

Create the Class.

Declare the Private Variables, which hold the Data.

Declare the Events

Create a Property procedures for each variable declared.

Create the Methods or Procedures/Functions needed.

Create the Constructor Methods: Default and Parameterized

Raise any required Events anywhere in the class module where desired (More on this later)

ATTENTION!

% DISPLAYING FORMS OR MANIPULATING FORMS OR CALLING FORM
CONTROLS FROM WITHIN A CLASS MODULE IS NOT GOOD OOP
PRACTICE!

% THIS INCLUDES MESSAGEBOXES AS WELL. WE MEAN ANY USER-

% SOME OF THE EXAMPLES IN THE NOTES AND CLASS MAY DISPLAY
FORMS OR MESSAGE BOXES FROM WITHIN THE CLASS METHODS
(PROCEDURE & FUNCTIONS). THIS WILL BE DONE ONLY FOR
TEACHING OR TESTING PURPOSE!

s UNDER NO CIRCUNSTANCE SHOULD YOU DISPLAY ANY FORMS OR
MESSAGEBOXES FROM WITHIN A CLASS IN EITHER YOU
HOMEWORK OR PROJECTS!

% UNLESS OTHERWISE INSTRUCTED!

29

5.2.2 Part Il - Bringing a Class to Life by Creating Objects

O So far we have create the Class or the template which will server as the mold for creating objects of the class.
O Keep in mind that creating a Class Module is actually creating a template. But there is more to it than that.

O When you create a Class Module, you are actually introducing a new data type into the program, so in addition to the built-in

data types such as string, integer, date etc. You will now have a new type based on the Class you create.
O In order to use a class we need to create an Object or an instance of the class.

Object Statement Declaration
Q There are methods to create objects:

Method I (Simplest & Compact Method) — One statement POINTER & OBJECT Method:

= The first method is done in one step, where you declare the POINTER and create the OBJECT in one step using the keyword

New:

Accessibility ObjectName As New ClassName()

Where Accessibility:
-Dim

-Public

-Private

-Protected

-Friend

Examples Using Method I:

O Assuming we have previously defined a Class named clsCustomer. Creating a Customer object of the class clsCustomer is as
follows:

Public objCustomer As New clsCustomer()

a Assuming we have previously defined a Class hamed clsInvoice. Creating Invoice objects is as follows:
Dim objlnvoice As New clsinvoice()

a Assuming we have previously defined a Class named clsEmployee and that this class contains a Constructor Method that
initializes the class with data passed as arguments. Creating an Employee object with data is as follows:

Private objEmployee As New clsEmployee(“Joe”, 111, #12/12/1965#, <225 Flatbush Ave”)

30

Method Il — One Statement (Two Parts) POINTER & OBJECT Creation:
= The second method is done in one statement (one line of code) but involves two steps. You declare the reference variable and
assign it to the class object using the keyword New:

Accessibility ObjectName As ClassName = New ClassName()

Where Accessiblity:
-Public
-Private
-Protected
-Friend

Examples Using Method 11:

a Assuming we have previously defined a Class named clsCustomer:

Public objCustomer As clsCustomer = New clsCustomer()

a Assuming we have previously defined a Class named clsInvoice:
Private objlnvoicer As clsinvoice = New clsInvoice()

Q Assuming we have previously defined a Class named clsEmployee and that this class contains a Constructor Method that
initializes the class with data passed as arguments. Creating an Employee object with data is as follows:

Dim objEmployee As clsEmployee = New clsEmployee(“Joe”, 111, #12/12/1965#, “225 Flatbush Ave”)

31

Method 111 (Most Flexible) — Two Statement Method: POINTER created first. OBJECT created inside a method
(Flexible/Preferred for Long-Lived Obiject):
= The third method requires a two statement process. This method is more flexible:
1. Declare the object variable in the declaration part of a module, formetc., in the program
2. Inside a Method (Procedure/Function) create the object by assigning the variable in step 1 to the class using the
keyword New

‘Declare POINTER to Objects of the Class type:
Accessibility ObjectName As ClassName

‘Inside a Method Procedure CREATE THE ACTUAL OBJECT as follows(NOTE THAT THIS MUST BE DONE INSIDE A
METHOD:

ObjectName = New ClassName()

Where Accessibility:
-Dim
-Public
-Private
-Protected
-Friend

Examples Using Method I11:

O Example 1, assuming we have previously defined a Class named clsCustomer and this class contains a default Constructor and
a parameterized Constructor that takes arguments to initialize the private data. The code to create objects of the clsCustomer
Class inside the Method Sub Main() is as follows:

‘In this example both the POINTER portion and OBJECT creation code are declared INSIDE A METHOD
Sub Main()

Dim objCustomerl As clsCustomer
clsCustomerl = New clsCustomer ()

Dim objCustomer2 As clsCustomer
clsCustomer2 = New clsCustomer (“Mary Jones”, 444, #01/23/1972#)

End Sub

O Example 2, assuming we have previously defined a Class named clsCustomer. Now we want to create a Customer object inside
a Form, we would like the object to actually be created when the Form is loaded. The code is as follows inside the Form:

In this example POINTER code is declared OUTSIDE of the method, and OBJECT creation code is done INSIDE A METHOD

‘Declaration section of the Form
Option Explicit
Dim objCustomer As clsCustomer

‘Object is actually created inside a Method or Event-handler etc.
Sub Forml_Load()
objCustomer = New clsCustomer ()

End Sub

= Using method Ill, we have the flexibility to create multiple objects using one declaration statement.

= This is done by having all the objects declaration as part of one statement, and having individual statements for each object
creation.

= Keep in mind that this works as long as the objects are of the same class.

= Lets look at the following example:

Examples Creating Multiple Instances of Objects using Method I11:

O Assuming we have previously defined a Class named clsCustomer. Then we wan to create a Customer object inside the
Method Sub Main(), the code is as follows:

'‘Declaration of Customer Objects in declaration portion
Public objCustomerl, objCustomer2, objCustomer3 As clsCustomer

Sub Main()

‘Creation or definition of Customer Objects inside a method
objCustomerl= New clsCustomer ()
objCustomer2= New clsCustomer ()
objCustomer3= New clsCustomer ()

End Sub

33

5.2.3 Part lll - Using the Objects
O Once the objects are created we can now use them to implement the program.

SETTING or assigning Data to the Object’s Properties

O Use the Dot Operator to manipulate and assign values to the object.
O Syntax for assigning data to object via the Property:

Object. Property = value

Example:

a Assuming we have previously created a Customer Object:

objCustomer. FirstName = “Joe”
objCustomer. LastName = “Smith”

Assigning the Object with data that is also an Object (Object-to-Object Interaction)
O If the data being assigned to the Object is also an Object, then the assignment is done via the Object's Property as well.
O The syntax is the same as the regular data.
0 Note that like any other variable, the Object being assigned must be of the same type as the object defined in the Property.
O Syntax:

Object. Property = objObject

Example:

a Assuming we have previously created the objects listed:

objCustomer.CreditCard = objCreditCard
objCustomer. Invoice = objInvoice

34

GETTING or accessing Data from the Object’s Properties

O You retrieve values from the class Data via the Object's Property and the Dot Operator
O Syntax for accessing data from the object via the Property:

Value = Object. Property

Example:

O Assuming we have previously created a Customer Object:

Dim strFName, strLName As String

strFName = objCustomer. FirstName
strLName = objCustomer.LastName

Accessing Object’s data that is also an Object (Object-to-Object Interaction)

O If the data being retrieved from the Object is also an Object, then the assignment is done via the Object's Property.
O The syntax is the same as the regular data.

0 Note that in order to access an object data member, you need an object to receive it and the receiving object must be of the
same type as the property.
O Syntax:

objObject = Object. Property

Example:

O Assuming we have previously created the objects listed:

objCreditCard = objCustomer.CreditCard
objInvoice = objCustomer.Invoice

35

Calling the Object’s Methods
O Syntax for calling an object Methods uses the dot operator as well:

Object. Method()

Examples:

Calling SUB Procedures with NO PARAMTERS
O Assuming we have previously created a Customer Object, we call a Sub Procedure from the Object:

objCustomer.PurchaseProduct ()
O Assuming we have previously created an Invoice Object, we call a Sub Procedure from the Object:

objInvoice.Print()

Calling SUB Procedures WITH PARAMTERS
o Assuming we have previously created an login Form Object, we call a Sub Procedure which takes arguments:

objLoginForm.DisplayFormGetUserInfo (userName, passWord)

a Assuming we have previously created an Invoice Object, we call a Sub Procedure which takes arguments:

objInvoice.CalculateTotal (totalCharges, salesTax)

Calling FUNCTION Procedures with NO PARAMTERS
O Assuming we have previously created an Invoice Object, we call a Function to execute and return a value:

totalCharges = objInvoice.CalculateTotal ()

Calling FUNCTION Procedures WITH PARAMTERS
a Assuming we have previously created an Invoice Object, we call a Function which takes arguments to execute and
return a value:

access = objEmployee.Authenticate (userName, passWord)

36

Object to Object Interaction — Assigning One Object’s Reference to Another Object

a
a

O

You can assign one object to another Object. Keep in mind that both objects must be of the same class.
But this statement can be misleading. You may think that a COPY of one Object is being made to another, this is NOT THE
CASE!

The content of one object IS NOT COPIED to another but simply ONE POINTER POINTS TO THE OTHER!

Therefore assigning the content of one object to another is simply having a pointer point to the same object that the other is
pointing to.

Here are some characteristics:

Assigning an object to another with the = sign, means point to where the object is pointing to

As the pointer points to this new object, the original object where the pointer was pointing to, is destroyed if there are no
other references or pointers to it.

The Syntax is the as follows:

ObjObjectl = objObject2

Example 1:

a Assuming we have previously created the objects shown below:

objCurrentCustomer = objCustomer

Q The resultant interaction looks as follows:

objCurrentCustomer objCustomer

Q Another example:

objTempInvoice = objInvoice

objTempInvoice objInvoice

37

Example 2:

a Assuming we have the following declarations:

‘Declare reference or POINTER variable, objCurrentCustomer
but do not create object.
Dim objCurrentCustomer As clsCustomer o —p

‘Declare and Create an Object objCustomer
Dim objCustomer As clsCustomer
objCustomer = New clsCustomer () @

'‘Assign the references
objCurrentCustomer = objCustomer

objCustomer objCurrentCustomer

38

5.3.2 Summary of Implementing Object-Oriented Programs

O An Object-Oriented Program(OOP) is a program that is written based on the Objects that are the protagonist of the program.
The primary focus is not what the program does or functionality but of who are the members or participant of the program

Q Inother words, the Class Modules are created first, then the Objects of the Classes , finally the program is written to use the
objects created

0 In summary, the three steps required to creating an Object-Oriented Programs are shown below:

Create the class specification or Class Module
= Private Data/Properties/Methods/Events

IIl. Create Object of the Class
= Auvailable Syntax:
e One Statement Compact Method:
- Dim TheObjectPointer As New Class

e One Statement Two parts:
- Dim TheObjectPointer As Class = New Class

e Two statements:
- 1) Declaration section or inside a method:
o Dim TheObjectPointer As Class
- 2) Inside a method
o TheObjectPointer = New Class

[ll. Use the Object of the Class
= Write the program to manipulate, access or modify the objects

data & Call the Methods:

e Set Properties
Get Properties
Call Methods
Trigger Events
Program Event-Handlers generated by Object

Object-to-Object interactions:
- Objectl = Object2
Objectl.Property = Object2
Objectl = Object2.Property
Objectl.Method(Object2)
Object2 = Objectl.Method()
Etc.

39

5.3 Additional Concepts in OOP

5.3.1 Introduction to Object-Oriented Related Statements
O Lets look at some additional object related statemet:

With Block Statement

O There are times when several code statements are being applied to the same Object.

O Visual Basics provides a statement that allows us to group of block a set of code that pertains to an Object.

O This statement is called the With/End With Statement. This statement works in conjunction with the Dot Operator as well.
O The syntax is as follows:

‘With Block Statement

With ObjectName
.Property or Method
.Property or Method

.etc...

End With

O All statements residing in the body of the With Statement before the End With relate to the Object named on the With header.

Example:
O Using the With/End With Statement:

= Example 1 — Assigning value to button:
With btnExit
TJext = “E&xit”
.Enable = True
.TabStop = True
.TabIndex =1
End With

= Example 2 — Assigning value to a Customer Object and execute methods:
With Customer
FirstName = “Joe”
LastName = “Smith”
.IDNumber = 111
.BirthDate = 12/12/65
RentVideo() ‘Calling Method of Object
End With

= Example 3 — Retrieving values from Customer Object:
With Customer
t = .FirstName
Value2 = .LastName”’
.IDNumber
.BirthDate

.RentVideo() ‘Calling Method of Object
End With

40

5.3.2 Nothing Keyword

O VB.NET offers a statement that allows you to have object pointers point to a NULL or a NO-VALUE setting
Q The syntax is as follows:

Object = Nothing

O The Nothing Keyword, dissociate an OBJECT POINTER from pointing to any object.
O By default when you create a POINTER, it is pointing to Nothing.

5.3.3 Termination and Cleanup (Destroying Objects)

0 InVB.NET Objects are created and used. Often we use an object and no longer needed or reference to an object is removed.
O Here is a previous simple example of objects that are no longer needed or have not reference:

Example 1:

a Assuming we have the following declarations:

‘Declare reference or POINTER variable,

but do not create object.

Dim objCustomerl As New clsCustomer (“Joe”, 111, #1/23/19784%)
Dim objCustomer?2 As New clsCustomer (“Mary”, 444, #05/10/1965#)

objCustomerl “Joe™ objCustomer?2

“Mary59
® 111

1/23/1978 @ 444
5/10/1965

'‘Assign the references
objCustomerl = objCustomer?2

objCustomer2 objCustomerl

“Mary” SGJoe”

o 444 7)) 111
5/10/1969 1/23/1978

'Note that the Joe object no longer has reference

41

Q
Q

Termination or Cleanup means destroying an object.
Destroying an Object means that memory and resources being consumed by the Object are reclaimed and given back to the
Operating System (OS) when there are NO References to the object (No pointer pointing to it).

Garbage Collection

a
a

Q

O

VB.NET provides a mechanism call garbage collection that automatically terminates and reclaims unused Objects.

We will not go into the details in this lecture, but the Garbage Collection mechanism is automatic and when it sees an object
without a reference (pointer) it will reclaimit.

Garbage Collection runs automatically and the run time is determined by VB. We don’t have control of the time when the
garbage collection runs.

However there are options available to the programmer for giving instructions to the Garbage Collector.

At this time, 1 will not cover this material in my notes. Student is welcome to seek other sources of reference on this topic.

42

5.3.4 Testing Objects Prior to using them in a Program (Optional Step)

Testing Overview
O The main idea behind Object-Oriented Programs is to create the Objects which are the protagonist of the program first, and
then you would write the program to manipulate these Objects.
O Butin order to produce robust or error-free program, it’s a good idea to first test the object, in a test program, prior to using it
in a complete program.
Q This is done by writing a small test or driver program to test the Object’s basic functionality (Properties/Methods). Once the
functionality of the class is tested, then we use the class in the real or intended program.

+«» Note that writing this test program is not mandatory. Sometimes programmers get lazy and choose to simply write the full
program they intended to write in the first place, but think of the implication. You write a class, and then use it in a full blow
program and you start having problems. You don’t know if your problems are due to the objects you created or the program
you are writing to use the objects. Eventually you start suspecting the Object and have to test it separately anyway. On the
other hand, if you had tested your objects with a test program prior to using them, then you know that any errors you
encounter in your program you would know that they are not due to the Object since the Object was tested prior to use.

Unit Testing of Objects (Driver Program)
O After the Class is created, it’s a good idea to test the class by writing a small test driver program. This program will consist of
the following components:

= Class Module — The Class Module templates you created for your program

= Standard Module — A Programming Code Window to enter code to test all possible functionality of Objects

= The program can be written using a Console Application or a Module-Driven Windows Application or Form-Driven.
Choice depends on the class you will test. A console application or a Module-Driven Windows application is the simplest.
Since we want to just test, it makes no sense to create forms to test the class.

O The steps are as follows:

| Step 1: Start a new Console Application or Module-Driven Windows Application. |

‘ Step 2: Add a Class & Class File to the project. Code in the Property Let, Property Get, Property Set, Methods and Events |

Option Explicit

Public Class ClassName
‘ Private Data declarations

“ Public Property declarations...
‘ Public Methods declarations ...

End Class

| Step 3: In the Main Module, Create an Object
O Create an Object for testing using the methods shown previously. Create objects that use each Constructor (DEFAULT &
PARAMETERIZED)
Dim Objectl As New Class()
Dim Object2 As New Class(valuel, value2, value3 etc.,)

43

| Step 4: Test and Validate the Constructors
O At this point, is a good idea to test and verify if the CONSTRUCTORS (DEFAULT & PARAMETERIZED) are correctly

working.
O This is done by simply displaying the content of the properties of each object and verify if the constructor settings are valid

Q This can be done in two ways:

1) GET the properties of each object and display them, if results shown match the constructor setting, test is OK, otherwise
the constructors are not working and you need to debug and fix the problem. Syntax example:

‘Testing Default Object Constructor
Console.WriteLine(Objectl.FirstName)
Console.WriteLine(Object1.IDNum)
Console.WriteLine(Objectl.BirthDate)

‘Testing Parameterized Object Constructor
Console.WriteLine(Object2.FirstName)
Console.WriteLine(Object2.IDNum)
Console.WriteLine(Object2.BirthDate

2) If the object has an internal method that displays the data such as a Print() or anything else, call that method.

Objectl.Print()
Object2.Print()

| Step 5: In the Module Code Window, Enter Code to test every Property of the Object

O The idea now is to create an Object and test every Property of the Object.
O Is agood idea to test the SET part first, then GET, if you GET what you SET then you are OK, otherwise something is wrong

and you need to test each individually.

Testing Setting each Property
O To test the Set Property is simple, just assign each property a value
O For example if the object has the following properties String property: FirstName, Integer property IDNum & Date property
BirthDate, then simply assign a hard coded value as follows:

Objectl. FirstName = “Joe”

Objectl.IDNum =111
Objectl.BirthDate = #12/12/65#

O At this point, we don’t know if the SET is ok, we need to view the data of the object via the properties and verify if these
values are stored. One way to do it is to test the GET at this point.

44

Testing Get Part of a Property
O To test the Get Portion, just access the value that each property returns.
Q This requires additional steps depending on the data being returned by the properties.
Q There are two methods to doing this:

Method | — Create variables to store the values returned by the property Get
1) Create variables to store the values returned by every property, make sure the data types are the same as the values

returned by the property.

= For example if the object has the following properties: String property FirstName, Integer property IDNum &
Date property BirthDate, to test simply assign the values of these properties to variables of the same type as
follows:

Dim sVariable As String
Dim nVariable As Integer
Dim dVariable As Date

sVariable = Object1.FirstName
nVariable = Object1.IDNum
dVariable = Objectl.BirthDate

2) Display the content of each variable using a a Console.WriteLine Statement in order to see if the values being returned
are valid.
= Now display the content of the variables using a Console.WriteLine:

Console.WriteLine(sVariable)
Console.WriteLine(nVariable)
Console.WriteLine(dVariable)

= If the values you see are the values you assign with the Set Properties, then the Properties procedures are good,
since you were able to display values that were assigned & retrieved, otherwise there is a problem which needs
fixing.

Method Il — (Simplest) Display the values directly from the Get Properties unto a Message Box
1) This method requires no variables, simply display the content of each Property directly from the Object as follows:

Console.WriteLine(Object1.FirstName)
Console.WriteLine(Object1.IDNum)
Console.WriteLine(Object1.BirthDate)

= Again if the values displays are identical to those assigned previously, then the Object is good, otherwise fix the
errors until the values display = values added.

45

| Step 6:

In the Module Code Window, Enter Code to test every Method of the Object

Testing Methods

O Note that testing the Properties is easy, all you need to do is assign & retrieve values into the Object, but executing the
methods may prove a challenging depending on what action the method is to perform.

O For example, if a method is called DisplayName and calling it displays the FirstName data member, there is no problem
testing since the result is a message box or Console.WriteLine statement displaying the name, but if the method is called
SendEmail and calling it sends out an email that involves many systems and other complex programming code, then you really
cannot test this Method at this point since it’s dependent on many other things.

O To test methods simply call the method with the required arguments. For example:
objObject.Method1
objObject.Method2 argl
objObject.Method3 argl, arg2

| Step 6: Test any Events Triggered by the Object

Q At this point you will test any Events & Event-Handlers that are triggered by the Object.

Q This is done as follows:

1) Generate the event-handler outside of the object

2) Program the Event-Handler, a simple test is to display a message box from the event-handler

3) Run the program and execute the ACTION AGAINST THE OBJECT that will trigger the event

4) If the message box or code that was entered in the event-handler executes than event mechanism is working.

46

The Complete Test Program

Q

In the Standard Module screen enter the following code:

| Step 1: Start a new Console Application or Module-Driven Windows Application.

‘ Step 2: Add a Class & Class File to the project. Code in the Property Let, Property Get, Property Set, Methods and Events |

| Step 3-6: Add code to Create Objects, Test Property, Methods and Events

Q

In this example I will use a Module-Driven Windows Application. You can also use a console application simply replace the
MessageBox.Show with Console.Writeline()

Option Explicit ON
Option Strict ON

‘Step 3: Create the Object for testing:
Objectl As New Class()
Object2 As New Class(valuel, value2, value3, etc.,)

‘Step 4: Test the constructors:
‘Method 1: Display content of objects via GETTING PROPERTIES
Console.WriteLine(Objectl.Propertyl & Objectl.Property2 & Objectl.Property3)

Console.WriteLine(Object2.Propertyl & Object2.Property2 & Object2.Property3)

‘Method 2: Call internal method if available to display the data
Objectl.Print()
Object2.Print()

‘Step 5A: Test each Property SET by assigning appropriate values:
Objectl.Propertyl = value
Objectl.Property2 = value
Objectl.Property3 = value

‘Step 5B Option 1 - Test each Property GET

‘Method 1(a) - Create variables of correct type to store the content of each Property Get:
Dim variablel As Type
Dim variable2 As Type
Dim variable3 As Type

‘Method 1(b) — Get each using variables:
variablel = Object1.Propertyl
variable2 = Object1.Property2
variable3 = Object1.Property3

‘Method 1(c): Dislay the content of each variable to verify that values were stored:
MessageBox.Show (variablel & variable2 & variable3)

‘Step 5B: Option 2 — Alternate option to test each Property GET
‘Method 11 - Alternate simpler option by displaying each object property directly:
MessageBox.Show (Objectl.Propertyl & Objectl.Property2 & Objectl.Property3)

‘Step 6: Test each Method (If Possible) the object should perform the action dictated by the methods:

objObject.Method1
objObject.Method?2 argl
objObject.Method3 argl, arg2 ...

5.3.5 Sample Program 1 — Class Test Program

Creating and Testing a Person Class Using Console Application
Problem statement:
O Using a Console Application, create a Person Class. This class can be used to create objects with information of a Person
such as name, id, and birth date, address & phone number. Also the class should contain a method that will print the object’s

information. Using the Console Application, write a simple driver program to test the class. This test program will be used to
create objects using default & Parameterized Constructors as well as testing each Property and Methods.

Class Requirements
O The class contains the following data, properties & methods members
Class Person Member Data:
= Name: Type String
= IDNumber: Type Integer.
= BirthDate: Date
= Address: Type String
= Phone: Type String

Class Member Properties & Methods:
= Let & Get Properties for each data member.
= The Method Print(), which displays the Persons data

HOW IT'S DONE:
Part | — Create The Class:

‘ Step 1: Start a new Console Application project and set the Module's properties as shown in table below:

Object Property Value
Module.vb FileName modPerson.vb
Object Name Module modPerson
#% ClassTestProgram - Microsoft Visual Studio !u
Ele Edit Mew Project Buid Debug Data Tools ‘Window Communi ity Help
A-EH-Cdo s G b Debug - Ay CPU - [# obichid B P =
o R
\;\"‘ TestModule.¥b ' Start Page v X
§' [Empty =] [Empty -

[EModule TestModule

a10/b3 45
»

Sub Maini)

End Sub

xoqj0) 3¢

End Module

ction Compile
Copy to Output Directory Do not copy
Custom Toal

Custom Toal Namespace

Fill Narme Testiodule.vh

Build Action
Houw the file relates ta the build and deployment processes.

Ready

48

Step 2: Add a Class to the Project and set the Class properties as shown in table below:

Object Property Value
Class Module 1 File Name clsPerson.vb
Add New Item - ClassTestProgram EH
oo [g

Templates: B
¥isual Studio installed templates =l
5] Windaws Form - Dialog =] Explaorer Form
EMDI Parent Farm ﬂ About Box _j Login Farm
[=]5plash Screen B | Module
:ié Interface o] Component Class :Eg COM Class
|30]Dataset | J 5QL Database 5] Report
2] Crystal Report] User Cantral 5 Inhetited Form
] Inherited User Cantral ﬁcustom Contral iﬁWBb Custom Contral
QResources File: _] Settings File "s_] Code File
12 Class Diagram & ¥ML File 2] ¥ML Schema
__f_[’ ®SLT File =] Text File] HTML Page
g Bitmap File MCursnr File 38f) Teon File
J Application Configuration File Qj Transactional Component .;lﬂ Installer Class
o] Windows Service j

‘ An empty class definition

Mame: clsPerson.vb

Step 3: In the Class Module code window enter the code for the private data:

Option Explicit On
Option Strict On

Public Class clsPerson
TR A I AR AR AR A A AR AR ARk AR Ak Ak kA hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkkkhxx
'Class Data or Variable declarations
Private m Name As String
Private m IDNumber As Integer

Private m BirthDate As Date
Private m Address As String
Private m Phone As String

49

Step 4: In the Class Module code window enter the code for public Properties:

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkhhkhkhkkhkkhkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkkkhkhkhkkkx

'Property Procedures
Public Property Name () As String
Get
Return m Name
End Get
Set (ByVal Value As String)
m_Name = Value
End Set
End Property

Public Property IDNumber () As Integer
Get
Return m IDNumber
End Get
Set (ByVal Value As Integer)
m_IDNumber = Value
End Set
End Property

Public Property BirthDate() As Date
Get
Return m BirthDate
End Get
Set (ByVal Value As Date)

m_BirthDate = Value
End Set
End Property

Public Property Address() As String
Get
Return m Address
End Get
Set (ByVal Value As String)
m_Address = Value
End Set
End Property

Public Property Phone() As String
Get
Return m_ Phone
End Get
Set (ByVal Value As String)
m Phone = Value
End Set
End Property

50

Step 5: In the Class Module code window enter the code for Constructor Methods (Non-Parameter and/or Parameterized): |

Thhkhkhkkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkkhkkkkhkhkhkkkx

'Class Constructor Methods

'Default Constructor
Public Sub New ()
'Note that private data members are being initialized
m Name = ""
m_IDNumber = 0
m BirthDate = #1/1/1900#
m Address = ""
m_ Phone = " (000)-000-0000"
End Sub

'Parameterized Constructor

Public Sub New (ByVal Name As String, ByVal IDNum As Integer, ByVal BDate As Date,
ByVal Address As String, ByVal Phone As String)

'Note that as example we are NOT using the private data but

'the Property Procedures instead when setting the data via the constructor

Me .Name = Name

Me . IDNumber = IDNum
Me .BirthDate = BDate
Me .Address = Address
Me.Phone = Phone

End Sub

51

Step 6: In the Class Module code window enter the code for the PrintPerson Method:

Thhkhkkhkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkhkhhkhkhkkhkkhhkhkhkhkhkkhkkhhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkhkhkhkhkkkkkx
Thhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkhhkhkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkkkhkhhkkkx

'Class Methods
Thhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkkhkkhkhkkhkhkkhkkhkkhkkk

'Author of base class allows sub classes to overide Print()
'If they want to, it is not mandatory
Public Overridable Sub Print()

'Display object Content
Console.WriteLine(m Name & ", " & m IDNumber & ", " & _
m BirthDate & ", " & m Address & ", " & m Phone)

End Sub

End Class

52

Part Il & Ill — Create The Object and Use it:
‘ Step 7: In the Module File Sub Main() Procedure enter code to Create and Use the Object, this is know as a driver program:

Option Explicit On
Option Strict On

Module TestModule
Sub Main()

'Step la-Create an DEFAULT Object
Dim objPersonl As clsPerson
objPersonl = New clsPerson

'Step 1lb-Create PARAMETERIZED Object with arguments

Dim objPerson2 As clsPerson

objPerson2 = New clsPerson("Mary Jones", 444, #1/22/1973#, _
"100 Brooklyn Ave.", "718-260-5555")

'Step2-TEST CONSTRUCTORS by Calling an Object Print() method
'immediately after creation of objects

objPersonl.Print ()

objPerson2.Print ()

'Step 3-Test SET Properties
With objPersonl
.Name = "Joe Smith"
. IDNumber = 111
.BirthDate = #12/12/1965#
.Address = "100 Flatbush Ave Brooklyn, NY 10016"
.Phone = "718-555-5454"
End With

'Step 4-Test GET Properties by displaying content of objects
Console.WriteLine ()

Console.WriteLine()

Console.Writeline ("Personl Object's Data is:")
Console.Writeline (objPersonl.Name)

Console.Writeline (objPersonl.IDNumber)

Console.Writeline (objPersonl.BirthDate)

Console.WritelLine (objPersonl.Address)

Console.Writeline (objPersonl.Phone)

'Step 5-Testing Methods. Actually we already tested the methods earlier
objPerson2.Print ()

End Sub

End Module

53

| Step 7: Compile & Run the program:

C:\WINDOWS\system32\cmd.exe

. B, 17171988, . (H0A)>-B00—-ABEHA
Mary Jones, 444, 1-22-.1973. 188 Brooklyn Ave.,. 7182605555

Perzonl Object’s Data is:

Joe Smith

111

12121965 12:80:88 A4

188 Flatbuszh Ave Brooklyn, HY 18816

718-555-5454

Mary Jones,. 444, 1221993, 188 Brooklun Ave.,. 718-268-5555

Pressz any key to continue . . . _

54

5.3.6 CLASSROOM LABORATORY EXERCISE — Test Program

Creating and Testing an INVOICE Class Using Module-Driven Windows Application

Problem statement:
O Using a Module-Driven Windows Application, create an Invoice Class. This class has the following characteristics:

Invoice class represents an business transaction invoice object.

Contain data such as company information (Company name et.,), customer information (Name, 1D etc) and
transaction information (Total, tax etc.).

Class contain the required method that will allow invoice objects to perform transactions such as tax calculations,
total charges calculations etc.

O Other program requirements:

Using a Module-Driven Windows Application, without a FORM!, write a simple driver program to test the class.
This test program will be used to create objects using default & Parameterized Constructors as well as testing each
Property and Methods.

In your program, OPTION STRICT and OPTION EXPLICITS should be set to ON in all your code modules

DO NOT CREATE A FORM TO TEST YOUR CLASS! USE A STANDARD MODULE OBJECT.

I. Class Requirements
O The class contains the following data, properties & methods members
Class Person Member Data:

Data Member Data Member

CompanyName: Type String TransactionDate: Type Date
CompanyPhone: Type String SubTotal: Type Decimal
CompanyAddress: Type String TotalTax: Type Decimal

InvoicelD: Type Integer Total: Type Decimal
CustomerName: Type String StateTax: Constant Decimal (8.25%)

CustomerID: Type Integer
CustomerAddress: Type String
CustomerPhone: Type String

Class Member Properties & Methods:
O Create the required Properties for each data member. DECIDE IF ANY DATE MEMBER REQUIRES A PROPERTY OR

NOT

O Create the following class methods:

1.
2.

Default Constructor — Initializes the values to default. Select appropriate defaults (Use your imagination)
Parameterized constructor — Allow the creation of objects that will initialize attributes of the class with
EXTERNAL DATA, with the following EXCEPTIONS: SubTotal, TotalTax, Total. Do not include these values in
the parameter list of the constructor!!!

Sub Procedure Print() — Displays Invoice data using a Message Box! Data should be displayed as a COMMA-
DELIMITED STRING

Function CalculateTotal() — When called returns the total charges for this Invoice Transaction. This value is
calculated as follows:

Total = SubTotal + (SubTotal * STATE_TAX)

55

5. Sub Procedure CalculateSubTotal(Parmeterl, Parameter2) — Calculates the sub total price of the Invoice based
on the number of items purchased and the price of the items. The methods parameters and calculation formula are as
follows:

- By Value Parameter 1: NumberOfltemsPurchased
- By Value Parameter 2: ItemPrice
- Formula:

SubTotal = SubTotal + (NumberOfltemsPurchased * ItemPrice)

Il. Module & Program Requirements
Q The module requirements are as follows:

1. Test constructors
2. Test or validate the data mechanism
3. Test all methods

I11. Required Results
O Submit the following information:

a. A printed output - Printed results of test. (You can use MS Paint and copy/paste from the
screen if necessary)

A printed copy of the class code

A printed copy of the module code

All documents must have your name and ID printed with the code
Submit all documents include your name

eaogT

56

5.3.5 Sample Program 2 — Working With Forms & Custom Objects (VERSION 1)
Form Driven Application — Small Business Application Using Person Class

Problem statement:
O Using a Form Driven Application (Startup Object = Form) we will demonstrate various methods of working with forms and
custom objects. This example creates several forms for Data Entry, and Displaying Customer Information as well as the
Manager information for a small business.

0 NOTE that we will implement this application ONLY USING WHAT WE HAVE LEARNED UP TO THIS POINT.
Nevertheless, it will truly test our understanding of OBJECTS AND CLASSES up to this point.

O This example is for TEACHING PURPOSE ONLY'! A true Customer Management application will use more advance .NET
components which will make creating this application more practical.

Application Architecture Introduction (Separating Interface from Implementation)
o We will also begin to INTRODUCE THE class to proper application programming ARCHITECTURE and FORMATS
adhering to BEST PRACTICE by making all attempts to SEPARATE INTERFACE from IMPLEMENTATION.
O What we mean is we SEPARATE USER-INTERFACE CODE with PROCESSING. This is done as follows:

= User-interface code or the code in the FORMS will contain NO PROCESSING CODE!

= FORMS will only contain User-Interface code or code to interact with USER ONLY!

= FORM code includes MESSAGE BOXES, Ul CONTROLS manipulation, getting data from user, displaying data to user.

= All PROCESSING CODE will reside in the MODULE INSIDE PROCESSING METHODS!

* PROCESSING METHODS IN MODULE will be CALLED BY THE FORMS TO DO THE WORK!

* PROCESSING MODULE will contain LITTLE or NO FORM CODE! SUCH AS CALLS to FORMS OR FORM
CONTROLS

* FORM CODE WILL INTERACT WITH USER AND CALL PROCESSING METHODS IN MODULE TO DO THE
WORK!

o WE WILL SHOW TWO VERSION OF THIS PROGRAM. THE FIRST VERSION, contains a BUG or ISSUE!
O Idiscuss the BUG at the end of this example. IN THE SECOND VERSION, WE WILL RESOLVE THIS BUG!

Re-using Objects
a We will also review the OOP concept of Reusability by reusing the Person Class from the previous Console Application
Example #1. As in Example 1, this class will be used to create objects with information of a Customer such as name, id, and
birth date, address & phone number. Also the class should contain a method that will print the Customer’s information. The
only modification we will make in the Person Class is in the PrintPerson() Method. From previous Console Application
example, this method called the Console.WriteLine() method. We will change these calls to a MessageBox.Show for a
Windows Application.

Form, & Module Requirements
O The main or driver program will utilize several forms. A Main Form as a startup point to invoke the Customer Management
& Customer Information Forms. Each one of these Forms will perform their function and manage the objects created in the
program.
O Inaddition the program will contain a Module where several global public Objects will reside that represent a SIMMULATED
DATABASE OF CUSTOMER OBJECTS.

57

Additional Requirements
Q This Example will demonstrate the following topics:

= Windows Form-Driven Application Example
= Creating Classes,
= Reusing Classes from previous programs
= Creating, initializing Objects
= Using Objects as follows:
o (Set, Get, Calling methods, triggering Form Object event-handlers, & programming Form objects event-handlers)
Working with Objects & Forms
Global Objects in a Module
Assigning Object Reference to one another (Object to Object Interaction)

O O O

Class Requirements
O The class contains the following data, properties & methods members

Class Person Member Data:

= Name: Type String
= IDNumber: Type Integer.
= BirthDate: Date

= Address: Type String
= Phone: Type String

Class Member Properties & Methods:
= Set & Get Properties for each data member.
= The Method PrintPerson(), which displays the Persons data

Form Requirements
O The application will contains the following Forms:

» frmMainForm: Portal to navigate to other Forms
» frmCustomerManagement: Form contains controls to Search, Add, Edit, Delete, Print and & Print all Customers
» frmManagerinformation: Form contains controls to display the Manager’s information

O Note that the Forms will create any necessary FORM-LEVEL Objects & Form Event-Handlers that respond to user
interactions.

Module Requirements
Q The application will contains one Module with the following requirements:

= modMainModule: Module to contain the following:
o 5 Global Objects POINTERS of the Person Class. These 5 POINTERS are to be populated by the program with
PERSON OBJECTS which represent the Customer DATABASE
o One Global OBJECT of the person class. This object is created with data using the PARAMETERIZED
CONSTRUCTOR and represents the company’s manager.
o The following PROCESSING METHODS:
e Sub Initialize() — Creates 5 PERSON OBJECTS with data and assigns them to the 5 POINTERS in
database.
e Function Search(ID) — Search database (5 Object) for the object whose ID is the parameter. RETURNS a
POINTER to the object found or returns a NOTHING if not found.
e Function Add(OBJECT POINTER) — Searches database (5 Objects) for a NULL POINTER and has it
POINT to the Object Pointer pass as Parameter. Returns a TRUE if empty pointer found, else FALSE
e Function Remove(ID) — Search database (5 Object) for the object whose ID is the parameter. REMOVES
by setting POINTER to NOTHING. RETURNS a TRUE if found or returns FALSE otherwise.
e Function Print(ID) — Search database (5 Object) for the object whose ID is the parameter. Calls PRINT()
method of object. RETURNS a TRUE if found or returns FALSE otherwise.
e Sub PrintALL() — Search database and calls PRINT() method of EACH OBJECT in database.

58

HOW IT'S DONE:

Part | — Create The Class:

‘ Step 1: Start a new Windows Application. By default the program will behave as a Form Driven Application:

Object Property Value
Project Name CustomerFormWinApp
Startup Object | Forml

Lecture2ASample1* | Formlvh[Desgn] | ciPerscnvb | Sart Page

Sopication” [

[=) 2l
Comgie
oot Assembly name:

ook namespace:
fodreznangit

iocurszzSanci
References

Apphation type: foon:

pesorces | [Windows Aoplcation =1 fostaut i) 210

Settings Startup foit
T - |

issembly Tnfermation
sigring

Security

Fubish

¥ Sawa My.Settings on Shtdoen
Aughensiction mads;
Windoes

St mods:
when startup form doses

Splash screen
)

=] _ vew nppicatien Events

Step 2: Prepare to Reuse the Person Class from Previous Console Application, by Copying the File from previous
Application Folder to the Folder of this Windows Application Project

1.

Using Windows Explorer, navigate to the Folder of the previous example Console Application Sample Program 1.
2.

Copy/Paste the file clsPerson.vb to this Project folder

‘ Step 3: Add the Class to the Project

1. Inthe Project Menu, select Add| Existing Item... and navigate to the project folder

Add Existing ltem - Lecture2ASample1

Lookin: [LecturezaSample1 | ®] K Oy - Tooks -
= I bin
I My Project
Deskiop |Dobi
|temp
’_J &) Form1. Desigrer wb
My Projects E]Farm1.vb
9
My Computer
File: name: ‘ j add -
Files of bype: ‘VB Code Files (% wb;* resx . settings;* . xsd;*. wsdl) ﬂ Cancel

2. Select the clsPerson.vb File and click OK
3. Theclass is now part of the project and ready to be Reused!

Step 4: In the Class Module code window enter the code for the private data:

Option Explicit On
Option Strict On

Public Class clsPerson
Thhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkkkhkhkhkhkhkkkkhkhkhkhkhkkkkhkhkhkkkx
'Class Data or Variable declarations
Private m Name As String
Private m IDNumber As Integer
Private m BirthDate As Date
Private m Address As String
Private m Phone As String

Step 5: In the Class Module code window enter the code for public Properties:

'Property Procedures
Public Property Name() As String
Get
Return m Name
End Get
Set (ByVal Value As String)
m Name = Value
End Set
End Property

Public Property IDNumber () As Integer
Get
Return m IDNumber
End Get
Set (ByVal Value As Integer)
m_IDNumber = Value
End Set
End Property

Public Property BirthDate() As Date
Get
Return m BirthDate
End Get
Set (ByVal Value As Date)
m BirthDate = Value
End Set
End Property

Public Property Address() As String
Get

Return m Address
End Get

Set (ByVal Value As String)
m Address = Value
End Set
End Property

Public Property Phone() As String
Get
Return m Phone
End Get
Set (ByVal Value As String)
m Phone = Value
End Set
End Property

Step 6: In the Class Module code window enter the code for Constructor Methods (Non-Parameter and/or Parameterized): |

Thhkhkhkkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkkhkkkkhkhkhkkkx

'Class Constructor Methods

'Default Constructor
Public Sub New ()
'Note that private data members are being initialized
m Name = ""
m_IDNumber = 0
m BirthDate = #1/1/1900#
m Address = ""
m_ Phone = " (000)-000-0000"
End Sub

'Parameterized Constructor
Public Sub New (ByVal Name As String, ByVal IDNum As Integer, ByVal BDate As Date,
ByVal Address As String, ByVal Phone As String)

'Note that as example we are NOT using the private data but

'the Property Procedures instead when setting the data via the constructor

Me .Name = Name

Me . IDNumber = IDNum
Me .BirthDate = BDate
Me .Address = Address
Me.Phone = Phone

End Sub

‘ Step 7: MODIFY the Print() method by replacing the Console.Writeline with MessageBox.Show statement:

Thhkhkhkhkkhkkhkkhkhkhkhkhkkkkhkhkhkhkhkkkhkhkhkhkhhhkhkkhkhkhkhkhhkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhhkhkkhkkkkhkhhkk
Thhkhkhkhkkkkhkhkhhkhkkhkkkhkhkhhkhkkkhkhkhhkhkhkkkhkhkhhkhkkhkkkhkhhhkhkkhkkkhkhhkhkhkkkkhkhkhkhkkkkkhkhkhkkkx

'Class Methods
Thhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkkhkhbhkhbhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhbkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkhkkhkk

'Author of base class allows sub classes to overide Print()
'If they want to, it is not mandatory
Public Overridable Sub Print()

'Display object Content
MessageBox.Show (m Name & ", " & m IDNumber & ", " &
m BirthDate & ", " & m Address & ", " & m_ Phone)

End Sub

End Class

O NOTE THAT THIS CLASS CONTAINS A USER-INTERFACE CODE VIA A MESSAGE BOX. THIS IS ONLY

FOR TEACHING PURPOSE!!
O YOUSHOULD NOT DISPLAY ANY MESSAGE BOXEX OR USER-INTERFACE CODE FROM WITHIN A
CLASS IN HWS AND PROJECTS UNLESS OTHERWISE INSTRUCTED!

61

Part Il & Ill — Create & Use The Objects (The User Interface Code)

Standard Module:
| Step 7: Add a Module to the Project and set its properties as show in table below:

Object Property Value
Module Name MainModule
Text MainModule

‘ Step 8: Add Module GLOBAL declarations:
Q Inthe module, we will declare 5 clsPerson OBJECT POINTERS. These POINTERS will eventually point to objects which
will represent our simulated DATABASE OF CUSTOMERS!

O Inaddition we create one complete OBJECT using parameterized constructor with data. This object represents a business
employee manager.

Option Explicit On
Option Strict On

Module MainModule
Thhkhkhkhkhkkhkkhkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkkhkkhkhkkhkhkkhkhkhkkhkkhkhkkhkhkkhkhkkhkkhkkhkkhkhkkhkkkkxk

' GLOBAL VARIABLES & OBJECT DECLARATIONS SECTION

Thhkhkhkkhkkhkkkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkkkhkhkhkhkhkkhkkhkhkhhkhkhkkkkhkhhkhkkhkkhkkkhkhkhkhkkhkkkkhkhkhkhkkkx

'Declare 5 POINTERS to Customer Object (REPRESENT OUR SIMMULATED DATABASE)

Public objCustomerl, objCustomer2, objCustomer3, objCustomer4, objCustomer5 As clsPerson

'Declare & Create Public Object representing THE MANAGER employee, initialized with Data
Public objManager As clsPerson = New clsPerson("Alex Rod", 777, #12/12/1971#, _
"192 East 8th, Brooklyn", "718-434-6677")

62

Step 9: Add Module INITIALIZE() Method declarations:
O Mow we begin to add PROCESSING METHODS TO THE MODULE that will do the work for the FORMS.
Q The first method we implement is the INITIALIZE() method. This sub procedure creates 5 OBJECTS of the PERSON
CLASS and assigns them to the 5 GLOBAL POINTERS.
O At this point the simulated DATABASE OF CUSTOMERS is not POPULATED WITH OBJECTS!

khkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhkkhkhkhkkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhhkkk

METHOD DECLARATIONS

hhkhkkhkkhkhkkhkhkhkhkhkhkkhkhkhhkhkhkhkhkkhhkhkhkkhkkhhkhhkhkhhkhhkhkhkkhkkhhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkkhkkhkhkhkhkkhkkk

' <summary>

' Intended to execute at the start of the program. Can be used to perform

' any initialization. In this case, to populate EACH POINTER with OBJECT at

' start of the program. We are simply populating the database with data.

' </summary>

' <remarks></remarks>

Public Sub Initialize()

'Create objects and initialize with data via paremterized constructor

objCustomerl = New clsPerson("Joe", 111, #12/12/1965#, "111 Jay Street",
"718-434-5544")

*
1
1
1
1
v
1

objCustomer2 clsPerson("Angel", 222, #1/4/1972#, "222 Flatbush Ave", _
"718-234-5524")

objCustomer3 clsPerson("Sam", 333, #9/21/1960#, "333 Dekalb Ave",
"718-890-3422")

objCustomer4 clsPerson("Mary", 444, #7/4/1970#, "444 Jay Street", _
"718-444-1122")

objCustomer5 clsPerson("Nancy", 555, #12/12/1965#, "555 Flatlands Ave"
"718-434-9876")

End Sub

63

Step 10: Create SEARCH(ID) FUNCTION declarations:
O Purpose of this method is to search the database (5 Customer OBJECTS) for the object whose ID is parameter and return a
POINTER to the object
o How it works:
= Nested Elself statement is used
= During each Elself, the OBJECT’S IDNUMBER PROPERTY is tested against the ID parameter (PROPERTY = ID?), if
a match is found or TRUE, the code inside the body of the If statement is executed.
= This code simply RETURNS the POINTER to the OBJECT. REMEMBER, THE RETURN KEYWORD ALSO EXITS
THE METHOD.
= Ifamatch (PROPERTY = ID?) is not found or FALSE, then you simply skip the OBJECT and go to the next Elself.
= This process repeats itself until the last ELSE is found, at this point a NOTHING is returned since we searched the
database did not find the object.

hhkkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkkhkhkhhkhkkhkkhkhkhkhkhkhkkhkkkhkhkhhkkkx

* %
' <summary>
'' Function Searches the database for POINTER to object whose ID is a parameter
''" Interrogates object for the ID, when found Returns POINTER to OBJECT and EXITS!
"' </summary>
''" <param name="IDNum"></param>
''" <returns></returns>
''" <remarks></remarks>
Public Function Search(ByVal IDNum As Integer) As clsPerson
'Step 1-Search for object with ID
If objCustomerl.IDNumber = IDNum Then
'Step 2-Return Pointer to object and EXIT
Return objCustomerl

1
|l
1
|l
1
|l
1
|l

ElseIf objCustomer2.IDNumber Then
Return objCustomer2

ElseIf objCustomer3.IDNumber Then
Return objCustomer3

ElseIf objCustomer4.IDNumber
Return objCustomer4

ElseIf objCustomer5.IDNumber
Return objCustomer5

Else
'Not found
Return Nothing

End If
End Function

64

Step 11: Create ADD(object) FUNCTION declarations:

Q

Q

Purpose of this method is to ADD a new Customer to the database (5 Customer OBJECTS). True is returned if successful,

False if no EMPTY OR NULL POINTERS ARE AVAILABLE.

How it works:

= Nested Elself statement are used to ask EACH POINTER if is pointing to a NOTHING OR NULL.

= During each Elself, if the POINTER IS NOTHING then parameter DATABASE POINTER is assigned to PARAMETER
POINTER, thus adding the object to database.

= ATRUE is returned and function EXITS.

= ONLY AFTER ALL DATABASE POINTERS ARE TESTED AND NO NULLS ARE FOUND is a FALSE
RETURNED.

hkhkkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhhkhkkhkkhkhkhhkhkhkkhkkhkhkhkhkhkhkkhkkkhkhkhhkkkx

<summary>
Function Adds NEW objects passed as parameter to database.
Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.
Returns a TRUE When OBJECT added OR FALSE when no empty POINTERS and EXITS!!
</summary>
<param name="objE"></param>
<returns></returns>
<remarks></remarks>
Public Function Add(ByVal objE As clsPerson) As Boolean

'Step 1-Ask if object is NULL
If objCustomerl Is Nothing Then
'Step 2-If NULL, database POINTER = Paramter POINTER
objCustomerl = objE
'Step 3-Return success & EXIT
Return True

ElseIf objCustomer2 Is Nothing Then
objCustomer2 = objE
Return True

ElseIf objCustomer3 Is Nothing Then
objCustomer3 = objE
Return True

ElseIf objCustomer4 Is Nothing Then
objCustomer4 = objE
Return True

ElseIf objCustomer5 Is Nothing Then
objCustomer5 = objE
Return True

Else
'No space available
Return False

End If
End Function

65

Step 12: Create REMOVE(ID) FUNCTION declarations:
Q This method begins to search the database (5 Customer OBJECTS) for the object whose ID is parameter. Once found it
removes object from the database. Returns a TRUE if successful and FALSE if object is NOT FOUND.
o How it works:
= Again, nested Elself statement are used
= During each Elself, the OBJECT’S IDNUMBER PROPERTY is tested against the ID parameter (PROPERTY = ID?), if
a match is found or TRUE, the code inside the body of the If statement is executed.
= This code simply SETS THE DATABASE POINTER TO NOTHING, thus removing the object it is pointing to.
= ATRUE is returned & function EXITS, when a match and deletion is made. Otherwise if all DATABASE POINTERS
are tested and a match is NOT FOUND, then a FALSE is returned and function EXITS.

hkhkkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkkhkkhkkkhkhkhhkkx

<summary>
Function Removes object from database by searching for OBJECT whose ID is

]
1
]
! a parameter. Interrogates each the object for the ID.

! When found, Removes object by setting POINTER TO NOTHING

! Returns a TRUE When removed, FALSE when OBJECT not found and EXITS Function!
' </summary>

! <param name="IDNum"></param>

' <returns></returns>

! <remarks></remarks>

Public Function Remove (ByVal IDNum As Integer) As Boolean

'Step 1-Search for object with ID

If objCustomerl.IDNumber = IDNum Then
'Step 2-When found set to nothing
objCustomerl = Nothing
'Step 3-Return OK & EXIT
Return True

ElseIf objCustomer2.IDNumber
objCustomer2 = Nothing
Return True

ElseIf objCustomer3.IDNumber
objCustomer3 = Nothing
Return True

ElseIf objCustomer4.IDNumber
objCustomer4 = Nothing
Return True

ElseIf objCustomer5.IDNumber
objCustomer5 = Nothing
Return True

Else
'Return FALSE & EXIT
Return False

End If

End Function

66

Step 13: Create PRINT(ID) FUNCTION declarations:
O Purpose of this method is to search the database (5 Customer OBJECTS) for the object whose ID is parameter. Once found it
CALLS PRINT() METHOD of OBJECT. Returns a TRUE if successful and FALSE if object is NOT FOUND.
o How it works:
= Again, nested Elself statement are used
= During each Elself, the OBJECT’S IDNUMBER PROPERTY is tested against the ID parameter (PROPERTY = ID?), if
a match is found or TRUE, the code inside the body of the If statement is executed.
= This code simply CALLS THE PRINT() METHOD to execute, thus having the OBJECT PRINT ITSELF.
= ATRUE is returned & function EXITS, when a match and method calling is done. Otherwise if all OBJECS are tested
and NO MATCH IS FOUND, then a FALSE is returned and function EXITS.

hkhkkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhhkhkkhkkhkhkhhkhkhkkhkkhkhkhkhkhkhkkhkkkhkhkhhkkkx

*
' <summary>
' Function Prints object by searching for OBJECT whose ID is a parameter
' Interrogates each object for the ID.
' When found, CALLS the PRINT() METHOD in the object
' Returns a TRUE When printed OR FALSE when OBJECT not found and EXITS!
' </summary>
' <param name="IDNum"></param>
' <returns></returns>
' <remarks></remarks>
Public Function Print(ByVal IDNum As Integer) As Boolean
'Step 2-Search for object with ID
If objCustomerl.IDNumber = IDNum Then
'Step 3-When found set to nothing
objCustomerl.Print ()
'Step 4-Return OK
Return True

]
1
]
|l
]
|l
]
|l
1
|l

*
1
1
1
1
1
1
1
1
1

ElseIf objCustomer2.IDNumber
objCustomer2.Print ()
Return True

ElseIf objCustomer3.IDNumber
objCustomer3.Print ()
Return True

ElseIf objCustomer4.IDNumber
objCustomer4.Print ()
Return True

ElseIf objCustomer5.IDNumber
objCustomer5.Print ()
Return True

Else
'Return False Not found
Return False

End If

End Function

67

Step 14:Create PRINTALL() SUB declarations:
O Purpose of this SUB method is to simply call EACH DATABASE OBJECT’S (5 Customer OBJECTS) PRINT() method,
thus printing ALL OBJECTS.
o How it works:
= Calls each DATABASE OBJECT’S PRINT() METHOD.

R e T s T e
' <summary>

''"'" Prints all objects in database by CALLING each object's PRINT() METHOD
"' </summary>
"' <remarks></remarks>
Public Sub PrintAll()
objCustomerl.Print ()
objCustomer2.Print ()
objCustomer3.Print ()

objCustomer4.Print ()

objCustomer5.Print ()

End Sub End Function

68

Step 15: RENAME Forml to frmMainForm. Set the controls as shown in figure below:

Object Property Value

Forml Name frmMainForm
Text Main Form

Main Form !EE

Cugtomer Management |

Manager [nfarmation |

E sit

Step 16: Since this is a Windows Form-Driven Windows Application, the Startup Object will be set to frmMainForm:

Led b | Frm wb_ | MainMode.vh | frmCustomerMa,. nt.vb [Design] | frmMainForm,vb [Design] | clsPerson.vb >
Application J ‘ J
Complle
Assembly name: Root namespace:
Debug
[Lecturezasample1 |Lecturezasample1
Ref
ererences Application type: Icon;

Resources [windows application x| |(pefault rcon) = D

Startup form:

Settings
[FrmainForm | Assembly Information. .
Signing
W Enable application framemork
Security
windows application Framework properties
Publish

W Enable %P visual styles
I Make single instance application
W Save My Settings on Shutdown

Authentication mode:

[windows ~|
Shutdown mods:
[hen startup form doses =~

Splash screen:

[rione =] view Application Events

Step 17: Main Form, FORM-LEVEL DECLARATIONS AND LOAD EVENT:

Option Explicit On
Option Strict On

Public Class frmMainForm

Thhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhkhkhkhhkhkhkhkhkhkhhkhkhkhhkkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhhkkk

' EVENT-HANDLER DECLARATIONS SECTION
Thkkdkhkhkhhkhkhhhhhhkhhhhhhhkkhhhhhhkkhhkhhhkhhkhhkkhhkkhhkkkhhkhhkkhhkkhhkkkhhkkhhkkhhkkdkhk

Thhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhhhkhkhhkhkhkhhkhkhhhkhkhhkkhhhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkhkkhkhkhkkk

' <summary>

Calls Initialize() method in MODULE to LOAD OBJECTS to each pointer in database.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub frmMainForm Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

'Perform initialization by calling Module.Initialize () method
Initialize ()

End Sub

Step 18: Main Form CustomerManagement_Click Event:

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhhkhkkkkhkhkhhkhkkhkkhkhkhhkhkkhkkhkkhkhhhkhkkhkkhkkhkhhhkhkkhkkkhkhhkhkkhkkkkhkhkhkhkkkkkhkhkhkhkkkx

'Y <summary>

Click Event creates object of Customer Management Form

Calls METHOD in Form OBJECT so object can show itself

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnCustomerManagement Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnCustomerManagement.Click

'Step 1-Create object of Customer Management Form

Dim objCustomerManagementForm As New frmCustomerManagement

'Step 2-Display Customer Management Form
objCustomerManagementForm. ShowDialog ()

End Sub

70

Step 19: Main Form MANAGER BUTTON CLICK EVENT:

Thhkhkhkkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkkkhkhkhhkkkx

""" <summary>

Click Event creates object of the Manager Information Form

Calls METHOD in Form OBJECT so object can show itself

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnManager Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnManager.Click

'Step 1-Create object of Employee Management Form

Dim objManagerInformationForm As New frmManagerInformation

'Step 2-Display Employee Management Form
objManagerInformationForm. ShowDialog ()
End Sub

Step 20: Main Form Exit_Click Event:

Thhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhhkkk

' <summary>

Event-handler calls Form Close() method to close the Form.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnExit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

'Step 1-Close yourself
Me.Close ()

End Sub

End Class

71

Step 21: Create the Customer Management Form and add the controls shown below:

Object Property Value

Form2 Name frmCustomerManagement
Text Customer Management

B BI=IE

Customer Records
dd

Name

Get

DNumber [
Edit
BithDate [
Address [Dekete
Phone — —
Prirt Al
Exit

| Step 22 FORM-LEVEL DECLARATIONS & OBJECT POINTER:

Option Explicit On
Option Strict On

Public Class frmCustomerManagement
Thhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhhkhkhkhkhkkhkhkhkhkkhkkhkkhkhkhkhkkhkhkhhkhkhkhkhkkhhkhkhkhkhkhkhkkhhkhkhkhkhkkhkkhkhkhkhkkhkkhhkkkx

' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION
Thkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhhkhkhkhkhkkhkhkhkhkhkhkkhhkhkhkhkhkhkhkkhhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkkhkhkkx
'Module-level Object POINTER Declaration

Private objCustomer As clsPerson

Step 23 FORM LOAD EVENT:

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkkhkhkhhhkhkkhkkhkhkhhkhkkhkkhkkhkhhkhkhkkhkkhkkhkhhkhkhkkkkhkhkhhkkhkkkkhkkkhkhkhkhkkhkkkkhkhhkkk

' EVENT-HANDLER DECLARATIONS SECTION
Thhkhkhkhkkhkkkhkhkhkhkhkkkkhkhkhhkhkkhkkhkhkhhhkhkkhkkhkhkhkhhkhkhkkhkkhkhkhhhkhkkhkkhkhkhkhhhkhkkhkkhkhkhkhhkhkhkkhkkhkkhkhkhkhkhkkhkkkhkhhkkkx
'" <summary>
Form Load event. Create object and popoulate Form controls
With object's default wvalues
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>
Private Sub frmCustomerManagement Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
'Create Form-Level Object
objCustomer = New clsPerson

'Populate Form Controls with Object's DEFAULT data
With objCustomer
txtName.Text = .Name
txtIDNumber.Text = CStr (.IDNumber)
txtBirthDate.Text = CStr(.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone
End With

End Sub

| Step 24 Add code to the GET CLICK EVENT:

Thhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhhhkhkhhkhkhkhhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhhkkk

' <summary>

Calls Search method of module to search database for object

whose ID is passed as argument. Returns a pointer to the object

found, else returns a Nothing.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnGet Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnGet.Click

'Step 1-Call Overloaded Search(ID) to search for object that match ID

'Return pointer to object found.

objCustomer = Search (CInt (txtIDNumber.Text.Trim))

'Step 2-If result of search is Nothing, then display customer is not found
If objCustomer Is Nothing Then
MessageBox.Show ("Customer Not Found")

'Step 3-Clear all controls
txtName.Text = ""
txtIDNumber.Text = ""
txtBirthDate.Text = ""
txtAddress.Text = ""
txtPhone.Text = ""
Else
'Step 4-Then Data is extracted from customer object & placed on textboxes
With objCustomer
txtName.Text = .Name
txtIDNumber.Text = CStr (.IDNumber)
txtBirthDate.Text = CStr(.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone
End With
End If
End Sub

73

| Step 25 ADD code for the ADD CLICK EVENT:

Thkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkkkhkhkhhkhkkkhkhkhkhhkhkkkhkhkhkhkhkhkkkhkhkhkhkhkkhkkkhkhhkhkkhkkkkhkhkhkhkkhkkkkhkhhkkx

Private
Handles

End Sub

<summary>

Calls Module Add method to Add a new object to the object database
</summary>

<param name="sender"></param>

<param name="e'"></param>

<remarks></remarks>

Sub btnAdd Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
btnAdd.Click

'Step 1-Create New Object (OBJECT MUST BE A NEW OBJECT)

objCustomer = New clsPerson

'Step 2-Populate Form Level Object with Data from Controls
With objCustomer

.Name = txtName.Text.Trim

.IDNumber = CInt (txtIDNumber.Text.Trim)

.BirthDate = CDate (txtBirthDate.Text.Trim)

.Address = txtAddress.Text.Trim

.Phone = txtPhone.Text.Trim
End With

'Step 3-Call Add method to add new Customer to database
Dim result As Boolean = Add(objCustomer)

'Step 4-Test results & prompt user
If result Then
MessageBox.Show ("Custome Added Successfully")
Else
MessageBox.Show ("Database Full")
End If

74

| Step 26 Add code to the EDIT CLICK EVENT:

ok A R A AR A A A A A A A A A A A A A R AR A A A A A AR AR AR A A A AR AR AR A A A A I AR AR AR A A A A A AR AR AR A A A AR A AR ARk Xk

"' <summary>

Calls Module Search method to search database for object whose ID

is passed as argument and return its pointer and sets the object's

Properties with data from Form controls.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnEdit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnEdit.Click

'Step 1-Call Overloaded GetItem(ID) to search for object that match ID

objCustomer = Search (CInt (txtIDNumber.Text.Trim))

'Step 2-If result of search is Nothing, then display customer is not found
If objCustomer Is Nothing Then
'Step 3-Inform user customer not in database
MessageBox.Show ("Customer Not Found")
Else
'Step 4-Populate Form Level POINTER with Data from Controls, EXCEPT THE IDNUMBER
'What you do to the pointer, you are doing to the object in our Database.
With objCustomer
.Name = txtName.Text.Trim
.BirthDate = CDate (txtBirthDate.Text.Trim)
.Address = txtAddress.Text.Trim
.Phone = txtPhone.Text.Trim
End With
End If

End Sub

75

Step 27 Add code for the DELETE CLICK EVENT:

IR S S b b b S I I b b b I S ah Ib b b b b b b b b 2 S Sh b b Sb b b b b b b b S 2 S Ih dh ah b b b b b b 2 b S 2 dh db ah ab b b b b b b b b S dh dh Sh ab ab ab b b 4

'Y <summary>

Calls Module Remove method to delete the object from the database

based on ID or key

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnDelete_ Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnDelete.Click

'Step 1-Call Add method to add new Customer to database
Dim result As Boolean = Remove (CInt (txtIDNumber.Text.Trim))

'Step 2-Test results & promt user
If result Then

MessageBox.Show ("Customer Deleted")
Else

MessageBox.Show ("Customer Not Found!")
End If

‘ Step 28 Add code for the PRINT CLICK EVENT:

Thhkhkhkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkhkkhkkhkhkhhhkhkkhkkhkhkhhkhkkhkkhkkhkhhkhkhkkhkkkhkhhhkhkkkkhkhkhhkkhkkkkkkhkhkhkhkkhkkkkhkhhkkk

'Y <summary>

Calls module Print method to print the object's properties

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnPrint Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPrint.Click

'Step 1-Call Add method to add new Customer to database

Dim result As Boolean = Print (CInt (txtIDNumber.Text.Trim))

'Step 2-Test results & promt user
If result <> True Then

MessageBox.Show ("Customer Not Found!")
End If

End Sub

76

| Step 29 Add code for the PRINT ALL CLICK EVENT:

ok A R A A A AR A A A A A A A A A AR AR A A A A A AR AR AR A A A AR AR A AR A R AR AR A A I AR AR AR A A AR AR A A AR A A A AR,k K

'" <summary>

Calls Module PrintAll method to print all the objects in database

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnPrintAll Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnPrintAll.Click

'Step 1-Call PrintAll method in module
PrintAll ()

End Sub

Step 30 Add code for the EXIT CLICK EVENT:

R Ak A R AR AR A A A A A AR AR AR AR A A A AR A KR A A A A I A KA KA A A A AR AR A A A AR AR AR A AR A AR AR A A A A A AR A XK

'Y <summary>
Closes the Form
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>

Private Sub btnExit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

Me.Close()

77

| Step 31 Create the MANAGER INFORMATION FORM and add the controls shown below:

Object Property Value
Form4 Name frmManagerInformationForm
Text Manager Information Form
Manager Information Form !EE

Manager Information Details

Mame |

10 Wurnber |

Birth Date |

Address |

Phaone

Exit Frirt

Step 32 FORM-LEVEL DECLARATIONS & OBJECT POINTER:

Option Explicit On
Option Strict On

Public Class frmManagerInformation

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhhkhkkhkkhkhkhkhhkhkkhkkhkhkhhkhkkhkkhkkhkhkhhkhkkhkkkhkhhhkhkkhkkhkhkhhkhkkhkkkkhkhkhkhkkkkkhkhkhkkkx

' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION
Thkhkkkhhkhkhkkhkkhkhkkhkkkhkkhhkkhkkhkkkkhkkhhkkhkkkkkkhkkhkkkhkkhkkkhkkkhkkkhkkkkkkkx

'Module-level Object POINTER Declaration
Private objEmployee As clsPerson

78

| Step 33 FORM LOAD EVENT:

Thhkhkhkhkkhkkkhkhkhkhhkkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkkkhkhkhkhkkhkkkkhkhkhkhkkkx

' EVENT-HANDLER DECLARATIONS SECTION

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhkhhkhkkhkkhkhkhkhhkkhkkkhkhkhkhhkhkkkhkhkhkhkhkkhkkkhkhhkhkhkkhkkkhkhhkhkkhkkhkkhkhkhkhkhkkhkkkkhkhhkkx

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhkhkhhkhkkhkkkhkhkhkhkhkkkkhkhkhkhkkhkkhkkkhkhkhkhkkkx

""" <summary>
Event-handler when form is displayed. Form-Level POINTER, points to
MODULE MANAGER OBJECT POINTER. Manipulation of Form-Level pointer affect
MODULE MANAGER OBJECT.

Populates Form Textboxes with DATA from Form-Level POINTER or MANAGER OBJECT
in MODULE

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>

Private Sub frmManagerInformation Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

'Form-Level Object POINTER points to MANAGER OBJECT

objEmployee = objManager

'Populate Form Controls with Object's data

With objEmployee
txtName.Text = .Name
txtIDNumber.Text = CStr (.IDNumber)
txtBirthDate.Text = CStr (.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone

End With

End Sub

‘ Step 34 Add code to the PRINT CLICK EVENT:

Thhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhhkkkhkhkhkhhkhkkhkkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhhkkhkkhkhkhhkhkhkkhkkhkhkhhkhkkhkkkhkhkhkhkhkkhkkkkhkhhkk

<summary>

Event-handler call PRINT() METHOD of Form-Level object. Indirectly it is
actually calling PRINT () METHOD of MANAGER OBJECT IN MODULE

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnPrint Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPrint.Click

'Tell object to print itself
objEmployee.Print ()
End Sub

79

| Step 35 Add code to the PRINT CLICK EVENT:

Thhkhkhkhkkhkkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkkhkkhkkkhkhkhhkkkx

""" <summary>
' Event-handler calls Form Close() method to close the Form.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnExit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

'Close yourself (Form)
Me.Close ()

End Sub

End Class

80

| Step 36: BUILD & RUN APPLICATION

Test 1, 2 & 3 — Displaying Main & Manager Information Form. Also Clicking PRINT BUTTON:
Main Form !En Manager Information Form !En

Manager Information Details

- - . Alex Rod, 777, 12/12/1971, 192 East 8th, Brooklyn, 718-434-6677
anager [nformation Birth Date |‘| 24121901
Address 132 East Bth, Broaklyn
Exit
Phons |718-434-6677
Exit Frint
Y

RESULTS OF TESTS 1 -3:

+« Main Form displayed successfully.
+ Clicking the MANAGER INFORMATION BUTTON invoked the Manager Information Form
% Clicking PRINT BUTTON displayed the Manager’s Information.

*

*

*

Test 4 — Displaying Main & Customer Management Form:

Customer Managment Form !Eu
Customer Records
Add
Name 17
Get
DNumber [
Edit
BithDste [1/1,18m0
Address [Delete
Phone (000}000-0000 Print
Print Al
Exit
Vi

Test5 & 6 — Enter 111 in ID text box and Click GET button to search database for Customer. Then Click PRINT
button to display Customer’s data:

e — !En ‘

Customer Records

Add Joe, 111, 1201201965, 111 Jay Street, 715-434-5544

M ame oe
1D Mumber 111

BithDate [12/12/1965

Address |1 11 Jay Street %

Phone 7184345544 #
Print A1l

Get

Y 81

Test 7 & 8 — Enter 555 in ID text box and Click GET button to search database for Customer. Then Click PRINT
button to display Customer’s data:

s — IEH ‘

Customer Records
fdd Mamcy, 555, 12/12/1965, 555 Flatlands Ave, 718-434-9376
Mame Hancy

Get
1D Mumber [

Bith Date 12/12/1965

Address | 555 Flatlands Ave %

Phone 718-434-9575 LI
Frint &l

4

Test 9 — Enter 123 in ID text box and Click GET button to search database for Customer THAT DOES NOT
EXIST IN DATABASE:

_E Customer Managment Form !Eu
Customer Records
Customer Mot Found Add
Narne ,7
10 Mumber ,7
Edit
Bith Date: ,7
Address | Delete
Phone Print
Prirt All
Exit
Y

RESULTS OF TESTS 4 - 9:

« We proved that Customer Form displayed properly.

We searched for the first customer (111) and the last (555) and we successfully found the Customers

We also successfully Tested PRINTING A CUSTOMER.

» We also tested for a Customer that DOES NOT EXIST and we got the correct response, a message box and
the FORM was CLEARED!

+ So we can now assume SEARCHING & PRINTING A CUSTOMER ARE BOTH WORKING.

X3

S

X3

S

DS

82

Test 10 — Enter 222 in ID text box and Click GET button to search database for Customer. MODIFY THE NAME,

BIRTH DATE, ADDRESS, & PHONE fields. Then CLICK EDIT BUTTON to modify each PROPERTY:

Customer Managment Form !Eﬂ
Customer Records
Add
Hame Angel Fod
Get
1D Murnber 272
Birth Date 121401975
Address |221 NEW ADDRESS AVENUE BRODKLYN, N Delet
Phane 718-222.2222 Prirt
Frirt &1
Exit
.

Test 11 & 12 — Enter 111 in ID NUMBER text box and Click GET button to search database and display Customer

111 data. Then Enter 222 in ID NUMBER text box and Click GET button to search database for Customer 222

and VERIFY that DATA WAS MODIFIED for Customer 222:

Customer Managment Form !En
Customer Records
Add
Narme Joe
Get
1D Murnber 111
. Edit
Birth Date 12/12/1%5
Address ‘111 Jay Strest Delete
Phone 718-434-5544 Print
Pririt &1
Exit
4

RESULTS OF TESTS 10 - 12:

Customer Managment Form

Customer Records

Narne Angel Rod
10 Mumber ’2227
Birth D ate: 12/4/1978

Addiess |221 NEw ADDRESS AVENUE BROOKLYN, NY

Phone 718-222-2222

Add

Get

Edit
Delete:
Print
Frint All
Exit

4

+ We proved that we can MOIDIFY a Customer, by changing a Customer’s data, saving the record and then

retrieving it again to prove that data was changed.

Test 13 — Click the PRINTALL BUTTON. You should have a Message Box for each OBJECT IN DATABASE:

Joe, 111, 12/12{1965, 111 Jay Strest, 716-434-5544

angel, 222, 1/41972, 222 Flatbush Ave, 715-234-5524

Sam, 333, 9/21/1960, 333 Dekalb Ave, 715-390-3422

Maty, 444, 7/4/1970, 444 Jay Street, 715-444-1122

Mancy, 555, 12/12{1965, 555 Flatlands Ave, 718-434-9576

83

Test 14 — Enter NEW Customer data in the Form’s controls to ADD a NEW CUSTOMER, as shown in screen
below. Click ADD BUTTON. Note the resultant Message Box that DATABASE IS FULL.:

Customer Managment Form !En
Customer Records
M
ame Frank Harmis & Database Ful
et
1D Mumber 7
Birth Diate 0142241973
Address [77 Smith Street %
Phone 715-434-7777 Print
Frint Al
E it

A

RESULTS OF TESTS 13 & 14:

« InTest 13 we tested the PRINTALL functionality. All Customers were printed.
< InTest 14 we ATTEMPTED TO ADD A NEW CUSTOMER AND FAILED because DATABASE WAS

FULL. This is expected since there are no EMPTY or NULL POINTERS AVAILABLE AT THIS TIME.

Test 15— Enter 456 in ID text box and CLICK the DELETE BUTTON, to delete this record. Note the resultant
Message Box that customer was NOT FOUND as expected:

Customer Mok Found!

Test 16 — Enter 333 in ID text box and Click GET button to search database for Customer 333. Now CLICK the
DELETE BUTTON, to delete this record. Note the resultant Message Box that customer was removed:

Customer Managment Form !Eu
Customer Records _E
Name e Customer Deleted
Dhumbe [

Bitth Date 9/21/1960

Address |333 Dekalb &ve

Phone 715-890-3422 Print
Prinkt Al
Esit

84

Test 17 — Again, enter NEW Customer data in the Form’s controls to ADD a NEW CUSTOMER, as shown in
screen below. Click ADD BUTTON. Note the resultant Message Box that Customer was added successfully:

S— !Eu 1

Customer Records
Add

Custome Added Successhully
Hame Frank Harris

10 Humber FFHd

Get

BithDate 1172211573

Address |77 Smith Street %

Phane 184347777 L
Pritat A1

Y

RESULTS OF TESTS 15-17:

«» InTest 15 we attempted to DELETE A CUSTOMER THAT DOES NOT EXIST IN DATABASE. The
program responded successfully by displaying that CUSTOMER WAS NOT FOUND.

« InTest 16 we CREATED AN EMPTY SPACE IN DATABASE BY DELETING CUSTOMER 333. Now
we have room in database and should be able to ADD ONE CUSTOMER TO DATABASE TO TEST
ADD.

% InTest 17 WE WERE ABLE TO ADD A NEW CUSTOMER TO DATABASE SINCE ONE NULL
POINTER WAS AVAILABLE.

EXPOSING THE BUG IN THE PROGRAM

O We now exposed the BUG that exists in the program by deleting another Customer and searching or verifying the Customer
does not exist!

Test 18 — Enter 444 in ID text box and Click GET button to search database for Customer 444. Now CLICK the
DELETE BUTTON, to delete this record. Note the resultant Message Box that customer was removed:

Cusktomer Deleted

85

Test 19 — Enter 444 in 1D text box and Click GET button to search database for Customer 444 to verify that it was
REMOVED. THE RESULT IS THAT THE PROGRAM CRASHES AND THE FOLLOWING EXCEPTION IS

RAI SED A MullReferenceException was unhandled *
Object reference naot set to aninstance of an object.

Troubleshooting tips:
ilse the "new” kewword bo create an object instance, j
=l

Check to determine if the object is null before calling the method.

Get general help For this exception,
Search for more Help Onlinge. ..
Actions:

Wigw Detail. .,

Copy exception detail to the cipboard

#9 Lecture2ASample1 (Debugging) - Microsoft Visual Studio

File Edit “iew Project Buld Debug Tools Window Community Help

EHa s - 2 [# Intiaize HEBREA- .
b D PEEEx|@ TR =< |@ # E
MainModule.vb S0
|G§Mainl“lndule jl @Search ﬂ B[& (S
"1 cremarks></remarks: j ; Solution 'LectureZASamplel’
J—; Public Function Search(EvWal IDNum is Integer) As clsPerson - % Lecture2ASamplel

'3tep 1-3earch for object with ID %MyPrn]ett
If objCustomerl.IDNumber = IDNum Then %ESPSFS?H-VEM
'SFtep Z-Return Pointer to object and EXIT 5 rmtustomerilanagen

FrmMainForm. vb
Return ohjCustomerl rmranForm. Y
=] FrmManagerInformati
18] MainModule.vb

|

Elself ohjCustowerZ.IDMNumber = IDMwn Then J

Return ohjCustomerZ
A NullReferenceException was unhandled x

Object reference not sek bo an instance of an object.

Elself ohjCustower3.IDMNumber = IDMwumn Then
Return ohjiCustomerx3d

F v - Troubleshooting tips:
=+ Elself objCustomerd.IDMNumber = IDMNwn Then
Return obsonatomerd Use the "new" keyword to create an object instance, e
Check to determine if the object is null before calling the method.
ElseIf obhjCustowerS.IDMNumber = IDMNuwm Then Get general help Far this exception, j

Return ohjCustomers
Search for more Help Online. ..
Else
‘Mot found
Return Nothing

Actions:
View Detail...
Copy exception detail to the clipboard

End If
r End Function

AT R AT AT TR AT AT AT AR AT AT AT AT R AT AT TR AR AT AT AT A AT R AT AN TR AT R AT AT TR T AT RAE AT

-] P Lsunmary e
! Function Adds NEW objects passed as parameter to datshase.

| Sesrmhas Far fhe FTDST meathine A sweks DOTHTRD smd sdds ckbdect +. +ha+s DOTHTED

Command Window

@ IDNum
g objCustamerz
g objCustamer3
5 obijCustomer3. IDNumber
I d objCustanmerd
g objCustamers
7 objCustomerS. IDNumber

5] Adkos |] Locals | E5]wiakeh 1

Ready

Walue

944

{LecturezAsamplel .clsPerson}
{LecturezAsamplel .clsPerson}
7T

Mothing

{LecturezAsamplel .clsPerson}
555

Type J - J
Inteqger
Lectures

Lectures
Inteqger

Lectures
Lectures

Integer J J
r:;jCaH Stack. jﬁreakpuints] Command Window (=] Immediaste Window | [Z] Output

Ln 55 Cal1 chi1 NS

RESULTS OF TESTS 18 &109:
s InTest 18 WE DELETED CUSTOMER 444.

REMOVED.
¢+ At this point the program CRASHED AND WE RAISED AN EXECPTION.
« A matter of fact, with the EXCEPTION OF ADD operation, any operation we would have executed in the
program such as GET, EDIT, REMOVE, PRINT & PRINT ALL would have CRASHED THE
PROGRAM!

%

% In Test 19 we then attempted to SEARCH THE DATABASE for this Customer 444 to verify that it was

s
I
2
Y
O
_|
T
m
U
P
o
®
Py
>
<
O
Y
>
)
I
©)]
Py
m
x
O
m
o
-
@)
Z
Py
>
wn
m
9
i}
2
I
>
_|
)
_|
I
m
U
Py
@)
v9)
|_
m
<
N)
N)
N)
N)
N)
N)

o
wn
m
m
_|
I
m
<
m
wn
(92
>
®
m
T
wn
_|
m
W)
e
_|
T
m
m
X
O
m
v
-
@)
=z
T
@)
puj
>
O
|_
C
m

86

5.3.6 Sample Program 3 — Working With Forms & Custom Objects (VERSION 2)
Form Driven Application — Small Business Application Using Person Class

Problem statement:
0 UPGRADE VERSION 1 TO TAKE INTO ACCOUNT THE BUG OR ISSUE WITH VERSION 1.
O The basic requirements are the same as the previous version 1, but we need to modify the program to take into account the
issue found in version 1.

Issue with Version 1:
0 InVERSION 1 we found that when we DELETED A CUSTOMER AND ATTEMPTED TO SEARCH, REMOVE, EDIT,
PRINT, & PRINTALL THE PROGRAM CRASHED!!!.
o WHY?

0,
0.0

ONCE WE REMOVED AN OBJECT, WE WERE LEFT WITH A POINTER POINTING TO NULL OR NOTHING!!!
BECAUSE OF THIS EVERY TIME WE ATTEMPTED TO QUERY OR ACCESS APROPERTY OR CALL A
METHOD IN THE POINTER THE PROGRAM CRASHED BECAUSE WE CANNOT MANIPULATE OR

0,
0.0

Solution to Version 1 BUG:
O To resolve the problem WE NEED TO TEST FOR A NOTHING OR NULL PRIOR TO ATTEMPTING TO QUERY OR
MANIPULATE A PROPERTY OR METHOD IN A POINTER.
O Asyou can notice the MESSAGE DISPLAYED BY THE EXCEPTION stated the following:

+» Check to determine if the object is a NULL before calling the METHOD!!

O Therefore every time we attempt to WORK WITH AN OBJECT POINTER, we need to VERIFY IF OBJECT IS NOT
EMPTY OR NULL!
0 You can use the following code to TEST POINTER prior to manipulation:

'Step 1-Ask POINTER if NOT POINTING to NOTHING OR NULL
If Not (objCustomerl Is Nothing) Then

'"MANIPULATE OBJECT IN BODY OF IF

End If

% WHAT IS BEING DONE HERE IS THAT YOU ARE ONLY ACCESSING THE POINTER IF IS NOT POINTING TO
NOTHING!

% THIS IS REVERSE LOGIC, normally we would say “IF POINTER IS NOTHING DON’T ACCESS”, the REVERSE
LOGIC is “IF POINTER IS NOT NOTHING, ACCESS”, note that both of these statements accomplish the same thing a
POINTER IS ONLY MANIPULATED IF IS NOT POINTING TO A NOTHING OR NULL!

Application Architecture & OBJECT MODEL Requirements:
O Sameas VERSION 1. Same class, same architecture.

Form Requirements
o Sameas VERSION 1.

Module Requirements
o IS IN THE MODULE THAT CHANGES WILL TAKE PLACE! This is where we find the PROCESSING METHOD THAT
DO THE WORK AND WHERE MANIPULATION OF THE DATABASE POINTERS TAKE PLACE.
0 We need to MODIFY THE PROCESSING METHOD TO SKIP OR AVOID THE DATABASE POINTERS THAT ARE
NOTHING!!!
O Because of this the IMPLEMENTATION of the PROCESSING METHODS WILL CHANGE.

87

HOW IT'S DONE:

Part | — Modify the Module as follows:

Standard Module:
Step 1: Add a Module to the Project and set its properties as show in table below:

Object Property Value
Module Name MainModule
Text MainModule

Step 8: Add Module GLOBAL declarations (SAME AS VERSION 1):
0 Inthe module, we will declare 5 clsPerson OBJECT POINTERS. These POINTERS will eventually point to objects which
will represent our simulated DATABASE OF CUSTOMERS!
O Inaddition we create one complete OBJECT using parameterized constructor with data. This object represents a business
employee manager.

Option Explicit On
Option Strict On

Module MainModule
Thkhkhkhkkhkkhkhkhkhkkkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhbhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkhkhkhkhkhkkhkhkhkhkkkkhkhkixxkx

' GLOBAL VARIABLES & OBJECT DECLARATIONS SECTION
Thkkdkhkhkhhkhkhkhhhkhhhkhkdhhhkhhhhkhhhkhhhkhkdhhhhhhhhhhkkhhhhhhkhhhhhhkhhhkhhhkhhkhhkkhhkkhhkhkkkhk

'Declare 5 POINTERS to Customer Object (REPRESENT OUR SIMMULATED DATABASE)

Public objCustomerl, objCustomer2, objCustomer3, objCustomer4, objCustomer5 As clsPerson

'Declare & Create Public Object representing THE MANAGER employee, initialized with Data
Public objManager As clsPerson = New clsPerson("Alex Rod", 777, #12/12/1971#,
"192 East 8th, Brooklyn", "718-434-6677")

88

Step 2: Add Module INITIALIZE() Method declarations (SAME AS VERSION 1):
O Mow we begin to add PROCESSING METHODS TO THE MODULE that will do the work for the FORMS.
Q The first method we implement is the INITIALIZE() method. This sub procedure creates 5 OBJECTS of the PERSON
CLASS and assigns them to the 5 GLOBAL POINTERS.
O At this point the simulated DATABASE OF CUSTOMERS is not POPULATED WITH OBJECTS!

Thhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhhkhkhhkhkhkhhkhkhkhhkhkhhkhkhkhhkkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhhkkk

' METHOD DECLARATIONS
Thhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhhkhkhkkhkhkhhkhkhkhkhkkhhkhkhkkhkhhkhkhkkhkkhhkhkhkhkhkkhkkhhkhkhkkhkkhkkhkhkkhkkhkkhhkkkkx
' <summary>
! Intended to execute at the start of the program. Can be used to perform
! any initialization. In this case, to populate EACH POINTER with OBJECT at
! start of the program. We are simply populating the database with data.
! </summary>
''' <remarks></remarks>
Public Sub Initialize()
'Create objects and initialize with data via paremterized constructor
objCustomerl = New clsPerson("Joe", 111, #12/12/1965#, "111 Jay Street",
"718-434-5544")

objCustomer2 clsPerson("Angel", 222, #1/4/1972#, "222 Flatbush Ave", _
"718-234-5524")

objCustomer3 clsPerson("Sam", 333, #9/21/1960#, "333 Dekalb Ave",
"718-890-3422")

objCustomer4 clsPerson("Mary", 444, #7/4/1970#, "444 Jay Street", _
"718-444-1122")

objCustomer5 clsPerson ("Nancy", 555, #12/12/1965#, "555 Flatlands Ave"
"718-434-9876")

End Sub

89

Step 3:

MODIFY SEARCH(ID) FUNCTION declarations:

In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS
How it works:
= Individual If Not (objCustomerl Is Nothing) Then declarations are used to TEST EACH OBJECT

PRIOR TO MANIPULATION

= Then ANOTHER IF statement is used to TEST the OBJECT’S IDNUMBER PROPERTY against the ID NUMBER
PROPERTY (PROPERTY = ID?), if a match is found THE PROPER RESPONSE IS RETURNED AND PROGRAM
EXITED.

= This process is repeated for every object in DATABASE.

hhkkkkhkhkhkhkkhkkkkhkhkhkhkkhkkhkkkhkhhkhkhkkhkkkhkhhkhkkhkkhkkkhkhhhkkhkkhkkhkhkhhhkhkkhkkhkhkhkhkhkhkkkhkkhkhkhkhkhkkkhkkhkhkhkhkkhkkkkkxk

' <summary>
Function Searches the database for POINTER to object whose ID is a parameter
Skips the empty or NULL pointers before interrogating the object for the ID.
Returns POINTER to OBJECT and EXITS!
</summary>
<param name="IDNum"></param>
<returns></returns>
"1 <remarks></remarks>
Public Function Search(ByVal IDNum As Integer) As clsPerson
'Step 1-Ask POINTER1 is NOT POINTING to NOTHING OR NULL
If Not (objCustomerl Is Nothing) Then
'Step 2-Search for object with ID
If objCustomerl.IDNumber = IDNum Then
'Step 3-If so, Return pointer to object & EXIT
Return objCustomerl
End If
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer2 Is Nothing) Then
If objCustomer2.IDNumber = IDNum Then
Return objCustomer2
End If
End If

'Ask POINTER3 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer3 Is Nothing) Then
If objCustomer3.IDNumber = IDNum Then
Return objCustomer3
End If
End If

'Ask POINTER4 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer4 Is Nothing) Then
If objCustomer4.IDNumber = IDNum Then
Return objCustomer4
End If
End If

'Ask POINTER5 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer5 Is Nothing) Then
If objCustomer5.IDNumber = IDNum Then
Return objCustomer5
End If
End If

'Did not find object in search return a nothing
Return Nothing

End Function

Step 4: Create ADD(object) FUNCTION declarations:
0 THERE IS NO CHANGE REQUIRED IN THIS METHOD.
O THIS IS BECAUSE THIS METHOD IS ACTUALLY SEARHCING FOR A NULL OR NOTHING IN ORDER TO ADD A
NEW OBJECT.
o How it works:
= Nested Elself statement are used to ask EACH POINTER if is pointing to a NOTHING OR NULL.
= During each Elself, if the POINTER IS NOTHING then parameter DATABASE POINTER is assigned to PARAMETER
POINTER, thus adding the object to database.
= ATRUE is returned and function EXITS.
= ONLY AFTER ALL DATABASE POINTERS ARE TESTED AND NO NULLS ARE FOUND is a FALSE
RETURNED.

hkhkkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkhkkhkkhkhkhkhhkhkkhkkhkhkhkhhkhkkhkkhkhkhkhhkkhkkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkkkkkxk

' <summary>

''" Function Adds NEW objects passed as parameter to database.

' Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.
' Returns a TRUE When OBJECT added OR FALSE when no empty POINTERS and EXITS!!

' </summary>

' <param name="objE"></param>

' <returns></returns>

' <remarks></remarks>

Public Function Add(ByVal objE As clsPerson) As Boolean

]
1
]
|l
]
|l
1
|l
1

)
]
)
\l
)
\l

'Step 1-Ask if object is NULL
If objCustomerl Is Nothing Then
'Step 2-If NULL, database POINTER = Paramter POINTER
objCustomerl = objE
'Step 3-Return success & EXIT
Return True

ElseIf objCustomer2 Is Nothing Then
objCustomer2 = objE
Return True

ElseIlf objCustomer3 Is Nothing Then
objCustomer3 = objE
Return True

ElseIf objCustomer4 Is Nothing Then
objCustomer4 = objE
Return True

ElseIf objCustomer5 Is Nothing Then
objCustomer5 = objE
Return True

Else
'No space available
Return False

End If
End Function

91

Step 5: Create REMOVE(ID) FUNCTION declarations:
QO In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS
Q How it works:
= Individual If Not (objCustomerl Is Nothing) Then declarations are used to TEST EACH OBJECT
= Then ANOTHER IF statement is used to TEST the OBJECT’S IDNUMBER PROPERTY against the ID NUMBER
PROPERTY (PROPERTY = ID?), if a match is found THE OBJECT IS REMOVED AND PROPER RESPONSE IS
RETURNED AND PROGRAM EXITED.

hkhkkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhkhkkhkkhkkkhkhkhhkkhkkhkkhkhkhkhhkkhkkhkkhkhkhkhkhkkkkkhkhkhkhkkkkhkhkhkhkkhkkkkkxk

'!' <summary>
'' Function Removes object from database by searching for OBJECT whose ID
'' is a parameter. Skips the empty pointers before interrogating the
'' object for the ID. When found, Removes object by setting POINTER TO NOTHING
''" Returns a TRUE When removed OR FALSE when OBJECT not found and EXITS!
"' </summary>
Public Function Remove (ByVal IDNum As Integer) As Boolean
'Ask POINTER1 is NOT POINTING to NOTHING OR NULL
If Not (objCustomerl Is Nothing) Then
'Step 2-Search for object with ID
If objCustomerl.IDNumber = IDNum Then
'Step 3-When found set to nothing
objCustomerl = Nothing
'Step 4-Return OK & EXIT
Return True
End If
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer2 Is Nothing) Then
If objCustomer2.IDNumber = IDNum Then
objCustomer2 = Nothing
Return True
End If
End If

'Ask POINTER3 is NOT POINTING to NOTHING OR NULL

If Not (objCustomer3 Is Nothing) Then
If objCustomer3.IDNumber = IDNum Then
objCustomer3 = Nothing
Return True
End If
End If

'Ask POINTER4 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer4 Is Nothing) Then
If objCustomer4.IDNumber = IDNum Then
objCustomer4 = Nothing
Return True
End If
End If

'Ask POINTER5 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer5 Is Nothing) Then
If objCustomer5.IDNumber = IDNum Then
objCustomer5 = Nothing
Return True
End If
End If

'Did not find object in search return a nothing
Return False

End Function

Step 6: Create PRINT(ID) FUNCTION declarations:
QO In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS
Q How it works:
= Individual If Not (objCustomerl Is Nothing) Then declarations are used to TEST EACH OBJECT
= Then ANOTHER IF statement is used to TEST the OBJECT’S IDNUMBER PROPERTY against the ID NUMBER
PROPERTY (PROPERTY = ID?), if a match is found THE OBJECT PRINT() METHOD IS CALLED AND PROPER
RESPONSE IS RETURNED AND PROGRAM EXITED.

Thhkhkkhkhkhkhkhkkhkhkhhkhkhkhkhkkhkhkhkhkhkhkkhkhkhhkhhkhkhkkhhkhhkhkhkkhhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkkhkkx
''"'" <summary>
''' Function Prints object by searching for OBJECT whose ID is a parameter
''"'" Skips the empty pointers before interrogating the object for the ID.
''"'" When found, CALLS the PRINT() METHOD in the object
'''" Returns a TRUE When printed OR FALSE when OBJECT not found and EXITS!
'1' </summary>
Public Function Print(ByVal IDNum As Integer) As Boolean
'Ask POINTER1 is NOT POINTING to NOTHING OR NULL
If Not (objCustomerl Is Nothing) Then
'Step 1l-Search for object with ID
If objCustomerl.IDNumber = IDNum Then
'Step 2-Call Object's Print Method
objCustomerl.Print ()
'Step 3-Return OK & EXIT
Return True
End If
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer2 Is Nothing) Then
If objCustomer2.IDNumber = IDNum Then
objCustomer2.Print ()
Return True
End If
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer3 Is Nothing) Then
If objCustomer3.IDNumber = IDNum Then
objCustomer3.Print ()
Return True
End If
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer4 Is Nothing) Then
If objCustomer4.IDNumber = IDNum Then
objCustomer4.Print ()
Return True
End If
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer5 Is Nothing) Then
If objCustomer5.IDNumber = IDNum Then
objCustomer5.Print ()
Return True
End If
End If

'Did not find object in search return a nothing
Return False

End Function

Step 7: Create PRINTALL() SUB declarations:
QO In this version, BEFORE INTERROGATING EACH POINTER we VERIFY AND SKIP the empty OR NULL POINTERS
Q How it works:
= Individual If Not (objCustomerl Is Nothing) Then declarations are used to TEST EACH OBJECT FOR
NOTHING.
= PRINT METHOD IS CALLED INSIDE THIS IF STATEMENT.

Thhkhkhkkhkkhkkkhkhkhkhkhkkhkkkhkhkhkhkhkkhkkhkhkhkhhkkhkkhkkhkhkhkhkhkkhkkhkkhkhhkhkhkkhkkkhkhhkhkhkkhkkkhkhkhkhkhkhkhkkhkkkhkhkhkhkkhkkkkhkhhkkk
' <summary>

''' Sub Prints all objects in database by CALLING each object's PRINT() METHOD
'''" Skips the empty pointers before CALLING the METHOD.

"' </summary>

"' <remarks></remarks>

Public Sub Printall ()

'Ask POINTER1 is NOT POINTING to NOTHING OR NULL
If Not (objCustomerl Is Nothing) Then
'Step 2-Call Object's Print Method
objCustomerl.Print ()
End If

'Ask POINTER2 is NOT POINTING to NOTHING OR NULL

If Not (objCustomer2 Is Nothing) Then
objCustomer2.Print ()

End If

'Ask POINTER3 is NOT POINTING to NOTHING OR NULL

If Not (objCustomer3 Is Nothing) Then
objCustomer3.Print ()
End If

'Ask POINTER4 is NOT POINTING to NOTHING OR NULL

If Not (objCustomer4 Is Nothing) Then
objCustomer4.Print ()

End If

'Ask POINTERS5 is NOT POINTING to NOTHING OR NULL
If Not (objCustomer5 Is Nothing) Then
objCustomer5.Print ()
End If
End Sub

End Module

94

| Step 8: BUILD & RUN APPLICATION

TESTING THE BUG ONCE AGAIN IN THE PROGRAM
O Let’s test once again the BUG and see if the program crashes!

Test 1 — Enter 444 in ID text box and Click GET button to search database for Customer 444. Now CLICK the
DELETE BUTTON, to delete this record. Note the resultant Message Box that customer was removed:

Customer Managment Form !E u m

Customer Records
Add Customer Deleted

Mame |Maw

1D Murnber 444

E dit
Birth Date /441970

Phane 715-444-1122 Print
Print &/l
Exit

Get

4

Test 2 — Enter 444 in ID text box and Click GET button to search database for Customer 444 to verify that it was
REMOVED. THE RESULT IS THAT THE PROGRAM INFORMS THE USER THAT THE CUSTOMER

WAS REMOVED:

Cuskarmer Mak Faund

% ISSUE WITH BUG WAS RESOLVED!!!

95

Homework Assignment 3

O This program is an upgrade to Homework Assignment 2. Read and follow each of the following requirements. You will be graded
based on all requirements being met.

O Copy HW2 to another Folder and rename it to HW3, including solution, project etc.

O Open the project and add the following Class and requirements:

Class Requirements:

I. ADD A CLASS MODULE and Create an Employee Class, this class should have the following Class requirements:
1) Private Data Members
= UserName — String
= Password — String
= JobTitle - String
2) Create the necessary Properties
3) Create a Default Constructor & Parameterized Constructor
4) Create the following Methods inside the class:
= Function: Authenticate (Argl, Arg2)
- Parameter Arguments: This function should take two parameter arguments ByValue representing the
Username & Password.
- Process: Compares each of the parameters values to the private username & password variables and returns a
TRUE if both of these values match, otherwise it returns a FALSE.
Il. (OPTIONAL BUT HIGHLY RECOMENDED)Write a simple test driver program to test this class. In a Console Application,
simply create one object and test each of the properties and methods, similar to Example in your notes.

Form & Module Requirements:

I11. Modify your project to create objects of the clsEmployee class and use them. Re-use the Login Program in HW #2 as follows:
Login Form:
1) The login form should keep all functionality from HW #2. The only exception is in the GetUserInfoDisplayForm(u,p), the
password parameter should now be a STRING, based on the Employee Class Password being a String. Modify method
accordingly.

Standard Module:

2) DELETE the UsernameDatabase & PasswordDatabase Arrays, which simulated our database or storage of employees.

3) Inthe Module create 5 individual Public EMPLOYEE Objects. These objects are now simulating the database of
employees. Do not use any list or arrays etc! ONLY 5 individual single objects.

4) Create a Sub procedure named Initialize() that will populate the 5 public objects as follows: (Joe,111, Manager), (Angel,
222, Director), (Sam,333,0ffice Assistant), (Mary,444,Vice President), (Nancy,555,Secretary). This method must be
called from Main() to populate the objects with data prior to any authentication or login method calls.

5) SUB MAIN() -THE CODE IN SUB MAIN SHOULD NOT CHANGE from HW2, THE ONLY EXCEPTION IS THAT
YOU WILL NEED TO CALL Initialize() METHOD to populate the 5 OBJECTS prior to any processing in SUB MAIN().

6) Inthe Sub Main() procedure, keep the code from HW2 to control the program: loop, message box etc.

7) MODIFY ANY VARIABLE OR PARAMTER THAT USES PASSWORD FROM AN INTEGER TO STRING!

8) Note that most of the modifications will take place inside the Authenticate Method of the Module as shown below:

Module Authenticate Method:

9) IMPORTANT! Note that in HW?2, you created a function named Authenticate() in the MODULE, keep this function as
part of your program in the module. Do not confuse this module-level Authenticate with the internal Object.Authenticate()
of the Employee Objects.

10) The main Authenticate() should SEARCH DATABASE and call each of the 5 object’s internal Authenticate() to verify
authenticity. The object’s Object.Authenticate() Will RETURN a TRUE or FALSE results to the module Authenticate(),
and the module Authenticate() should then return a TRUE or FALSE results to Sub Main(). Therefore, you will have two
Authenticate() functions, one in the Module and one inside the class. DO NOT CONFUSE THEM, IT IS NOT THE
SAME!

11) The Module Authenticate parameter syntax in the header, needs to be modify to reflect a password of String data type

Q Duein two classes!

I

