CS608 Lecture Notes

Visual Basic.NET Programming

Object-Oriented Programming
Custom Classes & Objects — Advanced Topics
(Part Il of 1lI)

(Lecture Notes 2B)

Prof. Abel Angel Rodriguez

CHAPTER 6 CLASSES & OBJECTS -ADVANCED CONCEPTS......oiiiiiiiiiiiiiccieneee 3

6.1 Advanced Methods - Method OVEIIOAAING.........ccccuiiiiiie it e et et e s te st e s beeseeseese e besbesbeeteenseseeneenre e 3
6.1.1 Introduction t0 MethOd OVEIOAING........coviiiiiieiiiieise ettt b bt s st b s bt eeb e nb e b e st e e be st e s enenbensenes 3
6.1.2 OVErloading REGUIAN IMIELNOUSuoiviiiiiiiciite ettt ettt bttt e st b et bt e st e b et e s e e bttt b e et e b enenbe e enes 4
6.1.3 OVerloading CoNSIIUCION IMEBINOUSiuiieiiiiieetiite ettt bbbt s bttt bt e bt st e eb e st eb et e b e st nbe s enes 5
6.1.4 Sample Program 1 — Methotd OVEIOAUINGccveviiriiiitiriiieii sttt s bt s b b s et b s e e b e st e es e sbe e b e st e s enenbesenes 8

Module-Driven Windows Application — Adding Method Overloading Constructors to the Person Class.........c.cccvevrveviiernininninnn 8

6.2 Creating Custom Events inSide OUF CUSTOM CIASSESeveiriiririiriirieirie sttt sttt sttt b et b et st b et s bt e e b b e e 18
6.2.1 EVENLS IN VISUAI BASICS.NET .. .oviiieieieiieiiie st stesieeie et te st sa et e tesaestesteeseeseesteseesaenteaseese e e e s seneeeeenEeeneeseeneenaeneeetenreensesaenseneenes 18
6.2.2 Creating your 0OWN EVENLS INSTAE ODJECESeiviveiiiiirieiiti ittt b et b et b etk sb e b et eb e b et et e e e s e ebenreneas 19

SEEP | — DECIAIE the EVENL.......eeiiieeieice ettt e et ae s e se e s et e st e be e Re e s e e s e en e e e e e Ee e ReeEeeneene e st e nbeneeaneeneeneeneeneenrenes 19
] I LI T VSTl o I T o= g T o SRS 21
Step 11 — (Outside the Class) Create Objects Using KeyWord WIthEVENLSc.ccovvivieiieiiee e 22
Step IV (a,b) — (Optional & Outside the Class) a) Generate the Event-Handler and b) Enter Code in the Event-Handler.............. 23
6.2.3 Sample Program 2 — Creating CUSTOM EVENTScviiiiiie ettt ettt s neere e e e aesaesresreeneenee e eneees 24
Form Driven Application — Adding EVENts t0 the Person ClIass. ...ttt st 24

6.3 WOrking With Arrays QN0 ODJECTSc.oiiiiiiiiiiie ettt bbb bbb bbbtk b et b bt et e b b et b 34

6.3.1 The AITAY ClaSS REVISITEAc.eciiiiitiitiietiite ettt etttk b ekt h ekt h e e ekt e bt b e b e e bt eb e e bt e ekt eb e s b e e et e nb et abennenea 34
OVEIVIEW OF ATTAYS ...ttt ettt b et bbbt s s bt bk bt e h £ E bbb e bR b e H R £ e H € E R e b e b e eE e b b e e bt e b et e bt e b et e bt e b e b e bt et b 34
6.3.2 AITays NANAIING OF ODJECES ...ttt b etk b etk b e e e bbb b e bbbt e b b e bt eb e nb et et e sbe e ebennenea 36
CUSEOM ODJECES BNTU ATTAYSvereitiitieeieetit ettt ettt ettt se bt eb et b st bt b e s £ bt b e s £ b e b e s e R e b e n e b €A b e b e Rt b e b e bt ek e b e e e bt e b et et e e b et ebenber e 36
Creating ATTAYS OF ODJECLSeiiiiiuiieiiit ittt bbb h b b s bt b R bt bR e bt b s bbb e bbb e b e bt ek e b et e bt e b et e bt e b et et b 36
Populating Array EIEMENTS WIth OBJECEScuiiiiiiiiiec bbbttt bbbttt nn s 37
ACCESSING ODJECT EIBMENTS.ee ittt bbbkt b e bbbt b e ekt e bt e e bt e b e e e bt e b e b e s e ebenb e st ebenneseabenrenea 38
Searching and Setting Properties Of all ODJECLS IN AITAYcc.oiiiriiiiieee bbb e 39
SEArChING the AITAY EIBIMENTS.c.eiiiiiiiiie et bbbt bbb bbb bbb bbbt e bt bbbt nben e 39
6.3.4 Sample Program 3 — WOrking With Arrays & ODJECEScuiiieiiirieiiienie ettt ettt sb e et sb e et sne e 40
Module-Driven Window Application — Arrays & PErsON ClaSS.........ccuiiiiiriiiinieieeiie ettt sttt sr st s sbe e sbe e 40
6.3.5 Sample Program 4 — Working With Arrays & ODjJECS (Pt 1)ooveiiiiiiiiiee e 54
Module-Driven Window Application — Arrays & PErsSON ClaSS.........ccuiiiiiriiiinieieiesie ettt sr st s sbesre e sbe b 54
5.3.5 Sample Program 5 — Small Business Application EXAMPIE........coveiiiiiiiieieiie sttt st resae e 66
Windows Driven Application — Customer & Retail Management............ccooiiiiiiiiiii e e e 66

Chapter 6 Classes & Objects -Advanced Concepts

6.1 Advanced Methods - Method Overloading

6.1.1 Introduction to Method Overloading
O As we know, you cannot have two variables or methods with the same name within a block of code say Module, Form, and Class

a ?\Enes are unique and cannot be duplicated.
O Also, on arelated topic, not only does a Method’s name must be unique, but when you call a method you must call it with the
same NUMBER of arguments and DATA TYPE as the NUMBER parameters and DATA TYPE of the declaration. For example:
» If you declare a method named
Public Sub CalculateTotal (ByRef decTotal As Decimal, ByVal decTax As Deciaml)
decTotal = decSubTotal + (decSubTotal * decTax)
End Sub
= When you call this Method you must call it with the same NUMBER of arguments & DATA TYPE as follows:
objInvoice.CalculateTotal (decTotalCharges, decSalesTax)
= Any of the following statements will result in Compiler Errors:

objInvoice.CalculateTotal (decTotalCharges) ‘Error only one argument

objInvoice.CalculateTotal (decTotalCharges, decSalesTax, decAmount) ‘'Error to many

argu.
objInvoice.CalculateTotal (intTotalCharges, decSalesTax) '‘Error wrong data type
objInvoice.CalculateTotal (decTotalCharges, strSalesTax) ‘Error wrong data type

O Ok now we have reviewed the basic rules for naming and methods, lets take a look at what Method overloading does for us.
O Method Overloading allows you to do the following:

= Create Methods with the Same Name
= Each one accepting different NUMBERS of parameters
= Each one accepting different DATA TYPE

a Inshort Method Overloading allows us to create those statements which generated errors in the above examples
Q The rules to Method overloading is as follows:

1. You can create multiple methods with the same name, but the NUMBER of Parameters OR the data type must be
different for each one.

2. 'YOU CANNOT have two methods that are identical!!!! Same # of Parameters & Data Type
3. Each Method can perform what ever functionality you code it to do.

O So pretty much the rules have not changes, since each methods parameter or data type must be different for each method with the
same name.

a The only rule that has been broken is having methods with the same name, but their number of parameters and data type must be
different.

6.1.2 Overloading Regular Methods

a

Q

OK now what we understand what Method overloading is lets look at how to overload regular methods and an application of the
rules
The rules states that you can have two or more methods with the same name, but they cannot have the same number of parameters

or data type.
As an example lets look at the various valid declarations of the method CalculateTotal():
= Using Method Overloading we can declare the following Methods inside a Class:

‘No parameters version
Public Sub CalculateTotal ()

‘Code in what ever you desire here!
decTotal = decSubTotal + (decSubTotal * decTax)
End Sub

‘Two parameters version with data type: dec & dec
Public Sub CalculateTotal (ByRef decTotal As Decimal, ByVal decTax As Deciaml)

decTotal = decSubTotal + (decSubTotal * decTax)
End Sub

‘One parameters version with data type: dec
Public Sub CalculateTotal (decTotal As Decimal)

decTotal = decSubTotal * decTax
End Sub

‘One parameters version with data type: int
Public Sub CalculateTotal (ByVal intTotal As Integer)

intTotal = intValue
End Sub

‘Two parameters version with data type: int & int
Public Sub CalculateTotal (intTotal As Integer, charName As String)

intTotal = intValue

charNamel = charValue
End Sub

++ Note that not one of these methods are identical..ONLY THE NAME!!!
= From these declarations, we can make the following calls:
objInvoice.CalculateTotal (decTotalCharges) ‘Will call the one-paremeter dec version

objInvoice.CalculateTotal (decTotalCharges, decSalesTax) 'Z2-parameter, 2-dec data types

objInvoice.CalculateTotal () 'No argument version

objInvoice.CalculateTotal (intTotalValue, charClientName) ‘2-par, 1int & char data
types

objInvoice.CalculateTotal (intValue) ‘l1-par, int data type version

= Each of these calls will call the corresponding method that matches its number of parameter & data type

6.1.3 Overloading Constructor Methods

Q
Q
Q

One good place to use Method overloading is in the Constructor Method

As you recall, we can create default (no argument) Constructor or Parameterize (arguments) constructors.

But there was one draw back to using only a Parameterize Constructors was that once you crate one, you must always create the
Object with those parameters, you cannot create Objects with no parameters. In order to do so you needed to explicitly also add a
Default Constructor.

For example, in the clsPerson class examples we covered, we needed to create both the default & the parameterized in order to be
able to declare empty objects and those populated. This is our only option, we can only create objects with no parameters or
three parameters ONLY'!

Example 1:
O Declaring a default and three parameters Constructors:

Public Class clsPerson
Private strName As String
Private intIDNumber As Integer
Private dBirthDate As Date

Public Sub New ()
strName = “”
intiDNumber =0
dBirthDate = #1/1/1900#
End Sub

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)
strName = strNn
intIDNumber = intID
dBirthDate = dBDate

End Sub

End Class

O Now we can create objects of the clsPerson Class using both the default or the 3 parameter constructor:

‘Creating Objects with no Parameters and with Parameters:
Dim objEmployeel As clsPerson = New clsPerson ()
Dim objEmployee2 As clsPerson = New clsPerson(“Joe Smith”, 111, #12/12/1965%)

objEmployeel objEmployee2 / <“Joe, Smith”
- 111
® ™ 12/12/1965

K/

% Note that these is our only options, to create a default or 3 parameter Objects

O But supposed we wanted to also be able to create objects using only on parameter, or two or with different data types.

O Inorder to do this then we need to apply the rules to Method Overloading. Since a Constructor only has one name New, we
simply just need to create constructor with the number of parameters and data type we wish.

O For example using method overloading we can create the following Constructors for the clsPerson Class:

= The Overloaded Constructor Methods inside the clsPerson Class:

Example 2:

Q Declaring various Constructor Overloaded Methods:

Public Class clsPerson
Private strName As String
Private intIDNumber As Integer
Private dBirthDate As Date

Public Sub New ()
strName = “”
intiDNumber =0
dBirthDate = #1/1/1900#
End Sub

Public Sub New (ByVal strNn As String)
strName = strNn
intIDNumber =0
dBirthDate = #1/1/1900#

End Sub

Public Sub New (ByVal intID As Integer)
strName = “”
intIDNumber = intID
dBirthDate = #1/1/1900#

End Sub

Public Sub New (ByVal dBDate As Date)
strName = “”
intIDNumber =0
dBirthDate = dBDate

End Sub

Public Sub New (ByVal strNn As String, ByVal dBDate As Date)
strName = strNn
intIDNumber = CInt(Int((999 * Rnd()) + 111)) ‘Generates a random number between 999 and 111
dBirthDate = dBDate

End Sub

Public Sub New (ByVal strNn As String, ByVal intID As Integer, ByVal dBDate As Date)
strName = strNn
intIDNumber = intID
dBirthDate = dBDate

End Sub

End Class

= Inthe calling program, we can create the various versions of clsPerson Objects:

Example 1 (Continue):
a Inthis example we created various Objects of the Class clsPerson, using the Overloaded constructors:

‘Creating Objects with using the Overloaded Constructors:

Dim objEmployeel As clsPerson = New clsPerson ()

Dim objEmployee2 As clsPerson = New clsPerson(“Joe Smith”)

Dim objEmployee3 As clsPerson New clsPerson(111)

Dim objEmployeed4 As clsPerson = New clsPerson (#12/12/1965#)

Dim objEmployee5 As clsPerson = New clsPerson(“Joe Smith”, #12/12/1965%)

Dim objEmployee6 As clsPerson = New clsPerson(“Joe Smith”, 111, #12/12/1965#)

objEmployeel objEmployee2
o o—

obJEmpl@ objEmployee4
- |]

objEmployee5 “Joe, Smith” objEmployee6 “Joe, Smith”
789 111
&— 12/12/1965 @——> 12/12/1965

6.1.4 Sample Program 1 — Method Overloading

Module-Driven Windows Application — Adding Method Overloading Constructors to the
Person Class

Problem statement:

O Using a Module-Driven Application (Startup Object = Sub Main()) we will demonstrate method overloading in the Person Class
we created in previous examples.

O This example is test program to test the clsPerson Class, but instead of using a Console Application, we will use a No-Form
Module driven Windows Application.

O We will reuse and keep all the features of the clsPerson Class from previous example, but we will overload the Constructor.

0 Inaddition enhance the clsPerson Class by adding a new private data member named Total ItemsPurchased, which represents the
total items a person Object has purchased.

O Inaddition we will add a new method named Shop(), which makes a Person Object shop. This method will simply sum the total
number of items that the Person has purchased.

QO This project will contain NO forms, only a Module. In the module we will create various Objects to test each of the Overloaded
Constructors. In Sub Main() we will print each object to verify that the constructor worked.

O Inaddition to the other topics covered in previous examples, this Example will demonstrate the following topics:

= Using a No-Form Module Driven Windows Application Test Program
= Method Overloading

Class Requirements
O The class contains the following data, properties & methods members

(See UML Diagram) .
UML Class Diagram

Class Person Member Data:
= Name: Type String clsEmployee
= IDNumber: Type Integer.
= BirthDate: Date Name
= Address: Type String IDNumber
* Phone: Type String BirthDate
= TotalltemsPurchased: Type Integer Address

Phone
Class Member Overloaded Constructors Methods: Total ltemsPurchased
= New()
= New(Name)
= New(IDNumber) New()
= New(BirthDate) New(N)
= New(Name, BirthDate) New(ID)
= New(Name, IDNumber, BirthDate, Address, Phone). New(B)

New(N, B)
Class Member Properties & Methods: New(N, ID, B, A, P)
= Properties for each data member. PrintPerson()
= The Method PrintPerson(), which displays the Persons data Shop()
= Method Shop(), which sums the total items purchased

Module Requirements
O The application will contains the following module and functionality:

= modMainModule: Create several objects to test each of the Overloaded Constructor methods.

= In Sub Main() we will call the PrintPerson Method of each object to verify that the overloaded constructors worked.

HOW IT'S DONE:

Part | — Create The Class:

‘ Step 1: Start a new Windows Application project:

‘ Step 2: Add a Module to the project and set its properties as shown in the table:

Object

Property Value

Module

File Name

modMainModule

Step 3: Set the Project’s properties and set the Startup Object to Sub Main():

Object

Property Value

Project Name
Startup Object

CustomerFormwWinApp
frmCustomerForm

PersonConstructorProjeck Property Pages

Configuration; IN."F\

=3 Common Properties
g General
Build
Imparts
Reference Path
Designer Defaults
(23 Configuration Properties

=l platform: IN."P- =

Assembly name;

x|

Configuration [Manaagr, .. |

YersonConskructorWindpn

Qukpuk Eype: Startup object:

j I Sub Main

IWind-:-ws Application

Rook narmespace:

| PersonConstructorWindpp

Infarmation

Project Folder:

Project file: PersonConstruckarProject. wbproj

Qukput name: PersoniZonstruckor'Vindpp.exe

Ci\My DocumentsiNyctch C3608\ Codel ClassMotes) OOP\PersonCverlo.

ar I Cancel

Lppl Help

Step 4: Prepare to Reuse the Person Class from Previous Console Application, by Copying the File from previous
Application Folder to the Folder of this Windows Application Project

1. Using Windows Explorer, navigate to the Console Application folder of the previous example.
2. Copy/Paste the file clsPerson.vb to this Project folder

Step 5: Add the Class to the Project

1. In the Project Menu, select Add Existing Item... and navigate to the project folder

n

Select the clsPerson.vb File and click OK

3. The class is now part of the project and ready to be reused!

‘ Step 6: In the Class Module add an additional data member intTotalltemsPurchased:

Ia[gclsPersun I j I':':.Shnp

l

=
=

Option Explicit On
Public Class clsPerson
LI e e i i e i e
'Class Data or WVarisble declarations
Private strName As 3tring
Private intIDNumber As Integer
Priwvate dBirthDate ALs Date
Private striddress bLs String
Private strPhone As 2tring
Private intTotalltemsPurchased Ls Integer

‘ Step 7: In the Property Procedure section, add a Property for the intTotalltemsPurchased private data:

IOI; clsPerson j IIN, (Declarations)

L e e e e e e e e el i O e o

'Property Procedures
FPublic Property Name() Lz 3tring
Get
Feturn striName
End Get
Zet (BvyWal strThelame Lz String)
striame = strThellame
End 3et
End Property

FPublic Property IDMNumber () LAs Integer
Get
Feturn intIDMaber
End Get
et (ByWal intThelID L= Integer)
int IDNukber = intTheID
End Set
End Property

FPublic Property BEirthDate() Lz Date
Get
Feturn dEirthhate
End Get
Jet (ByWal dTheEDate ALz Date)
dEirthhate = dTheEDate
End Set
End Property

10

IalgclsPersun j IIN, {Declarations)

:

Fublic Property Address() As String
Get
RBeturn striddress
End Get
Set (ByVal dThelddress As 3tring)
striddress = dThelddress
End 3et
End Praoperty

FPubhlic Property Phone() As String
Get
Return strPhone
End Get
et (ByWal dThePhone L=z String)
strPhone = dThePhone
End 3Zet
End Property

Fublic Property TotalltemsPurchased|(] Lz Integer
Get
Feturn intTotalltemsPurchased
End Get
et [ByWal intTheNumberoflItems Ls Integer)
intTotalltemsPurchased = intTheluberOfItems
End 3et
End Property

11

‘ Step 8: In the Class Module code window Add the following Overloaded Constructor Methods:

IalgclsPersun . j IIN,{Declaratiuns}

Ll ol i el B B O Bl Bl O O O Ol O O e

'Class Constructor Methods
Public Zukh Newi)
'Note that priwvate data mewmbers are being initialized

scriame = "

intIDMuwber = 0

dEirthDate = #1/1/1900#

striddress = "

strPhone = " (000} -000-0000%

intTotalItemsPurchased = 0
End Zub

Public Sub New (ByWal strln s 2tring)
strName = strln
int IDMNwmber = 0O
dEirthDate = #1/1/1900#
intTotalItemsFurchased = 0

End Zub

Public 3ub New (BvyWal intID is Integer)
striame = "
int IDMNwber = intID
dBEirthDate = #1/1/1900#
intTotalItemsFurchased = 0

End Zub

12

IQI;cIsPersun I j II]T@,(DecIaratiuns)

g Public Zub MNew(ByWal dBDate ALs Date)
strifzgue = "'

int IDMNwiber = O

dEirthDate = dEDate
intTotalltemsFurchased = 0

- End Zub
=l Public Sub New(ByWal strMNn ALs String, EByWVal dEDate As Date)
striName = "
intIDNwber = CInt (Int((999 ¥ Rndi)] + 111)) 'Generates a random naber hetwesn 9589 and 111

dEirthDate = dBDate
intTotalltemsFurchased = 0
- End Zub

Public Sub New(ByWal strMN As String, ByWal intIDMwn As Integer, ByWal bEDate As Date,
=l EvWal stridr As String, ByVal strPh Az String)

'Note that we are NOT using the priwvate data but the Property Procedures instead
Name = strN

IDNumber = intIDNum

Birthl'ate = hEDate

bddress = stridr

Fhone = sStrFh

intTotalItemsPurchased = 0

- End Zub

13

‘ Step 9: In the Class Module keep the PrintPerson() Method as is:

IQI; clsPerson j Ilﬂa {Declarations) j

[_:l L o o O

- '"Begular Class Methods
= Public Sub PrintPersoni)

MessageBox.3how("The following Data is being sent to printer ™
& strName & ", " & intIDNuwber & ", " &
dEirthbhate.To3hortDate3tring & ", " &

striddress & ", " & strPhone)

B End Sub

|

- End Claszszs -
4| | »

+ Remember that it is bad practice to display any forms or messages from
within a Class. | do this only for teaching purposes to demonstrate a

topic.

14

‘ Step 10: In the Class Module Add the Shop() Method:

IélgclsPersnn j I-:-:OShnp
Pulalic 3ub Shop (BEyWal intlItets As Integer)
intTotalItemsPurchased = intTotalltemsFPurchased + intItems
End Sub

Step 11: At this Point the Project should look as follows:

Siolution Explorer - PersonConstruckorProject 3

=[] | 3| &

lgA Solution ‘PersonConstructors\inapp' (1 project)
E| PersonConstructorProject

¥ (&3] References

- %] assemblyInfo.vb
: clsPerson.vh
“er 2] modMaintModule, vh

15

Part Il & Ill — Create The Object and Use it (The User Interface)

‘ Step 12: Add the following Code in the Module:

IéanmdMaMMudME

j IIN. {Declarations)

Option Explicit Om
= Module modMainModule

Fublic
Public
Public
Public
Public
Fublic

=) Public

objEmployeesl
obhijEmployeesl
ohjEmployeel
ohijEmployeed
ohijEmployeels
objEmployeed

Sub Maini)

L=
L=
L=
L=
L=
L=

clsPerson
clsPerson
clsPerson
clsPerson
clsPerson
clsPerson

objEmployeel.
obhijEmployeess.
ohjEmployeel.
obhijEmployeed.
obhjEmployees.
objEmployeed.

- End Sub

“End Module

PrintPerson()
PrintPersoni()
PrintPersoni)
PrintPersoni()
PrintPersoni()
PrintPerson()

New
New
HNew
New
New
New

'Declare & Create Public Custower Object

clsFersoni()
¢lsPerson("Joe Swmith™)
clsPersonilll
claPerson (127127 1965§)
zlsFerson("Joe Smith"™, #12/12/1965H)
clsPerson("Joe Swmith", 111, #12/12/1965#,
123 Jay 3treet™, "715-434-5544")

16

Step 13: Compile & Run the program:

B x|

The following Data is being sent to prinker , 0, 1/1,1900, , (000)-000-0000, O

B x|

The Following Diata is being sent ko prinker Joe Smith, 0, 1)1/1900, , , 0

B x|

The Following Daka is being sent to prinker , 111, 1/1/1900, , , 0

B x|

The Following Data is being sent to printer , 0, 12/12/1965, ,, 0

B x|

The fFollowing Data is being sent to prinker , 815, 12/12/1965, , , 0

x|

The Following Data is being sent ko prinker Joe Smith, 111, 12/12/1965, 123 lay Streek, 718-434-5544, 0

17

6.2 Creating Custom Events inside Our Custom Classes

6.2.1 Events in Visual Basics.NET

a
a

Q

Events are actions taken upon the object by an outside force (User, Program code etc).

Events or actions upon the object will automatically trigger Qutside of the Object a specialized Methods known as Event-
Handlers.

The key points here are automatically execution of the Event-Handler & that this Event-Handler is automatically created
Qutside the Object in a Form, Module or another Object.

Using Events is a way of Objects communicating or sending notification of an activity or event inside the Object.

VB.NET comes with a variety of predefined Event-Handlers in the Controls & Forms already created and ready for you to use.
This was how you programmed in CS101 & 508 coding these Event-Handlers. Such programming is known as Event-Driven
Programming.

VB Controls and forms can respond to hundreds of different predefined events, but you don't have to write any code to an event
unless you want to. You only need to write event code, when you want something to happen in response to an event.
Event-Handlers are found in the invisible aspect of a form or control, which can be accessed by double-clicking on the form or
control. This will invoke the Object's Code Window.

In the Object’s Code Window select the Object Combo-box and the list of available Events will appear in the Event Combo-box.
Now all you need to do is to enter the code you wish to execute when the event is triggered inside the Event-Handler. Again, that
is if you want to, you don’t have to add any code to react to the event if you don’t want to.

o
Object selected Available events
i, Project] - MainMenu [Form) M=l M8 rioject] - MainMenu [Code)
Form j ILoad j
b M ainhkienu !IE Option Explicit Py
e MouzeDown
Private Sub Form_Load(] IMavzeMave
Mouselp
End Sub IOLECompleteDrag
IOLEDragDrop
IOLEDragCyver
[OLEGiveFeedback
[OLESetData
IOLEStartDrag
|Pairt
=l
= ST Ly

M Project] - MainMenu [Code| [_[O]]
IFnrm j ILna(I j
Option Explicit Object =
Private Sub Form Load(]
Labell.Caption = "Todays date is " & Date
End Sub
==l | 3 7

18

6.2.2 Creating your own Events inside Objects

O One of the most powerful features of VB 6.0 is the ability to define our own Events in Class Objects.
O Creating our own Events involves defining the event itself and generating Event- Handler procedure that will be available for us
to enter code whenever the event is triggered inside the class.
O Note that there are two types of Events:
1. Regular Event Procedure - Event which does NOT send out information to the outside word
2. Parameterized Event Procedure - Event that DOES send information to the outside world, if this is the case then the
event procedure will need parameters to store such information. ads

O There are two parts and several steps required to create you own event:

Part | — Inside the Class Module
a) In the declaration section of the Class Module declare the Event as Public

Part Il — Inside the Class Module
a) Insome desired location inside the class, Raise or Trigger the Event

Part 111 — Outside the Class
a) In the declaration section of the Form, Class or Module Create the Object with the Keyword WithEvents.

Part IV — Outside the Class
a) Inthe Editor Code Window using the drop-down list box select the Event-Handler
b) If is required enter the code you want executed automatically when the event is fired!

O Lets go through the steps in more detail:

Step | — Declare the Event

O Inthe declaration section of the class declare the Event using the Public Event keyword and the name of the procedure.
= At this point you need to decide if your event will send information from the Object to the outside world. If so, then you will
need variables.

O The Syntax for declaring the Regular Event or Parameterized Event is as follows:

‘Syntax for Declaring Event:
Public Event EventName ()

‘Syntax for Declaring Event:
Public Event EventName (ByVal variable As Type, ByVal variable As Type.....)

Example 1:

Q Assuming you needed to create an event named OnShopping(), and this Event will NOT send any
information out to the outside world, in the declaration section of the Class module declare the following
Public Event:

Public Class clsPerson
Private strName As String
Private intIDNumber As Integer
Private dBirthDate As Date
Private intTotalIltemsPurchased As Integer

Public Event OnShopping ()

'‘Other Class Code...

Example 2:

a Assuming you needed to create an event named OnShopping() but this time you want it to send the Total
Number of Items purchased to the outside world. To implement you will need a Parameter or variable to
store this value. In the declaration section of the Class module declare the following Public Event:

Public Class clsPerson
Private strName As String
Private intIDNumber As Integer
Private dBirthDate As Date

Public Event OnShopping (ByVal intTotalItems)

'‘Other Class Code...

End Class

20

Step Il — Raise or Trigger Event

O At the location inside the class module either in a Property, Sub Procedure or Function, where ever you want the event to trigger,
use the RaiseEvent keyword using the following syntax:

‘Syntax for Declaring Event:
RaiseEvent EventName ()

‘Syntax for Declaring Event:
Public Event EventName (Argumentl, Argument2.....)

Example 3:

O Suppose you want to trigger the OnShopping Event when the Person shops. Assuming the Person Object
contains a method named Shop() and you want to this event to fire every time the Shop() method is executed,
the declaration is as follows:

Public Class clsPerson
Private strName As String
Private intIDNumber As Integer
Private dBirthDate As Date
Public Event OnShopping/()
'‘Other Class Code...

Public Sub Shop (ByVal intItems As Integer)
intTotalItemsPurchased = intTotalltemsPurchased + intItems

'Raise or trigger event & send information with the event
RaiseEvent OnShopping ()

End Sub

Fnd Class

Example 4:

a Now, suppose you want to trigger the OnShopping Event when the Person shops, but you also want to send
the Total Number of Items Purchased with the event. Assuming the Person Object contains a method named
Shop() and you want to this event to fire every time the Shop() method is executed and send the information
as well, the declaration is as follows:

Public Class clsPerson
Private strName As String
Private intIDNumber As Integer
Private dBirthDate As Date
Public Event OnShopping (ByVal intTotalItems)
'‘Other Class Code...

Public Sub Shop (ByVal intItems As Integer)
intTotalItemsPurchased = intTotalIltemsPurchased + intItems

'Raise or trigger event & send information with the event
RaiseEvent OnShopping (intTotalItemsPurchased)

End Sub

End Class

Step Il - (Outside the Class) Create Objects Using Keyword WithEvents
O Inthe Declaration Section of a Form or Class Module you need to create the Objects with the ability to trigger events

O Use any of the methods shown in previous lectures to create object. Use Dim, Private, or Public but use the keyword
WithEvents. The syntax are as follows:

Public WithEvents ObjectName As ClassName = New ClassName()

Public WithEvents ObjectName As New ClassName()

Public WithEvents ObjectName As ClassName

‘Inside a Method Procedure enter the following statement to create the object:
ObjectName = New ClassName()

% Note only when you create an Object with the Keyword WithEvents will the Event Feature work. If you create an Object
using the regular methods as shown in previous sections, the object’s events will NOT WORK!

Example 5:

O Suppose you want to create Objects of the clsPerson Class, but you want these objects to trigger the events create
in the class. Assuming you create this Object inside a Form, the declaration is as follows:

Public Class frmEditForm

‘Declaration of Object WithEvents using default constructor
Private WithEvents objPersonl As clsPerson = New clsPerson()

‘Declaration of Object WithEvents using parameterized constructor

Private WithEvents objPerson2 As clsPerson = New clsPerson("Joe Smith",
111, #12/12/1965#, "192 East 8th, Brooklyn", "718-434-6677")

‘Other Form Code...

End Class

22

Step IV (a,b) — (Optional & Outside the Class) a) Generate the Event-Handler and b) Enter Code
in the Event-Handler

O Step a) — Once you create the Object using the Keyword WithEvents, either in a Form, Module or Class, you now have the ability
to generate the Event-handler procedure that will execute automatically when the event is raised inside the object. This done as
follows:

1. Inthe Form Code Window using the Drop-Down List Box on the top left select the WithEvent Object.

2. On the Drop-Down List Box on the top Right select the Event.

3. The Event-handler will be AUTOMATICALLY GENERATED IN THE SAME LOCATION where the OBJECT
resides.

0 You now have the option to code in the Event handler in the same way that you would code and event handler from a Form or
Control. To do this, simply select the object from the Object Combo box & then the Event handler from the Event Combo Box
once you do this, the Event-Handler will appear inside the Form, Class or Module where the Object was created using
WithEvents.

O The syntax for the Event-handlers that Do Not pass information from the Object:

‘Syntax for Event_handler Procedure with no arguments. Note that the Handles Keyword states that the object is handling the event:
Private Sub objObject_Event () Handles objObject.Event

‘Body Code goes here!
End Sub

O The syntax for the Event-handlers that pass information from the Object:

‘Syntax for Event_handler Procedure with arguments:
Private Sub objObject_Event (ByVal variable As Object)Handles objObject.Event

‘Body Code goes here!
End Sub

+ Note you that you DON’T have to memorize this Syntax, the method is generated AUTOMATICALLY!

Example 6:

O We continuing the example of the clsPerson Class Object that contains the OnShopping Event, which is triggered in the
method named Shop(). We will create two Objects of this class using WithEvents, this will make available the two Event-
Handler in which we can enter what ever code we wish to execute when the Person Shops. Assuming you create this
Obiject inside a Form, the declaration is as follows:

Public Class frmEditForm
Public WithEvents objCustomer As New clsPerson ()
'Declare & Create Puclic Customer Object Initialized with Data
Public WithEvents objManager As clsPerson = New clsPerson ("Angel", 222,

#12/12/1965#,"192 East 8th, Brooklyn", "718—434—66777)
‘Other Form Code. ..

Public Sub objCustomer OnShopping (ByVal intTotalItems As Object) Handles
objCustomer.OnShopping
MessageBox.Show ("Customer Event total is " & intTotalIltems)

End Sub

Public Sub objManager OnShopping (ByVal intTotallItems As Object) Handles
objManager.OnShopping

MessageBox.Show ("Manager Event total is " & intTotalItems)
End Sub

6.2.3 Sample Program 2 — Creating Custom Events

Form Driven Application — Adding Events to the Person Class

Problem statement:

Q

a
a

Using a Form Driven Application (Startup Object = Form) we will demonstrate adding events to the Person Class we created in

Sample Program 2.
We will reuse and keep all the features of the clsPeson Class from previous example.

Also, we will add to the class, an Event named OnShopping and we will Raise this event in the Shop() Method of the clsPerson

Class.

We will drive this class using a Form that will allow us to display the object created and its data, and in addition allow us to click

a button to purchase a number of items.

In addition to the other topics covered in previous examples, this Example will demonstrate the following topics:

= Creating our own Events

Class Requirements

a

The class contains the following data, properties & methods members (See UML Diagram):

Class Person Member Data:

= Name: Type String
= IDNumber: Type Integer.
= BirthDate: Date

= Address: Type String
= Phone: Type String

Total ItemsPurchased: Type Integer

Class Person Event Declaration:
= Public Event OnShopping(NumberOfltems):
= Event takes one argument representing total number of items purchase

Class Member Overloaded Constructors Methods:
New()

New(Name)

New(IDNumber)

New(BirthDate)

New(Name, BirthDate)

New(Name, IDNumber, BirthDate, Address, Phone).

Class Member Properties & Methods:
= Properties for each data member.
= The Method PrintPerson(), which displays the Persons data

UML Class Diagram

clsEmployee

Name

IDNumber
BirthDate

Address

Phone

Total ltemsPurchased

Event OnShopping(ltems)

New()

New(N)

New(ID)

New(B)

New(N, B)

New(N, ID, B, A, P)
PrintPerson()
Shop()

= Method Shop(), which sums the total items purchased and raises the OnShopping Event

Form Requirements
O The application will contains the following Form and functionality:

= frmCustomerForm: Form to display the Customer information and allow customer to shop a number of items

= The form will create one Objects of the Person Class WithEvents

= The Form will add code to the Event-Handler generated by the WithEvents Object.

24

HOW IT'S DONE:

Part | — Create The Class:

‘ Step 1: Start a new Windows Application project:

‘ Step 2: Add a Form to the project and set its properties as shown in the table:

Object Property Value
Forml Name frmCustomerForm
Text Customer Form

Step 3: Set the Project’s properties to behave as a Form Driven Application:

Object Property Value
Project Name CustomerFormWinApp
Startup Object | frmCustomerForm
x
Configuration: IN,I'A j Elatfatm: IN,I'A j Canfiguration Managet. ., |
‘= Comman Properties Assembly name:
g General ICustomerFormWinnpp
EBuild e
Impiorts Qutput type: Startup object:
Reference Path IWindDWs Application j FrinCustomerForm j

Designer Defaults

Roak namespace:
[Z3 Corfiguration Properties

I CuskomerFormWinapp

Information

Project Folder: CiiMy DocurmentsiiyectclCSe08Cade ClassMates O0OF PersonEventa
Project File: PersonEventProject. vbproj

Output nare: CustomerFarminApp. exe

Ok, I Cancel | Lol | Help |

Step 4: Prepare to Reuse the Person Class from Previous Console Application, by Copying the File from previous
Application Folder to the Folder of this Windows Application Project

1. Using Windows Explorer, navigate to the Console Application folder of the previous example.
2. Copy/Paste the file clsPerson.vb to this Project folder

Step 5: Add the Class to the Project

1. Inthe Project Menu, select Add Existing Item... and navigate to the project folder
2. Select the clsPerson.vb File and click OK
3. Theclass is now part of the project and ready to be reused!

‘ Step 4: In the Class Module Declare the OnShopping Event:

Ialg clsPerson j IIN, {Declarations)

<

Option Explicit On
= Public Class clsPerson
If_] LI O e e e
- 'Clas=s Data or Variable declarations
Private strlMNawme Lz 3tring
Frivate intIDNuber As Integer
Priwvate dEirthDate L= Date
Friwvate striddress As 3tring
Friwvate strPhone L=z S3tring
Frivate intTotalltemsPurchased L=z Integer

|:_:| L o i e e O B e e e i O i O e O e O el e

- 'Event Declarations
FPublic Event OnShopping(BvyWal intTotalltewms)

\ Step 5: Leave the Property Procedure as is:

IOI; clsPerson j IIN, (Declarations)

J_] L e e e e e e e e el i O e o

- 'Property Procedures

= FPublic Property Name() Lz 3tring

E Get
Feturn striName

- End Get

= Set (ByWal strThelamwe Lz String)
striame = strThellame

= End 3et

- End Property

= FPublic Property IDMNumber () LAs Integer
E Get
Feturn intIDMaber
- End Get
=] Set (ByWal intThell Az Integer)
int IDNukber = intTheID
o End 3et

- End Property

= FPublic Property BEirthDate() Lz Date
E Get
Feturn dEirthhate
- End Get
= Jet (ByWal dTheEDate ALz Date)
dEirthhate = dTheEDate
o End Set

- End Property

26

Iag clsPerson j Ilﬁ {Declarations)

:

Public Property Address() Lz String
Get
Feturn striddress
End Get
Set (ByVal dThelddress Ls String)
striddress = dThelddress
End Zet
End Property

Puhlic Property Phone () &= 3cring
Get
Feturn strFPhone
End Get
Set (ByWal dThePhone 4= 3tring)
strPhone = dThePhone
End Zet
End Property

Public Property TotalltewsPurchased() As Integer
Get
Feturn intTotalltemsPurchased
End Get
Set (ByVal intTheMuberOfItems As Integer)
intTotalItemsPurchased = intTheNumberOfItems
End Set
End Property

‘ Step 6: In the Class Module code window keep the code for the Constructor Methods:

IalgclsPersun j IIN(DE::Iaratiuns) j
f_] LI ol ol o ol ol ol ol ol ol ol el el el el el ol el ol Ol ol .
= 'Class Constructor Methods
= Public Zukb Newi)

'MNote that priwvate data members are heing initialized
striame = "
intIDMNumwber = 0
dEirthDate = #1/1/1900#
striddress = "
strPhone = " (000} -000-0000
intTotalItemsFPurchased = 0
- End Zub
= Public 2ub New (ByWal strln As 3tring)
striame = strln
intIDMuwmber = 0
dEirchDate = #1/1/1900#
intTotalItemsFPurchased = 0
= End 3Sub i
= Public 2ub New (ByWal intID As Integer)
striame = "
intIDNuwber = intID
dEirchDate = #1/1/1900#
intTotalItemsFPurchased = 0
- End Sub

IQI;cIsPersun I j II]T@,(DecIaratiuns)

g Public Zub MNew(ByWal dBDate ALs Date)
strifzgue = "'

int IDMNwiber = O

dEirthDate = dEDate
intTotalltemsFurchased = 0

- End Zub
=l Public Sub New(ByWal strMNn ALs String, EByWVal dEDate As Date)
striName = "
intIDNwber = CInt (Int((999 ¥ Rndi)] + 111)) 'Generates a random naber hetwesn 9589 and 111

dEirthDate = dBDate
intTotalltemsFurchased = 0
- End Zub

Public Sub New(ByWal strMN As String, ByWal intIDMwn As Integer, ByWal bEDate As Date,
=l EvWal stridr As String, ByVal strPh Az String)

'Note that we are NOT using the priwvate data but the Property Procedures instead
Name = strN

IDNumber = intIDNum

Birthl'ate = hEDate

bddress = stridr

Fhone = sStrFh

intTotalItemsPurchased = 0

- End Zub

28

‘ Step 7: In the Class Module keep the PrintPerson() Method as is:

IQI; clsPerson j Ilﬂa {Declarations) j

[_:l L o o O

- '"Begular Class Methods
= Public Sub PrintPersoni)

MessageBox.3how("The following Data is being sent to printer ™
& strName & ", " & intIDNuwber & ", " &
dEirthbhate.To3hortDate3tring & ", " &

striddress & ", " & strPhone)

B End Sub

|

- End Claszszs -
4| | »

+ Remember that it is bad practice to display any forms or messages from
within a Class. | do this only for teaching purposes to demonstrate a

topic.

29

‘ Step 8: In the Class Module Shop() Method Raise the OnShopping Event as follows:

IﬁgclsPersnn . j II]'%(DecIaratinns)

I

Public Sukb Shop (ByWal intItems Az Integer)
intTotalItemsPurchased = intTotalltemsPurchased + intlItems

'Raise or trigger event & sSend information with the event
FaiseEvent On3hopping(intTotalltemsPurchased)

End Sub

30

Part Il & Ill — Create The Object and Use it (The User Interface)

‘ Step 9: Add the following indicated Controls to the frmCustomerForm. Set their properties accordingly:

Object Property Value
Forml Name frmCustomerForm
Text Customer Form

ﬂg]tustnmer Form

Step 10: At this Point the Project should look as follows:

Solution Explorer - PersonEventProject 1 o=

=& |3 | 3|

@ Solution 'PersonEvent'Winapp' (1 project)
= PersonEventProject
B [:3) References

----- @ AzsemblvInfo.vh
----- @ clsPerson.vh
- FrriCustamerFarm, vb

31

Step 11: In the Form frmCustomerForm Add the Following Code. Note that the Event-Handler is automatically generated by

the WithEvent Object:

IQI; frmCustomerForm j Iﬁ. EditForm_Load

Option Explicit On

] Public Class frmCustomwerForm
Inherits System. Tindows.Forms.Form

| Windows Form Designer generated code

'Priwvate WithEvents objPerson iLs clsPerson
Private WithEwvents ocbjCustomer is clsPerson = 111,

"192 East Sth,

New clsPerson("Joe Smith®,
Brooklyn®™, "718-434-6677M)

'Form texthoxes are populated with objects data on Form Load

= Private 3ub EditForm Load(ByWal sender is System.Object, ByWVal e ALs System.Eventlirgs)

'Populate Controls with Obhject's data
With objCustomer

txtlame . Text = .Hame

'Czll the Shop Method of the Object to shop and trigger event
ohjcCustomer . Shop (txtItems. Text)
- End Sub

= Private Sub btnOK Click(ByVal sender As 3Jystem.Object, ByWal e As Jystem.Eventlrgs)
Me.Close ()
= End Sub

'This ewvent-handler executes every time the customer shops

= Private Sub objCustomer OnShopping (ByVal intTotalltems As Ohject)
MesszageBox.3how("The Total items purchased by the Customer is " & intTotalltems)

- End Sub

“End Class

H#12/12/1965#,

txCIDNunker . Text = . IDMNwrber
txtBirchlate.Text = .Birthhate
txtiddress. Text = .Address
txtPhone. Text = ,Fhone
End With
- End Zub
-
- End Sub
= Private Sub frmEdicForm Closed(ByVal sender is Object, ByWal e As Jyscem.Eventirgs) Handles HNyEase.Closed
'Destroy Custom Chiject
objCustomwmer = Nothing
- End Sub
= Private Sub btnPurchase Click(ByWal sender Az System.Object, EByWal e ks Zystem.Eventirgs) Handles honPurct

Handles btnCOK.Click

Handles objCustomer.On3hopping

[

Handles MyEase.Load |

32

Step 12: Compile & Run the program:

[customer Form

Customer Form

i Customer Information

Mame

1D Mumber 111

BithDate [12/1271365 |
Address [132 East &th, Brookln

Fhone |?1 8-434-EE77

—Shaopping Section

Number of [tems to Purchase I Purchass |

=lolx]

ﬂgtustumer Form

Customer Form

i Custorner Infarmation

Hame J1o= 5mih

1D Mumber 111

Birth Date |1 2121968

Address [132 East Bth, Brockjyn

Phane |?1 B8-434-6677

—Shaopping Section

Murnber of lterns to Purchase q Purchase

=10l x|

B x|

The Total items purchased by the Customer is 5

ﬂgtustomer Form

Customer Form

r— Customer Information

Name IJoe Smith

1D Mumnber 111

Birth D ate I‘I 2121965

Address |152 East Gth, Braoklyn

Phane |?1 8-434-6677

—Shopping Section

Humber of Items to Purchase I1 0 Purchase

=101 %]

x|

The Tokal items purchased by the Cuskomer is 15

33

6.3 Working with Arrays and Objects

6.3.1 The Array Class Revisited

Overview of Arrays

O InVB.NET the Array Class is defined in the System Namespace.
O Inprevious lectures we defined an Arrays Class as follows:
= Array: An Array is a list of data of a single data type

O We have also learned that when creating an object of a class we are creating a reference. Therefore when we create an array, we
create an array object in which the name of the array is the reference pointing to the object. Syntax:

Creating Arrays
O We also learned that the syntax to declaring objects of the Array Class is:

‘General Array Syntax:
Accessibility ArrayName(Size) As Type

Where Accessibility:
-Dim
-Public
-Private

Where Size: Size of the array starting from 0 & each value representing the Size is know as the Index
Where Type: Data type of array

O For Example if we needed to keep a list of the first names for the 5 employees of a company, we would declare an array of
FirstNames with 5 elements of type string. The syntax is as follows:

Dim FirstNames (5) As String

FirstNames
o

0 1 2 3 4 +—— | |ndex

Initializing Arrays upon Creation
O We can populate arrays with data upon creation using the following syntax:

‘Initialization Array Syntax:

Accessibility ArrayName() As Type = {valuel, value2, value3....}

Q For Example if we needed to keep a list of the first names for the 10 employees of a company and populate the arrays with first
names upon creation of the array, we would declare it as follows:

Dim Names () As String = {“joe”, “Angel”, “Sam”, “Mary”, “Nancy”}
Names
. : “Joe” ‘4Angel “Sam” “Mal’y” “Nancy”
0 1 2 3 4 —— | |ndex

34

Populating Array Elements
O When you populate data to an array you do via the name of the array and the index. Syntax:

ArrayName (index) = value

= For example if we wished to populate the first, second and third element of the empty array just created, the statements would
look as follows:

FirstNames (0) = “Joe”
FirstNames (1) = "“Angel”
FirstNames (2) = "Mary”

= The array would now look as follows:

FirstNames
@

v

“Joe” |“Angel |“Mary”

0 1 2 3 4

Accessing Array Elements
O When you access or retrieve data from an array you do via the name of the array and the index. Syntax:

value = ArrayName (index)

= For example if we wished to retrieve the second element of the array just created, assuming we have a string variable to store
this value, the statement would be:

strAStringVariable = FirstNames (1)

= The variable will now contain the element retrieved from index(1) or the second element:

strAStrinaVariable
‘6Angel7’

Populating All the Array Elements

O To populate all values of an array in one pass, you need to assign the values in each element consecutively.
O The For..Next Loop is a excellent mechanism to use with arrays since we know the number of iterations or size of array:

For i = 0 to SIZE
FirstNames (i) = strNames

Next

Accessing All Array Elements
O You can extract or access all elements of array also using the For..Next loop as follows:

For i = 0 to SIZE
strNames = FirstNames (i)

Next

35

6.3.2 Arrays handling of Objects

Custom Objects and Arrays

O In this section we look into how to use an array that stores our custom objects.

O Working with arrays and the objects we create can be confusion, but it is not really very difficult, after all an Array is an Object.

O Also, in the array examples we reviewed in previous lectures we were actually working with Arrays of Objects since the String
Data type is also an Object. So we were really storing objects in the arrays.

O If you remember that the when we create a Class, we are actually introducing a new Data Type into our program.

O Therefore, if an array is defined as: “arrays are a list of data of a same data type” and we know that when we create an Object
the name is really a reference or pointer to the object, then an array of Object is simply:

= Array of Object: Alist of references to Objects of the same data type or Class.

Creating Arrays of Objects
O Syntax to declaring an Array of objects:

‘General Array Syntax:
Accessibility ArrayName(Size) As ClassName

Where Accessibility:
-Dim
-Public
-Private

Where Size: Size of the array starting from 0 & each value representing the Size is know as the Index
Where Type: Data type of array

0 Note that when we create an array of objects, we are really creating an array of references to objects. Not until you being to add
Items or Objects to the array will the array really store Objects.
O Lets look at the following example:
= For Example, assuming we have a class cIsEmployee with the following UML Class diagram describing the properties and
methods:

clsEmployee

Name
IDNumber
BirthDate

New(N,1,B)
PrintEmployee()

36

= Now we wish to create an array to store objects for the 5 employees of a company, we would declare the array as follows:
Dim Employeelist (4) As clsEmployee

= After the declaration what we have is an array of reference pointers, that only point to Objects of the Class clsEmployee:

0 1 5 34/Index
? 19 ? ? 11
!

= This concept can be a little confusing. What is stored in each array element is a reference or pointer. So when you
manipulate the array using the Array(index) the value being manipulated is a reference or pointer.

EmployeeL.ist
&—

Populating Array Elements with Objects
O When you populate Objects to the array you are simply assigning the reference stored in a cell to the reference of the Object you

would like to add to the array.
O The syntax is identical as before, but the value is a reference to an object:

ArrayName (index) = ReferenceVariable

= For example if we wished to populate the first, second and third element of the empty array just created with objects.
Assuming we have the following Object declarations:

'‘Object Declarations, creation & Populated via Constructor

Dim objEmployeel As clsEmployees = New clsEmployees (“Joe”,111,#1/23/19784%)
Dim objEmployee2 As clsEmployees = New clsEmployees (“Angel”,222,#12/12/19724#)
Dim objEmployee3 As clsEmployees = New clsEmployees (“Mary”,444,#5/07/1968%)

‘Populate Array with Object by
‘Performing a reference assignment

EmployeeList (0) = objEmployeel
Employeelist (1) = objEmployeel
EmployeelList (2) = objEmployeel

= After the assignment statements, the array would now look as follows:

EmployeeList 0 1 2 3 4
@

v
S
~®

“Joe”
111
1/23/1978

“Angel”
222
12/12/1972

5/07/1968

Accessing Object Elements

Accessing the Object’s Properties From The Array
O When you access or retrieve data from an array of Objects, you do via the array(index) but in addition you also need to use the dot
() Operator to access the Properties & Methods of the Object.

Variable = ArrayName (index) .Property

= For example if we wished to retrieve the Name of the Object residing on the second element of the array, assuming we have a
string variable to store this value, the statement would be:

strAStringVariable = EmployeeList (1) .Name

= The variable will now contain the element retrieved from index(1) or the second element:

strAStrinaVariable
“Angel!7

Setting the Object’s Properties in the Array

O Supposed we want to set or overwrite the property of an Object in the array, the syntax is as follows using the index and dot (.)
Operator:

O Syntax for setting an Object Property

ArrayName (index) .Property = strAStringVariable

= For example if we wished to change or overwrite the BirthDate property of the Object residing on the third element of the
array, with the value #5/10/1969# the statement would be:

EmployeeList (2) .BirthDate = #5/10/1975#

= After the statement the third Object in the list will be modified:

EmployeeL ist 0 1 2 3 4
E—‘}/ o [« [9]y

“Joe”
111
1/23/1978

“Mary”
444
5/10/1969

“Angel”
222
12/12/1972

38

Executing an Object’s Method in the Array
O If we wanted to execute an method in the array, the syntax is as follows using the index and dot (.) Operator:

ArrayName (index) .Method ()
= For example if we wished to execute the PrintEmployee() Method of the first element of the array the statement is:

EmployeeList (0) .PrintEmployee ()

Searching and Setting Properties of all Objects in array

O To set the properties of all the objects in the array in one pass, you need to assign the values in each property consecutively.
0 You can use the For..Next Loop, the size of the array and the dot(.) operator:

For i = 0 to SIZE
EmployeelList (i) .Name = strName

Next

Searching the Array Elements
O You can extract or access all elements of array also using the For..Next loop and the dot(.) Operator as follows:

For i = 0 to SIZE
strName = Employeelist (i) .Name

Next

39

6.3.4 Sample Program 3 — Working With Arrays & Objects

Module-Driven Window Application — Arrays & Person Class

Problem statement:

Q

a
a

Using a Module-Driven Windows Application (Startup Object = Sub Main()) we will demonstrate how to store and retrieve

objects stored inside arrays.

We will reuse and keep all the features of the clsPeson Class from previous example.
We will drive this class using a Module via Sub Main(). The Main() method will control the flow of the program and display the
a main Form
The Form will allow us to search for a Person Object stored in the array by ID and display the object’s information on the Form.

In addition, the Form will contain a text box to display the number of previously purchased items. The idea is that we will
attempt to demonstrate that we are keeping a running total and that the array is storing the objects with the correct data. In this
example this feature will NOT work! And we will see why and how references play an important part. In the next example we

will see this feature work.
In addition to the other topics covered in previous examples, this Example will demonstrate the following topics:

Storing Objects in arrays

Searching arrays of objects

Displaying objects in arrays

Returning Objects from Functions

Returning a copy of the object stored in Array and it’s implications.

UML Class Diagram

Class Requirements (Same as Previous Example 2) clsEmployee
O The class contains the following data, properties & methods members (See UML Diagram):
Name
Class Person Member Data: IDNumber
Name: Type String BirthDate
IDNumber: Type Integer. Address
BirthDate: Date Phone
Address: Type String Total ltemsPurchased
Phone: Type String

Class Person Event Declaration:

Class Member Overloaded Constructors Methods:

Class Member Properties & Methods:

Total ItemsPurchased: Type Integer

Event OnShopping(ltems)

Public Event OnShopping(NumberOfltems):
Event takes one argument representing total number of items purchase

New(), New(Name), New(IDNumber), New(BirthDate), New(Name, BirthDate)
New(Name, IDNumber, BirthDate, Address, Phone).

Properties for each data member.

New()

New(N)

New(ID)

New(B)

New(N, B)

New(N, ID, B, A, P)
PrintPerson()
Shop()

The Method PrintPerson(), which displays the Persons data
Method Shop(), which sums the total items purchased and raises the OnShopping Event

Form Requirements
O The application will contains the following Form and functionality:

frmCustomerForm: Form to Search for a Customer, display the Customer information and allow customer to shop a

number of items
The form will create one Objects of the Person Class WithEvents

The Form will add code to the Event-Handler generated by the WithEvents Object.

40

HOW IT'S DONE:

Part | — Create The Class:

‘ Step 1: Start a new Windows Application project:

‘ Step 2: Add a Form to the project and set its properties as shown in the table:

Object Property Value
Forml Name frmCustomerForm
Text Customer Form

Step 3: Add a Standard Module set its properties as shown in the table:

Object

Property Value

Modulel

Name modMainModule

Step 4: Set the Project’s properties to behave as a Module-Driven Windows Application:

Object Property Value
Project Name CustomerFormwWinApp
Startup Object | Sub Main()
PersonfrrayProject] Property Pages ﬂ
Configuration: IN."-"\ T Elatfarm; INJ'F\ 'l Configuration Manager.. . |
=3 Common Properties Assembly name:
g General _ustomerFormWindppl
Ewild
Imports Sukput type: Starbup object:
Reference Path IWindows Application j ISub Main j
Designer Defaults Rook namespacs!
(23 Configuration Properties ICustUmarFurmWinApp
Information
Project Folder: CiiMy DocumentsiNyctc,CS608CodelClassMotes\OOP PersonArrays
Project file: PersonarrayProject 1. vbproj
Qutput name: CuskomerFarmiWinApp. exe
Ok I Cancel | Apply | Help |

Step 5: Prepare to Reuse the Person Class from Previous Console Application, by Copying the File from previous
Application Folder to the Folder of this Windows Application Project

1. Using Windows Explorer, navigate to the Console Application folder of the previous example.

2. Copy/Paste the file clsPerson.vb to this Project folder
Step 6: Add the Class to the Project
1. In the Project Menu, select Add Existing Item... and navigate to the project folder
2. Select the clsPerson.vb File and click OK
3. The class is now part of the project and ready to be reused!

41

‘ Step 7: In the Class Module keep private data section as is:

Ialg clsPerson j IIN, {Declarations)

<

Option Explicit On
= Public Class clsPerson
If_] LI O e e e
- 'Clas=s Data or Variable declarations
Private strlMNawme Lz 3tring
Frivate intIDNuber As Integer
Priwvate dEirthDate L= Date
Friwvate striddress As 3tring
Friwvate strPhone L=z S3tring
Frivate intTotalltemsPurchased L=z Integer

|:_:| L o i e e O B e e e i O i O e O e O el e

- 'Event Declarations
FPublic Event OnShopping(BvyWal intTotalltewms)

\ Step 8: Leave the Property Procedure as is:

IOI; clsPerson j IIN, (Declarations)

J_] L e e e e e e e e el i O e o

- 'Property Procedures

= FPublic Property Name() Lz 3tring

E Get
Feturn striName

- End Get

= Set (ByWal strThelamwe Lz String)
striame = strThellame

= End 3et

- End Property

= FPublic Property IDMNumber () LAs Integer
E Get
Feturn intIDMaber
- End Get
=] Set (ByWal intThell Az Integer)
int IDNukber = intTheID
o End 3et

- End Property

= FPublic Property BEirthDate() Lz Date
E Get
Feturn dEirthhate
- End Get
= Jet (ByWal dTheEDate ALz Date)
dEirthhate = dTheEDate
o End Set

- End Property

42

IOI; clsPerson j IIN, (Declarations)

:

Public Property Address() Az String
Get
Feturn striddress
End Get
Zet (B¥yVWal dThelddress As String)
striddress = dThelkddress
End Zet
End Property

Puhlic Property Phone() &= 3tring
Get
Feturn strPhone
End Get
Fet (EvWal dThePhone 4= 3tring)
strPhone = dThePhone
End Zet
End Property

Public Property TotalltemsPurchased|) As Integer
Get
Feturn intTotalltemsPurchased
End Get
FJet (EvWal intTheNumberoflItems Ls Integer)
intTotalltemsPurchased = intThelumberofItems
End Zet
End Property

‘ Step 9: In the Class Module code window keep the code for the Constructor Methods:

IOI; clsPerson

j IIN, {Declarations)

LI ol il Ol B Ol Ol Ol Ol Ol Ol Ol

'Class Constructor Methods
Public Sub New()

'Note that priwvate data members are being initialized

scriame = "

intIDMuwber = 0

dBEirthDate = #1/1/1900#

striddress = "

strPhone = " (000} -000-0000%

intTotalItemsPurchased = 0
End SZub

Public Sub New (ByWal strln s 2tring)
strName = strln
int IDMNwmber = 0O
dEirthDate = #1/1/1900#
intTotalItemsPurchased = 0

End Zub

Public Sub New (BvyWal intlID is Integer)
striame = "
int IDMNwber = intID
dEirthDate = #1/1/1900#
intTotalItemsFurchased = 0

End Zub

IQI;cIsPersun I j II]T@,(DecIaratiuns)

g Public Zub MNew(ByWal dBDate ALs Date)
strifzgue = "'

int IDMNwiber = O

dEirthDate = dEDate
intTotalltemsFurchased = 0

- End Zub
=l Public Sub New(ByWal strMNn ALs String, EByWVal dEDate As Date)
striName = "
intIDNwber = CInt (Int((999 ¥ Rndi)] + 111)) 'Generates a random naber hetwesn 9589 and 111

dEirthDate = dBDate
intTotalltemsFurchased = 0
- End Zub

Public Sub New(ByWal strMN As String, ByWal intIDMwn As Integer, ByWal bEDate As Date,
=l EvWal stridr As String, ByVal strPh Az String)

'Note that we are NOT using the priwvate data but the Property Procedures instead
Name = strN

IDNumber = intIDNum

Birthl'ate = hEDate

bddress = stridr

Fhone = sStrFh

intTotalItemsPurchased = 0

- End Zub

44

‘ Step 10: In the Class Module keep the PrintPerson() Method as is:

IQI; clsPerson j Ilﬂa {Declarations) j

[_:l L o o O

- '"Begular Class Methods
= Public Sub PrintPersoni)

MessageBox.3how("The following Data is being sent to printer ™
& strName & ", " & intIDNuwber & ", " &
dEirthbhate.To3hortDate3tring & ", " &

striddress & ", " & strPhone)

B End Sub

|

- End Claszszs -
4| | »

+ Remember that it is bad practice to display any forms or messages from
within a Class. | do this only for teaching purposes to demonstrate a

topic.

45

‘ Step 11: In the Class Module Keep Shop() Method as is:

IﬁgclsPersnn . j II]'%(DecIaratinns)

I

Public Sukb Shop (ByWal intItems Az Integer)
intTotalItemsPurchased = intTotalltemsPurchased + intlItems

'Raise or trigger event & sSend information with the event
FaiseEvent On3hopping(intTotalltemsPurchased)

End Sub

46

Part Il & Ill — Create The Object and Use it (The User Interface)

‘ Step 12: Add the following indicated Controls to the frmCustomerForm. Set their properties accordingly:

Object Property Value
Forml Name frmCustomerForm
Text Customer Form

0 Note that the Form now includes a button to initiate a search of the customer by the ID entered in the ID Number Text
Box.

Displays Previous Number of Items
Purchased or running total

Step 13: At this Point the Project should look as follows:

| Solution Explorer - PersonArrayProjeckl R X |
= & | [2] | =
@ Solukion 'Persondrraywindppl' (1 project)

El PersonArrayProjectl
- [:5] References

- ["¥] assemblyInfo.vb
"] dlsPerson.vb

- frmCustarmerForm. b
o %] modMaintodule. vb

47

Step 14: In the Module Add the Following Code:

O Code any Global & Private Variable declarations and Sub Main()
1. A Constant Variable created and initialized defining the SIZE of the array
2. We declare an Array of Objects of type clsPerson
3. In Sub Main() we Call the InitializeArray method to populate the arrays with objects
4. We then create an Object of the Form and Display the Form

o
W

indMainModule. vb* | FrmCustomerForm,vb* | dsPerson.vb | 4

i modMainModule j I-:-_. Main

F Module mwodMainModule

'Teclare Constant with size o array
Priwvate Const 2IZE As Integer = 4

'DIeclare Public Array of Person Chijects

Public CustomerList (SIZE) As clsPerson

=) Public Sub Main()

Initializelrray()

'Create Form Chiject
Dimwm objCustomerForm Ls friCustowerForim = New froCustomerForio()

'Display Customer Form
obijCustomerForm. Showlhialogi)

- End Zub

I;II‘_

O Add code for the InitializeArray()method:

1. The InitializeArray() Method creates 5 objects of the clsPerson Class using the parameterized Constructor to initialize
the objects with values.
2. Each clsPerson Object is added to an element of the array.

-
W

wdMainModule.vb* | FrmCustamerForm. vb* | clsPersan.vh | 4

: modMainModule j I':':.Initialize.nrrar

f—] FPuhlie Sub Initializeldrrayi()

'Create CUhjects to add to list

Dim ohjCustomerl As clsPerson = New clsPerson("Joe™, 111, #12/12/1965#, "111 Jay Streest"™, "715-434-5544")
Dim ohjCustomerZ As clsPerson = New clsFerson("ingel™, 222, #1/4/1972#, "2Z2Z Flathush Ave'", "718-234-5524™)
Dim ohjCustomer3 As clsPerson = New clsPerson("Sawm™, 333, #9/21/1960#, "333 Dekalkh bwe'™, "715-890-3422"™)
Dim ohjCustomer4 As clsPerson = New clsPerson("Mary', 444, #7/4/1970#, ™444 Jay Screec", "715-444-1122")
Dim ohjCustomers5 As clsPerson = New clsPerson("Mancy™, 555, #12/12/1965#, "E555 Flatlands Ave™, ™715-434-9576"

|s|IL

'Add ohject to Array Cells o=

cCustowerLisc (0) = ochjCustomerl
CustomerList (1) = cbhjCustomer:a
CustomerlList (2) = ohjCustomersd
customerListc (3) = ohjcustomerd
cCustowerListc (4) = ochjCustomers
- End Sub =

48

O Add the Function Search():

1. This function takes as a parameter an integer value representing the ID of the customer.
2. Inaddition, the Function returns an Object of the clsPerson class:

= You may think this concept of returning an object from a function is new, but is NOT. You have been doing it
all along when you returned string data types. Remember that a string is an object.
= |n this case we are returning the objects that we created.

3. Atemporary Person Object is created to be used as the Object that will be returned by the Function. Note that if the
Object we are searching for is NOT FOUND, we will return the keyword Nothing to the calling program.
4. We use a For Loop to iterate through the array by index as follows:

= Atest of the ID number argument to the ID of every Object in the array is made.
= [f the ID matches:
i. The content of the Object residing in that array index is copied to the temporary Person Object data.
ii. The Temp Object is returned to the calling program
iii. The temp object is destroyed
iv. The Function Exits
= If none of the ID matches:

i. The loops completes to the end of the size of the array.
ii. The Function Returns a Nothing!
iii. The temp object is destroyed
iv. The Function Ends

I%@,mudMainMudule j I':'-‘ Search j
=
'Method that search the array based on an ID or key
= I Public Function Search(ByWVal intlID ALs Integer) As clsPerson

Dim ocbhjTempPerson Az New clsPersoni)
Dim I is Integer

For I = 0 To SIZE
If CustowerlList (I).IDNumber = intID Then

'Found therefore populate temp object with datas & return it
obhjTempPerson.MNamwme = CustomerlList (I) .Name

obhjTempPerson. IDNumber = CustomerlList (1) . IDNwnber
obhjTempPerson.BirthDate = CustomerlList(I).Birthhate

obhjTempPerson. Address = Customerlist (1) . Address

obhjTempPerson. Phone = CustowerlList(I) .Phone

obhjTempPerson. TotalItemsPurchased = Customerlist(I) . TotalltemsPurchased

'Beturn tem object populated with a copy of data from object residing in array
Return objTempPerson
'Destroy Tewmp Chiject, no longer needed
obhjTempPerson = Nothing
'J3ince found, exit sub
Exit Function
End If
Next I

N

'REeturn a Nothing since Not found
Feturn Nothing

'Destroy Temp Chiject, no longer needed
ohjTewmpPerson = Nothing
- End Function

- End Module

49

‘ Step 15: In the Form frmCustomerForm Add the Following Code:

Ialgfrml:ustnmerﬁ]rm j IIN {Declarations)

F Public Class frmCustomerForm
Inherits System.Tindows.Forms.Form
[ﬂ Windows Form Designer generated code

'Declare Form Lewvel Chiect
Priwvate WithEwvents ocbhjCustomer As clsPerson

'Chiect iz created and Form texthoxes are populated with okjects data on Form Load

objCustomer = New clsPersoni()

'DIisable PrewviousPurchase Text Box to make it display only
cxtPrevPurchase.Enabled = False

'Populate Controls with Ckhiject's data upon creation of object
Tith okjCustomer
txtMame.Text = .MNamwe
txCIDMNuber . Text = . IDNumber
txtBirthlate.Text = .BirthDate
txtiddress.Text = .hkddress
txtPhone. Text = .Fhone
txtPrevPurchase.Text = .TotalltemsPurchased
End With
o End 3ub

'Destroy Custom CObhject
objCustomwer = Nothing

- End 3Zub

= Frivate Sub btnPurchase Click(ByVal sender As 3Jystem.Ohject, ByVWal e Az Jystem.Eventlrgs)
'Call the Shop Method of the Ohject to shop and trigger ewvent

objCustomwer.Shop (txtItems. Text)

'Clear Items texthox

txtltewms.Text = "™

- End 3Sub

He.Cllosel)

- End 3Sub

'This ewvent-handler exXecutes every Lime the customer shops

MeszageBox.Show ("The Total itews purchased by the Customer is " £ intTotalltems)
- End Sub

= Frivate Sub EditForm Load (ByWVal sender As Iystem.Cbhject, ByVal e As Jystem.EventlArgs] Handles MyBas

$ Frivate Sub frmEditForm Closed(ByWal sender Ais Chject, ByWal e As 3ystem.Eventlrgs) Handles MyBase.

Handles b

= Frivate Sub btnOK_Click(ByVal sender As System.Cbject, ByWal e As 3ystem.Eventlrgs) Handles btnOE.C

= Frivate Sub objCustomer OnZhopping (ByWal intTotalltems As Cbject] Handles ohjCustower.OnZhopping

]

50

Q The GetCustomer Click Event:

= In this Event-Handler we will call the search method of the module to search for the customer object in the array by 1D
= Note that the Search() method returns an Object reference and we assign this reference to the Object Create in this Form.

= Also note that the result of the Search() can return a Nothing, therefore we Test the object returned to verify if is Nothing or

is a valid reference.

= From the results of the test, we either populate the text boxes with the customer data or display to the user that the Customer

was not found.

IélgfrmtustomerFurm

j Ig‘htnﬁet[ustumer_[lick

[

If okjCustomer I= Moth

txtMame . Text = "
Lxt IDNumber . Text =
cxcEirthlate. Text
txtiddress. Text =
txCPhone. Text = "

Else
'Populate Controls
With objCustomer
txtName . Text =
txt IDNuber . Te

txthddress. Tex
txtPhone. Text
End With
End If

- End Zub
~“End Class

é Frivate Sub btnGetCustomer Click(ByWal sender As 3ystem.Object, ByVal e As System.Eventlrgs) Handle‘
'Extract ID from texhbox and call search method
ohijCustomer = Search(CInt (txtIDNunber.,Text))

ing Then

HMessageBox. 3how"Custowmer Not Found™
'Clear all controls

with Chiject's data

. Name
Xt = , IDMNuaber

txtBirthlate.Text = .Birthlate

T = .Address
= .Phone

51

Step 16: Compile & Run the program:

Steps 2 — Enter 111 in the ID text box and click the Get

Steps 1 — the Form is displayed with default Na ¢
Customer Button. Customer 111 data is displayed.

-loix]

Customer Form

-ioix]

i~ Customer Information
LI Customer Form
Namg |
i Customer Information
oK

1D Mumber 0 Get Customner By 1D | (e on
Birth Dah
e 1/1/1300 D Number |117 Get Custamer By [T I

A
= I Bith Date 1211241965
Phu 0004
ahe (000]-000-0000 Addiess |1‘H Tay Sheet
— Shopping Section Phone 718-434-5544
Previous Purchases Tatal 0
—Shopping Section
Humber afllems fa Puichase Purchase | Previous Purchases Total ID—

Mumnber of ltems to Purchase I Purchase

Steps 3 — Now purchase 5 Items. The event-handler will
inform you of the purchase
Step 4 — Click OK

1=

Customer Form

i Custamer [nformation
ok |

Mame Joe

10 Mumber 111 Giet Customer By D |
Birth D ate |1 21241965

Address J111 Jay Stieet

The Tatal items purchased by the Customer is 5

—Shopping Section

Frevious Purchases Total ID

Mumber of ltems to Purchaze IE‘ Purchaze |

4

Steps 5 — Enter 222 in the ID text box and click the Customer

Button to get another customer. Customer 222 data is
displayed.

i

Customer Form

r—Customer Information

Name Angel

1D Mumbes |222 Giet Customer By [D I
Birth D ate 1441972

Addiess | 222 Flathush Ave

Phane 718-234-5524

—Shopping Section

Previous Purchases Total ID
Mumber of [tems to Purchase I Eunehess

Steps 6 — Now Enter 111 again in the ID text box and click
the Get Customer Button. Customer 111 data is displayed
BUT the Previous Purchased Total is blank. No data for this
variable was stored.

i

Customer Form

7 Custamer Infarmatiorn

Name loe

D Number 111 Get Customer By ID I
Birth Date |12."12ﬂ 965

Address |111 Jay Street

Phone |?1 2-434.5544

[Shopping Section

Previous Purchases Total IU
Murnber of ltems to Purchase I E

+«» The reason we were not able to store any data back to the array is because what is returned to the Form by the Search()

method is a copy of the reference, therefore we don’t know the index or location of the object just retrieved so we can modify

it.
¢+ The next example will show us an alternative.

53

6.3.5 Sample Program 4 — Working With Arrays & Objects (Part I1)

Module-Driven Window Application — Arrays & Person Class

Problem statement:
O This example has the same requirements as the previous Example 3.

O The difference will be in the Search() method in the Module. This time, search will return a Reference or a direct link (Pointer) to
the Object in the Array. Therefore any modifications we make to the Reference by the calling program will actually modify the

element stored in the array.

O Inthe last example the Previously Purchased Total text box was NOT empty, indicating that there was no storage of the number

of items purchased by the Customer.

O In this example this feature will work since we have a direct link to the Object being stored in the array and we can modify it.

0 Inaddition to the other topics covered in previous examples, this Example will demonstrate the following topics:

Storing Objects in arrays

Searching arrays of objects

Displaying objects in arrays

Returning Objects from Functions

Returning a Reference of the object stored in Array.
Modifying the object stored in the array via the reference.

Class Requirements (Same as Previous Example 3)

O The class contains the following data, properties & methods members (See UML Diagram):

Class Person Member Data, Property, Methods & Events:
= Same as Previous Example

Form Requirements
O The application will contains the following Form and functionality:

= Same as previous Example 3

UML Class Diagram

clsEmployee

Name

IDNumber
BirthDate

Address

Phone

Total ltemsPurchased

Event OnShopping(ltems)

New()

New(N)

New(ID)

New(B)

New(N, B)

New(N, ID, B, A, P)
PrintPerson()
Shop()

54

HOW IT'S DONE:

Part | — Create The Class:

‘ Step 1: Start a new Windows Application project:

‘ Step 2: Add a Form to the project and set its properties as shown in the table:

Object Property Value
Forml Name frmCustomerForm
Text Customer Form

Step 3: Add a Standard Module set its properties as shown in the table:

Object Property Value

Modulel Name modMainModule

Step 4: Set the Project’s properties to behave as a Module-Driven Windows Application:

Object Property Value

Project Name CustomerFormWinApp
Startup Object | Sub Main()

PersonfrrayProject] Property Pages ﬂ

Configuration: IN.I’A T Elatfarm; INJ‘F\ 'l Configuration Manager.. . |

=3 Common Properties Assembly name:

% General _ustomerForm'Windpp)
Ewild
Impaorts
Reference Path IWindows Application j ISub Main j
Designer Defaults

(23 Configuration Properties

Sukput type: Starbup object:

Rook namespace:

I CustomerForm'Winapp

Information

Project Folder: CiiMy DocumentsiNyctc,CS608CodelClassMotes\OOP PersonArrays
Project file: PersonarrayProject 1. vbproj
Qutput name: CuskomerFarmiWinApp. exe

Ok I Cancel | Apply | Help

Application Folder to the Folder of this Windows Application Project

Step 5: Prepare to Reuse the Person Class from Previous Console Application, by Copying the File from previous

1. Using Windows Explorer, navigate to the Console Application folder of the previous example.

2. Copy/Paste the file clsPerson.vb to this Project folder

Step 6: Add the Class to the Project

1. In the Project Menu, select Add Existing Item... and navigate to the project folder

2. Select the clsPerson.vb File and click OK
3. The class is now part of the project and ready to be reused!

55

‘ Step 7: In the Class Module keep private data section as is:

Q Same as before

‘ Step 8: Leave the Property Procedure as is:

Q Same as before

Step 9: In the Class Module code window keep the code for the Constructor Methods:

Q Same as before

Step 10: In the Class Module keep the PrintPerson() Method as is:

Q Same as before

Step 11: In the Class Module Keep Shop() Method as is:

Q Same as before

56

Part Il & Ill — Create The Object and Use it (The User Interface)

‘ Step 12: Add the following indicated Controls to the frmCustomerForm. Set their properties accordingly:

Object Property Value
Forml Name frmCustomerForm
Text Customer Form

O Note that the Form now includes a button to initiate a search of the customer by the ID entered in the ID Number Text
Box.

Displays Previous Number of Items
Purchased or running total

Step 13: At this Point the Project should look as follows:

| Solution Explorer - PersonArrayProjeckl R X |
= & | [2] | =
@ Solukion 'Persondrraywindppl' (1 project)

El PersonArrayProjectl
- [:5] References

- ["¥] assemblyInfo.vb
"] dlsPerson.vb

- frmCustarmerForm. b
o %] modMaintodule. vb

57

Step 14: In the Module Add the Following Code:

O Code any Global & Private Variable declarations and Sub Main() (Same as Before!!)
1. A Constant Variable created and initialized defining the SIZE of the array
2. We declare an Array of Objects of type clsPerson
3. In Sub Main() we Call the InitializeArray method to populate the arrays with objects
4. We then create an Object of the Form and Display the Form

o
W

indMainModule. vb* | FrmCustomerForm,vb* | dsPerson.vb | 4

i modMainModule j I-:-_. Main

F Module mwodMainModule

'Teclare Constant with size o array
Priwvate Const 2IZE As Integer = 4

'DIeclare Public Array of Person Chijects

Public CustomerList (SIZE) As clsPerson

=) Public Sub Main()

Initializelrray()

'Create Form Chiject
Dimwm objCustomerForm Ls friCustowerForim = New froCustomerForio()

'Display Customer Form
obijCustomerForm. Showlhialogi)

- End Zub

I;II‘_

O Add code for the InitializeArray()method (Same as Before!!):

3. The InitializeArray() Method creates 5 objects of the clsPerson Class using the parameterized Constructor to initialize
the objects with values.
4. Each clsPerson Object is added to an element of the array.

-
W

wdMainModule.vb* | FrmCustamerForm. vb* | clsPersan.vh | 4

: modMainModule j I':':.Initialize.nrrar

f—] FPuhlie Sub Initializeldrrayi()

'Create CUhjects to add to list

Dim ohjCustomerl As clsPerson = New clsPerson("Joe™, 111, #12/12/1965#, "111 Jay Streest"™, "715-434-5544")
Dim ohjCustomerZ As clsPerson = New clsFerson("ingel™, 222, #1/4/1972#, "2Z2Z Flathush Ave'", "718-234-5524™)
Dim ohjCustomer3 As clsPerson = New clsPerson("Sawm™, 333, #9/21/1960#, "333 Dekalkh bwe'™, "715-890-3422"™)
Dim ohjCustomer4 As clsPerson = New clsPerson("Mary', 444, #7/4/1970#, ™444 Jay Screec", "715-444-1122")
Dim ohjCustomers5 As clsPerson = New clsPerson("Mancy™, 555, #12/12/1965#, "E555 Flatlands Ave™, ™715-434-9576"

|s|IL

'Add ohject to Array Cells o=

cCustowerLisc (0) = ochjCustomerl
CustomerList (1) = cbhjCustomer:a
CustomerlList (2) = ohjCustomersd
customerListc (3) = ohjcustomerd
cCustowerListc (4) = ochjCustomers
- End Sub =

58

O Add the Function Search(). Here things are different. Let’s look at the algorithm:

This function takes as a parameter an integer value representing the ID of the customer.

In addition, the Function returns a Reference to the Object stored inside the Array. If the Object is NOT Found, then a
Nothing is returned to the calling program.

We use a For Loop to iterate through the array by index as follows:

= Atest of the ID number argument to the ID of every Object in the array is made.
= If the ID matches:

i. Return the Reference or Pointer Element. Remember that what is being stored in the arrays are
pointers, so if we make the following statement: CustomerList(l) we are returning the pointer stored in

the (1) index.
This is what is being returned
CustomerList 0 1 2 3/ by Search, the pointer stored
inside the array element
—— |~ g/l a1 [

“Joe”
111
1/23/1978

“Mary”
444
5/10/1969

“Angel”
222
12/12/1972

ii. The Function Exits
= [f none of the ID matches:

i. The loops completes to the end of the size of the array.
ii. The Function Returns a Nothing!
iii. The Function Ends

modMainModule.vb*

4 b X

I%andMainMudule j I':':‘ Search

'Method that search the array based on an ID or key
= |Public Function Search(ByVal intID As Integer) As clsPerson
Dim I As Integer

For I = 0 To SIZE
If CustomerLisc(I).IDNuwber = intID Then

'Found therefore return it reference to object inside array
Feturn CustomerList (1)
'Since found, exit sub
Exit Function
End If
MNext I

'"Feturn an ewpy obhject =ince not found
Feturn MNothing

o End Function

-~ End Hodule

59

‘ Step 15: In the Form frmCustomerForm Add the Following Code:

Ialgfrml:ustnmerﬁ]rm j IIN {Declarations)

F Public Class frmCustomerForm
Inherits System.Tindows.Forms.Form
[ﬂ Windows Form Designer generated code

'Declare Form Lewvel Chiect
Priwvate WithEwvents ocbhjCustomer As clsPerson

'Chiect iz created and Form texthoxes are populated with okjects data on Form Load

objCustomer = New clsPersoni()

'DIisable PrewviousPurchase Text Box to make it display only
cxtPrevPurchase.Enabled = False

'Populate Controls with Ckhiject's data upon creation of object
Tith okjCustomer
txtMame.Text = .MNamwe
txCIDMNuber . Text = . IDNumber
txtBirthlate.Text = .BirthDate
txtiddress.Text = .hkddress
txtPhone. Text = .Fhone
txtPrevPurchase.Text = .TotalltemsPurchased
End With
o End 3ub

'Destroy Custom CObhject
objCustomwer = Nothing

- End 3Zub

= Frivate Sub btnPurchase Click(ByVal sender As 3Jystem.Ohject, ByVWal e Az Jystem.Eventlrgs)
'Call the Shop Method of the Ohject to shop and trigger ewvent

objCustomwer.Shop (txtItems. Text)

'Clear Items texthox

txtltewms.Text = "™

- End 3Sub

He.Cllosel)

- End 3Sub

'This ewvent-handler exXecutes every Lime the customer shops

MeszageBox.Show ("The Total itews purchased by the Customer is " £ intTotalltems)
- End Sub

= Frivate Sub EditForm Load (ByWVal sender As Iystem.Cbhject, ByVal e As Jystem.EventlArgs] Handles MyBas

$ Frivate Sub frmEditForm Closed(ByWal sender Ais Chject, ByWal e As 3ystem.Eventlrgs) Handles MyBase.

Handles b

= Frivate Sub btnOK_Click(ByVal sender As System.Cbject, ByWal e As 3ystem.Eventlrgs) Handles btnOE.C

= Frivate Sub objCustomer OnZhopping (ByWal intTotalltems As Cbject] Handles ohjCustower.OnZhopping

]

60

Q The GetCustomer Click Event:

= In this example the code in this Event_Handler does not change
o The search method is called to perform the search by customer 1D
o Note that the Search() method returns a Reference to the original Object in the Array
o We then assign this reference to the Customer Object inside the Form.
o The point here is that what ever we do to the objCustomer Object in the Form, we are doing to the actual

Object stored in the array!

o We populate the text boxes with the values from objCustomer
o If Search() return a Nothing, we notify the user.
IalgfrmtustomerFurm j Ig.htnﬁet[ustumer_[lick j
é Frivate Sub btnGetCustomer Clicki(ByWal sender As 3ystew.Ohject, ByWal e As Zystem.Eventlirgs) Handle‘

1

Elze

'Extract ID from texhox and call search method
obhjCustomer = Search(CInt (txtIDNumber.Text))

If okbjCustomer Is Nothing Then

MessageBox. Show("Custower Mot Found"”
'Clear all controls

txtMame.Text = "7

cxC IDNuwber . Text = M
txtBirthlate., Text = "
txthddress. Text = "¥

txtcPhone. Text = "

'Populate Controls with Chiject's data
With objCustomer

txtlame . Text = .Name
tRtIDMNwnber . Text = . IDNumber
txtBEirthbhate.Text = .BirthDate
txthddress. Text = .Address
txtPhone.Text = .FPhone
End With
End If
- End 3ub
“End Class

61

O The EditCustomer_Click Event:
In order to further demonstrate that we are actually modifying the object stored in the array, | added an Edit Customer button

to the Form that will allow us to write the content of the text boxes to the Object residing inside the Array.
In other words we now can edit any of the Customer’s Information Text Boxes and save them to the Array:

frmCustomerForm.vb* |

4k %

Ialg frmCustomerForm j IE‘-,. btnEditCustomer_Click

[

I

Friwvate Zub btnEditCustomer Click(ByVal sender As System.Cbject, ByVal e Ls System.Eventlirgs)

'Crrerwrite Ohject in Array with data from Form!
With objCustomer

MName = cxtName . Text

LIDMNukber = txtIDMNudber. Text

.BirthDate = txtBirthDate.Text

JAddress = txthddress. Text

.Phone = txtPhone.Text

.TotalltemsPurchased = txtPrevPurchase. Text
End With

End 3ub

-

a

62

Step 16: Compile & Run the program:

Steps 2 — Enter 111 in the ID text box and click the Get

Steps 1 — the Form is displayed with default Na ¢
Customer Button. Customer 111 data is displayed.

1ol x|

Customer Form

=10 x|
i~ Customer |nformation
0K Customer Form
Name [i Customer Information
oK

Get Custamer By
o]
1D Mumber il et Joe:
1D

R i 1D Hurnb,
Birth Date l—.m GE Edit Customer urnber 11

i

Edit Customer
Birth Date 124121965 4'
Address |

Address |1ﬂ Jay Street

Phane (000)-000-0000
Phane 716-434-5544

—Shopping Section

Previaus Purchases Total ID r—Shapping Section
0

Previous Purchases Tatal

Mumber of ltems to Purchase I Purchase |
Mumber of [tems ta Purchase Purchase

Steps 3 — Now purchase 5 Items. The event-handler will
inform you of the purchase
Step 4 — Click OK

=

Customer Form

i Customer Information
0K |
Marne loe
Get Customer By
1D

Edit Custamer

10 Murnber 111

Biith Date |12/‘I 2/13965

Address |111 Jap Strest

Phane |71 9-434-5544

B

The Tatal items purchased by the Customer is 5

|L

—Shaopping Section

Previous Purchases Total 0
Hurnber of Items to Purchase [g [— |

Steps 5 — Enter 222 in the ID text box and click the Customer
Button to get another customer. Customer 222 data is
displayed.

Steps 6 — Now Enter 111 again in the ID text box and click
the Get Customer Button. Customer 111 data is displayed
INCLUDING the Previous Purchased Total. Data was stored
in the array.

-ioix

Customer Form

r—Customer Information

oK |
Get Customer By
1D
Edit Customer |

Name |ﬂngel

1D Mumber 297

Birth D ate |1 /41972
Address | 222 Flatbush Ave

Phone |?1 8-234-5524

— Shopping Section

Previous Purchases Total ID
Mumber of [tems to Purchase I B |

4

L=

Customer Form

r—Customer Information
oK

Get Customer By
|

Edit Customer

MName I‘J ae

1D Hurnber 111

il

Birth Date |1 2121965
Address |1 11 Jay Street

Phane |?1 8-434-5544

—Shopping Section

Previous Purchases Total |5
Mumber of ltems to Purchaze I B |

+ Notice that now the stored value appears in the Previous Purchased Total text box.

Now let’s test the Modify or Edit Customer Feature:

Steps 7 — Now Enter 111 again in the ID text box and click
the Get Customer Button. Customer 111 data is displayed.

Step 8 — Now Modify the Customer Information and Click
the Edit Customer Button

Steps 9 — Enter 222 in the ID text box and click the Customer
Button to get another customer. Customer 222 data is
displayed.

L=

Customer Form

r—Custorner [nfarmation

Name IJoe Smith

|0 Mumnber 111

Birth Date |1 21121965

Addess 500 Flatbush Ave]

Phane |?1 8-434-5544

(1[4 |
Get Customer By
D

E dit Custamer

i

—Shopping Section

Previous Purchases Tatal |5
Mumber of ltems to Purchaze I Furchase |

-loix

Customer Form

r—Customer Information

oK |
Get Customer By
1D

Mame |Ange|

1D Nurnber 299

Birth Drake 1/4/1972 Edit Custamer |
ez [222 Flatbush Ave

Phone |?18-234-5524

—Shopping Section

Previous Purchases Total ID
Mumber of [tems to Purchase I B |

64

Steps 10 — Now Enter 111 again in the ID text box and click
the Get Customer Button. Customer 111 data is displayed
INCLUDING the changes made when we clicked the Edit
Customer Button.

=T

Customer Form

r— Custamer |nfarmation
Ok

Nams | ae Smith

10y Murmber 111

Birth D ate: I-I JATAEER Edit Custarner

Address {500 Flatbush Ave

Phane 714345544

— Shopping Section

Previous Purchases Tatal |5
MHurmber of ltems to Purchase I Eunlhcss |

et Cugtomer By

il

65

5.3.5 Sample Program 5 — Small Business Application Example
Windows Driven Application — Customer & Retail Management

Problem statement:
O Use a Windows-Driven Application (Startup Object = Sub Main) to create a customer/retail management system for a small

business. The objectives of the application is to allow employees of the retail business to use the application for the following
tasks:

= Sell products to customers — Customers can shop and purchase items by quantity. Example 5 items, 10 items etc.
= Manage Customers — Search for customer records and do the following: Search for Customer, Add new Customer,
Edit Customer, Remove Customer, Print Customer and Print All Customers.

The application is to have the following FORM OR USER-INTERFACE to allow employees to manage the system:

= Main Form — Main Portal for users to navigate to other forms for customer management and shopping
= CUSTOMER MANAGEMENT - User-interface for managing customers
= RETAIL MANAGEMENT FORM - User-interface for cashiers to sell the products to each customer.

NOTE that we will implement this application ONLY USING THE VB.NET LANGUAGE COMPONENTS WE HAVE
LEARNED UP TO THIS POINT. A realistic Business Application will use more appropriate technology to implement such
application. Nevertheless, this example will truly test our understanding of OBJECTS AND CLASSES up to this point.

Application Architecture Introduction (Separating Interface from Implementation)

Q

Q

We will continue to implement proper application programming ARCHITECTURE and FORMATS adhering to BEST
PRACTICE by making all attempts to SEPARATE INTERFACE from IMPLEMENTATION.
In other words SEPARATE USER-INTERFACE CODE with PROCESSING. This is done as follows:

= Forms or User-interface code or the code in the FORMS will contain NO PROCESSING CODE!

= FORMS will only contain User-Interface code or code to interact with USER ONLY'!

* FORM code includes MESSAGE BOXES, Ul CONTROLS manipulation, getting data from user, displaying data to
user.

» All PROCESSING CODE will reside in the MODULE INSIDE PROCESSING METHODS!

* PROCESSING METHODS IN MODULE will be CALLED BY THE FORMS TO DO THE WORK!

*» PROCESSING MODULE will contain LITTLE or NO FORM CODE! SUCH AS CALLS to FORMS OR FORM
CONTROLS

* FORM CODE WILL INTERACT WITH USER AND CALL PROCESSING METHODS IN MODULE TO DO THE
WORK!

Re-using Objects

Q

We will also review the OOP concept of Reusability by reusing the Person Class from the previous examples and modifying
the class for this project.

Database Requirements

a

We will NOT use a real database but SIMMULATE the database using an ARRAY OF CUSTOMER OBJECTS.

Form, & Module Requirements

Q

The main or driver program will utilize several forms. A Main Form as a startup point to invoke the Customer Management
& Retail Management Forms. Each one of these Forms will perform their function and manage the objects created in the
program.

In addition the program will contain a Module where several global public Objects will reside that represent a
SIMMULATED DATABASE OF CUSTOMER OBJECTS.

66

Additional Requirements
Q This Example will demonstrate the following topics:

Windows Module-Driven Application Example
Creating Classes & reusing Classes from previous programs
Creating, initializing ARRAY OF Objects
Using Objects as follows:
o (Set, Get, Calling methods, triggering Form Object event-handlers, & programming Form objects event-

handlers)
o Working with Objects & Forms
o Global Objects in a Module UML Class Diagram

o Assigning Object Reference to one another (Object to Object Interaction)
clsCustomer
Class Requirements
O Create a class named clsCustomer. The class contains the following data, properties & methods: | Name

CustomerID
Class clsCustomer Member Data: BirthDate
= Name: Type String Address
= CustomerID: Type String. Phone
= BirthDate: Date Total ltemsPurchased
= Address: Type String
= Phone: Type String Event OnShopping(ltems)
= TotalltemsPurchased: Type String
Class Member Properties & Methods: New()
= Set & Get Properties for each data member. New(N, ID, B, A, P)

Print()
Class Member Methods: Shop()
= Print(): Displays the Persons data
= Shop(ltems): Allows customer objects to purchase items

Form Requirements
O The application will contains the following Forms:

= frmMainForm: Portal to navigate to other Forms
» frmCustomerManagement: Form contains controls to Search, Add, Edit, Delete, Print and & Print all Customers
» frmRetailManagement: Form to perform the retail shopping process and also displays Customer’s information

O Note that the Forms will create any necessary FORM-LEVEL Objects & Form Event-Handlers that respond to user
interactions.

Module Requirements
O The application will contains one Module with the following requirements:

= MainModule: Module to contain the following components:
o Global ARRAY of CUSTOMER OBJECT POINTERS which represent the Customer DATABASE.
o Sub Main() — Main method which controls program flow.
o The following PROCESSING METHODS:

e Sub Initialize() — Populate the ARRAY of POINTERS with CUSTOMER OBJECTS. Creates 5
CUSTOMER OBJECTS with data and assigns them to the ARRAY of POINTERS.

e Function SearchCustomer(ID) — Search ARRAY of Objects for the object whose ID is the parameter.
RETURNS a POINTER to the object found or returns a NOTHING if not found.

e Function AddCustomer (OBJECT POINTER) — Search ARRAY of Objects for a NULL POINTER and
has it POINT to the Object Pointer pass as Parameter. Returns a TRUE if empty pointer found and objects
added, else FALSE if no room found in ARRAY.

e Function AddCustomer (parameterl, parameter2, parameter3 etc....) — OVERLOADED ADD method.
Creates a NEW EMPTY OBJECT, populates object with properties passed as parameters. Search ARRAY
of Objects fora NULL POINTER and has it POINT to the NEW OBJECT. Returns a TRUE if empty
pointer found and object added, else FALSE if no room found in ARRAY

67

Function EditCustomer (ID, OBJECT POINTER) — Search ARRAY for OBJECT whose ID is passed as
parameter. If found in ARRAY, object is REPLACED WITH OBJECT passed as parameter. Returns a
TRUE if object found and REPLACED. Returns FALSE if object not found in ARRAY.

Function EditCustomer (parameterl, parameter2, parameter3 etc....) — OVERLOADED EDIT method.
Search ARRAY for OBJECT whose ID is passed as parameter. If found in ARRAY, object is MODIFIED
by SETTING ITS PROPERTIES ON THE OBJECT IN THE ARRAY. Returns a TRUE if object found
and MODIFIED. Returns FALSE if object not found in ARRAY

Function RemoveCustomer(ID) — Search ARRAY for the object whose ID is the parameter. REMOVES
OBJECT from ARRAY by setting ARRAY (i) POINTER to NOTHING. RETURNS a TRUE if found and
REMOVED or returns FALSE otherwise.

Function PrintCustomer(ID) — Search ARRAY for the object whose ID is the parameter. Calls PRINT()
method of object. RETURNS a TRUE if found or returns FALSE otherwise.

Sub PrintALLCustomers() — Search ARRAY and calls PRINT() method of EACH OBJECT in ARRAY.

68

HOW IT'S DONE:

Part | — Create The Class:

Step 1: Start a new Windows Application. Set PROJECT PROPERTIES so that we have a Module-Driven Application:

Object Property Value
Project Name CustomerFormwinApp
Startup Object Sub Main

Lecture2aP2 | Maintiodule vb -

application

Compile
b Root namespace:
e
" JLectureaarz
e Icon
o el =10
Settings Startup cbject: N
ET x| 1 assambly mformation, .,
Signing
I™" Enable application framewark.
Security
Windows application framework properties
Publish &
r
=

Step 2: Prepare to Reuse the Person Class from Previous Example, by Copying the File from previous Application Folder to
the Folder of this Windows Application Project

3. Using Windows Explorer, navigate to the Folder of the previous example Console Application Sample Program 1.
4. Copy/Paste the file clsPerson.vb to this Project folder

‘ Step 3: Add the Class to the Project

4. Inthe Project Menu, select Add| Existing Item... and navigate to the project folder

Add Existing ltem - Lecture2ASample1 nu
Look in: |,‘j LectureZAasamplel j B] >< L j - Tools =
e ICbin
£ 1) My Project
Desktop I obi
Iitemp

P -
'J 18] Farm1. Designer.vb

MMy Projects] Formy.vb

My Computer

File name: ‘ j add >

Files of bype: ‘VB Code Files (% vbj* resx* settings;* xod;*, wsdl) j Cancel

Select the clsPerson.vb File and click OK
The class is now part of the project and ready to be Reused!

o

Step 4: In the SOLUTION EXPLORE, RENAME the clsPerson Class to clsCustomer

69

Step 5: In the Class Module code window MODIFY the code for the private data as follows:

Option Explicit On
Option Strict On

Public Class clsCustomer
Thkhkkhkhkkhkkhkhkkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkkhkhkkhkkhkhkkhkkhkhkhkkkhkkkhkkkkxkx

'Class Data or Variable declarations

Private m Name As String

Private m CustomerID As String

Private m BirthDate As Date

Private m Address As String

Private m Phone As String

Private m TotalItemsPurchased As Integer

Step 6: In the Class Module Declare OnShopping Event:

VoA Ak Ak A A A A A A A A A A A A A A A AR A A A A A A AR A AR A AR A AR A AR A AN A AN A A A A A A A A A A A Ak Ak kK

'Event Declarations
Public Event OnShopping (ByVal intTotalItems As Integer)

Step 7: In the Class Module code window enter the code for public Properties:

'Property Procedures
Public Property Name () As String
Get
Return m Name
End Get
Set (ByVal Value As String)
m Name = Value
End Set
End Property

Public Property CustomerID() As String
Get
Return m CustomerID
End Get
Set (ByVal Value As String)
m _CustomerID = Value
End Set
End Property

Public Property BirthDate () As Date
Get

Return m BirthDate
End Get
Set (ByVal Value As Date)
m BirthDate = Value
End Set

End Property

70

'Property Procedures
Public Property Address() As String
Get
Return m Address
End Get
Set (ByVal Value As String)
m_Address = Value
End Set

End Property

Public Property Phone() As String
Get
Return m Phone
End Get
Set (ByVal Value As String)
m_Phone = Value
End Set
End Property

Public Property TotalItemsPurchased() As Integer
Get
Return m TotalItemsPurchased
End Get
Set (ByVal Value As Integer)
m_TotalItemsPurchased = Value
End Set
End Property

Step 8: In the Class Module code window enter the code for Constructor Methods (Non-Parameter and/or Parameterized): |

ThAAAkAAAkAAAk AKX A A Ak A Ak A Ak Ak hkhkhkhkhkhkhkhkkkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhk

'Class Constructor Methods

'Default Constructor
Public Sub New ()
'Note that private data members are being initialized
m_Name = mwwn
m CustomerID = ""
m BirthDate = #1/1/19004#
m Address = ""
m Phone = " (000)-000-0000"
m_TotalItemsPurchased = 0
End Sub

'Parameterized Constructor
Public Sub New(ByVal Name As String, ByVal IDNum As String, ByVal BDate As Date, _
ByVal Address As String, ByVal Phone As String)
'Note that as example we are NOT using the private data but
'the Property Procedures instead when setting the data via the constructor
Me.Name = Name
Me.CustomerID = IDNum
Me.BirthDate = BDate
Me.Address = Address
Me.Phone = Phone

'Not included in parameters, so we intialize it
Me.TotalItemsPurchased = 0
End Sub

Step 9: MODIFY the Print() method as required:

Thhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhhkhkhhkkhkhkkhkkkhkkkx
Thhkhkhkkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkhhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkkx

'Class Methods
Thhkkhkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkhkhkkhkhkhkhkhkhkkhkkhkhkkhkhkhkkhkhkhkkkhkkkhkkkhkkhkkhkkhkkhkhkhkhkkhkhkkhkhkkk

'" <summary>
''" Method that diplays Customer's data
"' </summary>
'' <remarks></remarks>
Public Sub Print ()

'Display object Content
MessageBox.Show(m Name & ", " & m CustomerID & ", " & _
m BirthDate & ", " & m Address & ", " & m Phone & ", " & m TotalItemsPurchased)

End Sub

O NOTE THAT THIS CLASS CONTAINS A USER-INTERFACE CODE VIA A MESSAGE BOX. THIS IS ONLY

FOR TEACHING PURPOSE!
0 YOUSHOULD NOT DISPLAY ANY MESSAGE BOXEX OR USER-INTERFACE CODE FROM WITHIN A

CLASS IN HWS AND PROJECTS UNLESS OTHERWISE INSTRUCTED!

Step 10: Create Shop(ltem) method:

Thhkhkhkhkkhkhkkhkhkkhkhkhkhhhkhkkhkkkhkkhkhkhkkhkhkhkkhkhkkhkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkhkkhkhkkhkhkhk

<summary>
Shops by addign items to be purchased to running total items.
Triggers On Shopping Event
</summary>
<param name="intItems"></param>
<remarks></remarks>
Public Sub Shop(ByVal intItems As Integer)
m TotalItemsPurchased = m TotalItemsPurchased + intItems

'Raise or trigger event & send information with the event
RaiseEvent OnShopping(m TotalItemsPurchased)

End Sub

End Class

72

Part Il & Ill — Create & Use The Objects (The User Interface Code)

Standard Module:

‘ Step 11: Add a Module to the Project and set its properties as show in table below:

Object Property Value
Module Name MainModule
Text MainModule

Step 12: Add Module GLOBAL declarations:

0 Inthe module, we will ARRAY OF OBJECT POINTERS. These POINTERS will eventually point to objects which will
represent our simulated DATABASE OF CUSTOMERS!
0 Inaddition we create an object for the MAIN FORM..

Option Explicit On
Option Strict On

Module MainModule

Thhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkkkkkkkkkkkkkkkk*kx

' GLOBAL VARIABLES & OBJECT DECLARATIONS SECTION

Thhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk

'Declare Constant with size o array
Private Const SIZE As Integer = 9

'Declare Public Array of Person Objects
Public arrCustomerList (SIZE) As clsCustomer

'Declare & Create Public FORM Object
Dim objMainForm As frmMainForm = New frmMainForm()

Step 13: Add Sub Main() method:

0 Sub main executes and call Initialize method to populate ARRAY, then Displays the MAIN FORM..

LIRS S b S b b b b b b b b b b b b b I b b Sh b e SR Sh e S S S S S S S S S b b b b b b b b b b b b Ib b IR Ib e SR Sh S d SR Sh e S dh S e S S S S S b S b b b b 4
' MAIN METHOD DECLARATION
LIRS b b b b b b b b b b b b b b b b dh b e ah Sh b 2 S b 2 S S 2 2 2 b b b b b 2b b b b b S b b b b b Sh dh b 2 Sh ah b S ah i 2 b S b S 2 b b 2b b b b b 4
'Y <summary>
''' Main program simply populates array with test objects
' Display Customer Management Form to manage Customers
' </summary>
' <remarks></remarks>
Public Sub Main()
'Initialize Array
Initialize()

'Display Main Form
objMainForm. ShowDialog ()

End Sub

73

Step 14: Add Module INITIALIZE() Method declarations:
O Mow we begin to add PROCESSING METHODS TO THE MODULE that will do the work for the FORMS.
Q The first method we implement is the INITIALIZE() method. This sub procedure creates 5 OBJECTS of the PERSON
CLASS and assigns them to the 5 GLOBAL POINTERS.
Q At this point the simulated DATABASE OF CUSTOMERS is not POPULATED WITH OBJECTS!

KA K A AR A AR A AR A AR A AR A A A A AR A AR A AR A AR A AR A AR A AR A AR A A A A AR A A A A AR AR AR A A AR A A A A A A AR Ak k kK

METHOD DECLARATIONS
R b b b b b b b b ab b b b b b b b b b b db b b b b b b b db b b b b b b i db b b b b db b b b b b db b b b b b i b b b b b b b b b b b b 4 b db b b b b b b g
"' <summary>
Intended to execute at the start of the program. Can be used to perform
any initialization. In this case, Create 5 OBJECT populated objects and
ADD objects to ARRAY.
</summary>
<remarks></remarks>
Public Sub Initialize()
'Declare 5 POINTERS to Customer Object
Dim objCustomerl, objCustomer?2, objCustomer3, objCustomerd4, objCustomer5 As clsCustomer

'Create objects and initialize with data via paremterized constructor
objCustomerl = New clsCustomer ("Joe", "111", #12/12/1965#,
"111 Jay Street", "718-434-5544")

objCustomer2 New clsCustomer ("Angel", "222", #1/4/1972#, _
"222 Flatbush Ave", "718-234-5524")
objCustomer3 New clsCustomer ("Sam", "333", #9/21/1960#, _
"333 Dekalb Ave", "718-890-3422")
objCustomer4 New clsCustomer ("Mary", "444", #7/4/1970#, _
"444 Jay Street", "718-444-1122")
objCustomer5 New clsCustomer ("Nancy", "555", #12/12/1965#, _
"555 Flatlands Ave", "718-434-9876")

arrCustomerList (0) objCustomerl
arrCustomerList (1) objCustomer2
arrCustomerList (2) objCustomer3
arrCustomerList (3) objCustomer4
arrCustomerList (4) = objCustomer5

End Sub

74

Step 15: Create SEARCHCUSTOMER(ID) FUNCTION declarations:
O Purpose of this method is to search the database (ARRAY) for the object whose ID is parameter and return a POINTER to
the object
O How it works:
= FORLOORP is used to search array. THIS SEARCH ALGORITHM IS COMMON FOR CODE WHICH SEARCH
ARRAYS FOR OBJECTS.
» Inanut shell, this algorithm does the following:
1. lterate ARRAY using FOR LOOP.
2. Skips each EMPTY POINTER OR A NOTHING.
3. Interrogates each OBJECT for its ID using ARRAY (INDEX).ID_PROPERTY
4. Takes an action after interrogation (RETURN POINTER TO OBJECT, SET’S PROPERTY, OR CALL METHOD
etc.)
5. Inthis case, we RETURN POINTER TO OBJECT OR ARRAY POINTER ARRAY (INDEX).. REMEMBER, THE
RETURN KEYWORD ALSO EXITS THE METHOD
6. If a match (PROPERTY = ID?) is NOT FOUND then we reach the END OF FOR LOOP. At this point method
RETURNS A NOTHING

khkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhhkkhhkkhhkkhhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhkkhkhkkkhkkkkkkkkkkkkkkkkkxkx

' <summary>
' Function Searches the database for POINTER to object whose ID is a parameter
' Skips the empty or NULL pointers before interrogating the object for the ID.
' Returns POINTER to OBJECT and EXITS!
' </summary>
' <param name="IDNum'"></param>
<returns></returns>
' <remarks></remarks>
Public Function SearchCustomer (ByVal IDNum As String) As clsCustomer

)
)
\l
\l
)
)
)
)
)

*
T
'
'
T
T
'
'
T

'Step 1-Search Array for ID Number
For i As Integer = 0 To SIZE
'Step 2-Skip the Empty Cells
If Not (arrCustomerlList(i) Is Nothing) Then
'Step 3-Interrogate Object
If arrCustomerList(i) .CustomerID = IDNum Then
'Step 4-Found ID, Return POINTER to OBJECT IN ARRAY & Exit
Return arrCustomerList (i)
End If
End If
Next

'Step 5-Did not find object in search return a nothing
Return Nothing
End Function

75

Step 16: Create ADDCUSTOMER(OBJECT) FUNCTION declarations:
O Purpose of this method is to ADD a new Customer to the ARRAY. True is returned if successful, False if no EMPTY OR
NULL POINTERS ARE AVAILABLE.
O How it works:
= FOR LOORP is used to search array for EMPTY POINTER.
= This algorithm does the following:
Iterate ARRAY using FOR LOOP.
Interrogate each ARRAY (i) POINTER if is an EMPTY POINTER OR A NOTHING.
SET ARRAY(i) POINTER to point to OBJECT POINTER passed as argument
RETURN a TRUE indicating object was added
If NO EMPTY POINTER IS FOUND, then we RETURN A FALSE indicating no room was found in array.

IS

0 One important point here to note is that this ADD method ADDS A NEW OBJECT PASSED AS ARGUMENT TO THE
METHOD! Point here is that the FORM OR USER-INTERFACE NEEDS TO CREATE AND POPULATE THIS OBJECT
AND PASS IT TO THE METHOD.

khkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhkhhkhkhkhkhhhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhhkkhhkkhkkhkkkhkhhkhkhkhkhkhkhkhkhhkhkk

' <summary>

''" Function Adds NEW objects passed as parameter to database.

' Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.
' Returns a TRUE When OBJECT added OR FALSE when no more empty POINTERS and EXITS!!
' THIS METHOD REQUIRES THAT WE CREATE AN OBJECT IN THE FORM OR USER-INTERFACE

' OBJECT IS PASSED AS ARGUMENT TO METHOD CALL.

' </summary>

' <param name="objNewCustomer"></param>

' <returns></returns>

' <remarks></remarks>

Public Function AddCustomer (ByVal objNewCustomer As clsCustomer) As Boolean

)
\l
\l
)
)
)
)
)
)
)
)

|l
|l
|l
]
]
|l
|l
]

'Step 1-Search Array for ID Number. Skip the Empty Cells
For i As Integer = 0 To SIZE
If arrCustomerList(i) Is Nothing Then
'Step 2-Add object to Array
arrCustomerlList (i) = objNewCustomer
'Step 2-Return TRUE & Exit
Return True
End If
Next

'Step 3-Did not find EMPTY CELL in search return FALSE
Return False

End Function

76

Step 17: Create ADDCUSTOMER((parameterl, parameter2, parameter3, etc..) FUNCTION declarations:
Q Thisis an OVERLOADED VERSION of the previous ADD METHOD. Again, purpose of this method is to ADD a new
Customer to the ARRAY. True is returned if successful, False if no EMPTY OR NULL POINTERS ARE AVAILABLE.
O How it works:
= FOR LOORP is used to search array for empty POINTER.
= This algorithm does the following:

Create a NEW OBJECT

POPULATES OBJECT BY SETTING PROPERTIES WITH DATA PASSED AS PARAMTERS TO METHOD

Iterate ARRAY using FOR LOOP.

Interrogate each ARRAY (i) POINTER if is an EMPTY POINTER OR ANOTHING.

SET ARRAY(i) POINTER to point to OBJECT CREATED INSIDE METHOD

RETURN a TRUE indicating object was added

If NO EMPTY POINTER IS FOUND, then we RETURN A FALSE indicating no room was found in array.

a DIFFERENCE between this ADD method and the previous is that this method CREATES AND POPULATES THE
OBJECT TO ADD TO THE ARRAY INSIDE THE METHOD. This is IMPORTANT, because the FORM OR USER-
INTERFACE DOES NOT NEED TO CREATE AND POPULATE THIS OBJECT IN THE FORM. IT CAN SIMPLY
PASS THE TEXT BOXES OF THE DATA. THE FORM IS KEPT LIGHT WITH VERY LITTLE CODE!!

NooAwNE

R R b b b b b b b b e Sh Sb e SR S S S SR S S S S S S b b S b b 2b b b b b b b b b b Ih b b dh Ib e S b S S S S S S S S S S S b b S b b db b b b b g 4
<summary>
OVERLOADED ADD Function. Adds NEW object to array.
Object Properties are passed as arguments and new object is created and
Populated inside the method.
Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.
Returns a TRUE When OBJECT added OR FALSE when no more empty POINTERS and EXITS!!
THIS VERSION OF ADD HAS THE ADVANTAGE THAT WE DON'T NEED TO CREATE AN OBJECT
IN THE FORM! SIMPLY SEND THE FORM CONTROLS AS ARGUMENTS TO THE METHOD CALL!
IN SHORT, LESS CODE IN THE FORMS OR USER INTERFACE
</summary>

Public Function AddCustomer (ByVal Name As String, ByVal IDNum As String, ByVal BDate
As Date,

ByVal Address As String, ByVal Phone As String) As Boolean

*
]
]
)
)
]
)
)
A\l
A\l

)
)
]
)
)
]
)
)
)
)
)

*
]
]
|l
|l
]
]
]
|l
|l
T

'Step 1-Create object
Dim objNewCustomer As New clsCustomer

'Step 2-Populate object with Parameter data
With objNewCustomer

.Name = Name

.CustomerID = IDNum

.BirthDate = BDate

.Address = Address

.Phone = Phone
End With

'Step 3-Search Array for EMPTY CELL
For i As Integer = 0 To SIZE
If arrCustomerList (i) Is Nothing Then
'Step 4-Add object to Array
arrCustomerList (i) = objNewCustomer
'Step 5-Return TRUE & Exit
Return True
End If
Next

'Step 6-Did not find EMPTY CELL in search return FALSE
Return False

End Function

Step 18: Create EDITCUSTOMER(OBJECT) FUNCTION declarations:
O Purpose of this method is to EDIT OR MODIFY a Customer OBJECT in the ARRAY. True is returned if successful, False if
OBJECT NOT FOUND.
Q This method like the others use the same algorithm used in SEARCH METHOD
O How it works:
= FOR LOORP is used to search array for OBJECT IN ARRAY.
= This algorithm does the following:
1. lterate ARRAY using FOR LOOP.
2. Skips each EMPTY POINTER OR A NOTHING.
3. Interrogates each OBJECT for its ID using ARRAY (INDEX).ID_PROPERTY
4. If amatch (PROPERTY = ID?) is FOUND, EDIT IS DONE BY SETTING ARRAY (i) POINTER to point to
OBJECT POINTER passed as argument
RETURN True
If you reach the end of the FOR LOOP and a match (PROPERTY = ID?) is NOT FOUND RETURN A FALSE.

5.
6.

O One important point here to note is that this EDIT method REPLACES THE ORIGINAL OBJECT IN THE ARRAY WITH
A NEW ONE. Point here is that AREPLACEMENT IS MADE. ALSO NOTE that the FORM OR USER-INTERFACE
NEEDS TO CREATE the OBJECT AND POPULATE THIS OBJECT AND PASS IT TO THE METHOD AS
ARGUMENT.

khkkkkhkhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhkhhkkhkhkhkhkhkhhkhhkhhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkkhhkhkhkhkhkhkkkkk

' <summary>
' Function EDITS BY REPLACING the exiting OBJECT WITH A NEW OBJECT.
' Function takes ID Number and NEW OBJECT TO REPLACE as parameters.
' Function Searches the database for POINTER to object whose ID is a parameter
' Skips the empty or NULL pointers before interrogating the object for the ID.
' When found it performs the REPLACEMENT. Returns TRUE if found, FALSE otherwise
' THIS METHOD REQUIRES THAT WE CREATE AN OBJECT IN THE FORM OR USER-INTERFACE
' OBJECT and ID NUMBER are PASSED AS ARGUMENT TO METHOD CALL.
' </summary>
' <param name="IDNum'"></param>
' <param name="objCustomer'"></param>
' <returns></returns>
' <remarks></remarks>
Public Function EditCustomer (ByVal IDNum As String, ByVal objCustomer As clsCustomer)
As Boolean
'Step 1-Search Array for ID Number
For i As Integer = 0 To SIZE
'Step 2-Skip the Empty Cells
If Not (arrCustomerList (i) Is Nothing) Then
'Step 3-Interrogate Object
If arrCustomerList(i) .CustomerID = IDNum Then
'Step 4-REPLACE object in Array
arrCustomerList (i) = objCustomer
'Step 5-Return TRUE & Exit
Return True
End If
End If
Next

)
\l
)
)
)
)
)
)
)
)
)
)
)
)

*
v
T
T
v
v
T
T
v
v
T
T
T
T

'Step 6-Did not find object in search return FALSE
Return False

End Function

78

Step 18: Create EDITCUSTOMER((parameterl, parameter2, parameter3, etc..) FUNCTION declarations:
Q Thisis an OVERLOADED VERSION of the previous EDIT METHOD. Again, purpose of this method is to EDIT OR
MODIFY a Customer in the ARRAY. True is returned if successful, False if OBJECT IS NOT FOUND IN ARRAY.
O How it works:
= FOR LOORP is used to search array for OBJECT.
= This algorithm does the following:

1. Create a NEW OBJECT

2. Iterate ARRAY using FOR LOOP.

3. Skips each EMPTY POINTER OR A NOTHING.

4. Interrogates each OBJECT for its ID using ARRAY (INDEX).ID_PROPERTY

5. If amatch (PROPERTY = ID?) is FOUND, EDIT IS DONE BY SETTING EACH OF THE PROPERTIES OF
THE OBJECT RESIDING INSIDE THE ARRAY with parameters passed as arguments

6. RETURNS a True

7. If you reach the end of the FOR LOOP and a match (PROPERTY = ID?) is NOT FOUND RETURN A FALSE

0 DIFFERENCE between this EDIT method and the previous is that this method MODIFIES THE ORIGINAL OBJECT
INSIDE THE ARRAY. NO REPLACEMENT IS DONE! THE ORIGINAL IS MODIFIED!

VA Ak A Ak A A Ak A A A A A A A A Ak A Ak AR A AR A A A A A A AN A AR A AN A AN A AR A AR A A KK,k

'Y <summary>

OVERLOADED EDIT Function. MODIFIES Exiting object in array.
Object Properties are passed as arguments and ORIGINAL OBJECT IN ARRAY
is MODIFIED inside the method.
Searches for the FIRST nothing or empty POINTER and adds object to that POINTER.
Returns a TRUE When OBJECT added OR FALSE when no more empty POINTERS and EXITS!!
THIS VERSION OF EDIT HAS THE ADVANTAGE THAT WE DON'T REPLACE THE OBJECT
IN THE ARRAY, BUT MODIFY EXITING ONE. ALSO IN THE FORM OR USER-INTERFACE
WE SIMPLY SEND THE FORM CONTROLS AS ARGUMENTS TO THE METHOD CALL!
</summary>
Public Function EditCustomer (ByVal Name As String, ByVal IDNum As String, ByVal BDate
As Date,
ByVal Address As String, ByVal Phone As String) As Boolean

'Step 1-Search Array for ID Number
For i As Integer = 0 To SIZE
'Step 2-Skip the Empty Cells
If Not (arrCustomerList (i) Is Nothing) Then
'Step 3-Interrogate Object
If arrCustomerlList (i) .CustomerID = IDNum Then
'Step 4-MODIFY PROPERTIES of object in Array
'NOTE WE DON'T MODIFY THE ID NUMBER. THIS IS THE KEY!
arrCustomerList (i) .Name = Name
arrCustomerList (i) .BirthDate = BDate
arrCustomerList (i) .Address = Address
arrCustomerList (i) .Phone = Phone

'Step 5-Return TRUE & Exit
Return True
End If
End If
Next

'Step 6-Did not find object in search return False
Return False
End Function

Step 19: Create REMOVECUSTOMER(ID) FUNCTION declarations:
Q This method REMOVES THE OBJECT by searching the ARRAY for the object whose ID is parameter. Once found it
removes object from the database. Returns a TRUE if successful and FALSE if object is NOT FOUND.
O How it works:

Create a NEW OBJECT

Iterate ARRAY using FOR LOOP.

Skips each EMPTY POINTER OR A NOTHING.

Interrogates each OBJECT for its ID using ARRAY (INDEX).ID_PROPERTY

If a match (PROPERTY = 1D?) is FOUND, REMOVE OBJEC BY SETTING THE ARRAY POINTER ARRAY (i)
to NOTHING.

RETURNS a True

If you reach the end of the FOR LOOP and a match (PROPERTY = ID?) is NOT FOUND RETURN A FALSE

agrwbhE

~No

Thhkkkhkkkhkkkhkkkhkkhkhkkkhkkkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhhkkhkkk

' <summary>

'''" Function Removes object from database by searching for OBJECT whose ID
'' is a parameter. Skips the empty pointers before interrogating the

''" object for the ID. When found, Removes object by setting POINTER TO NOTHING
''" Returns a TRUE When removed OR FALSE when OBJECT not found and EXITS!

''" </summary>

'' <param name="IDNum"></param>

''" <returns></returns>

''" <remarks></remarks>

Public Function RemoveCustomer (ByVal IDNum As String) As Boolean

)
)
\l
\l
)
)
)

'Step l1-Search Array for ID Number
For i As Integer = 0 To SIZE
'Step 2-Skip the Empty Cells
If Not (arrCustomerlList(i) Is Nothing) Then
'Step 3-Interrogate Object
If arrCustomerList (i) .CustomerID = IDNum Then
'Step 4-Set Array POINTER to Nothing
arrCustomerList (i) = Nothing
'Step 5-Found ID and Deleted, Return TRUE & Exit
Return True
End If
End If
Next

'Step 6-Did not find object in search return False
Return False

End Function

80

Step 20: Create PRINTCUSTOMER(ID) FUNCTION declarations:
Q Purpose of this method is to search the database (5 Customer OBJECTS) for the object whose ID is parameter. Once found it
CALLS PRINT() METHOD of OBJECT. Returns a TRUE if successful and FALSE if object is NOT FOUND.
O How it works:

Create a NEW OBJECT

Iterate ARRAY using FOR LOOP.

Skips each EMPTY POINTER OR A NOTHING.

Interrogates each OBJECT for its ID using ARRAY (INDEX).ID_PROPERTY

If a match (PROPERTY = 1D?) is FOUND, PRINTS OBJECT BY CALLING PRINT() METHOD OF OBJECT
RETURNS a True

If you reach the end of the FOR LOOP and a match (PROPERTY = ID?) is NOT FOUND RETURN A FALSE

Nooa,rwdpE

Thhkkkhkkkhkkkhkkkhkkhkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkkk

' <summary>

' Function Prints object by searching for OBJECT whose ID is a parameter
Skips the empty pointers before interrogating the object for the ID.
When found, CALLS the PRINT () METHOD in the object

Returns a TRUE When printed OR FALSE when OBJECT not found and EXITS!
</summary>

<param name="IDNum'"></param>

<returns></returns>

' <remarks></remarks>

Public Function PrintCustomer (ByVal IDNum As String) As Boolean

]
]
)
)
]
\l
)
)
\l

1
1
1
1
1
|l
|l
1

'Step 1-Search Array for ID Number
For i As Integer = 0 To SIZE
'Step 2-Skip the Empty Cells
If Not (arrCustomerlList(i) Is Nothing) Then
'Step 3-Interrogate Object
If arrCustomerList (i) .CustomerID = IDNum Then
'Step 4-CALL METHOD
arrCustomerList (i) .Print ()
'Step 5-Found ID, Return TRUE & Exit
Return True
End If
End If
Next

'Step 6-Did not find object in search return False
Return False

End Function

81

Step 21:Create PRINTALLCUSTOMERS() SUB declarations:
O Purpose of this SUB method is to ITERATE through ARRAY and call PRINT() method of each OBJECT IN ARRAY.
0 How it works:

Create a NEW OBJECT

Iterate ARRAY using FOR LOOP.

Skips each EMPTY POINTER OR A NOTHING.

PRINTS OBJECT BY CALLING PRINT() METHOD OF OBJECT

RETURNS a True

If you reach the end of the FOR LOOP and a match (PROPERTY = ID?) is NOT FOUND RETURN A FALSE

o wWNE

Thhkkkhkkkhkkkhkkkhkkkhkkhkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhhkhkhhkkhkkk

! <summary>

'''" Sub Prints all objects in database by CALLING each object's PRINT() METHOD
'''" Skips the empty pointers before CALLING the METHOD.

' </summary>

'''" <remarks></remarks>

Public Sub PrintAllCustomers()

'Step 1-Search evert object in Array
For i As Integer = 0 To SIZE
'Step 2-Skip the Empty Cells

If Not (arrCustomerlList(i) Is Nothing) Then
'Step 3-CALL METHOD
arrCustomerList (i) .Print()

End If

Next

End Sub

End Module

82

Step 22: RENAME Form1 to frmMainForm. Set the controls as shown in figure below:

Object Property Value
Forml Name frmMainForm
Text Main Form

Main Form HEE

Customer Management ‘

Fetail ‘ [

E =it

Step 23: Main Form CustomerManagement_Click Event:

ThAAAkKAAAk KA Ak A KA A AR A AR A AR Ak Ak kA hk Ak Ak Ak hkhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkk

' <summary>

Click Event creates object of Customer Management Form

Calls METHOD in Form OBJECT so object can show itself

</summary>

<param name="sender'"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnCustomerManagement Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnCustomerManagement.Click

'Step 1-Create object of Customer Management Form

Dim objCustomerManagementForm As New frmCustomerManagement

'Step 2-Display Customer Management Form
objCustomerManagementForm.ShowDialog ()

End Sub

83

Step 24: Main Form RETAIL BUTTON CLICK EVENT:

Thhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhhkhkhkkhkhkhkhkhkhhkhhkhkhhkkhkhhkhkhhkhhhkhkhkkhkkhkhkhhkhkhkhkhkhkhkhkhkhhhkhkhhkhkkhhkhkkhhkhx

' <summary>
Click Event to creates object of the Retail Management Form
Calls METHOD in Form OBJECT so form can show itself
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>
Private Sub btnRetail Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnRetail.Click

'Step 1-Create object of Retail Management Form

Dim objRetailManagementForm As New frmRetailManagement
'Step 2-Display Employee Management Form
objRetailManagementForm. ShowDialog ()

End Sub

Step 25:Main Form Exit_Click Event:

Thhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhhkhhhkhhkkhkhkhkkhkhkhkhhkhhkkhkkhkhkhkhkhkhhkhkhkkhkkhkhkhkhkhkhkhkkhhkkkhkhkkkkx

' <summary>

Event-handler calls Form Close() method to close the Form.

</summary>

<param name="sender'"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnExit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

'Step 1-Close yourself
Me.Close()

End Sub

End Class

84

Step 26: Create the Customer Management Form and add the controls shown below:

Object Property Value
Form2 Name frmCustomerManagement
Text Customer Management
Customer Managment Form BER
Customer Records
Customer Infermation Add
Mame '7
1D Number '7 % #
Bith Date '— #
A ——— Delete
Phone Pt
Print &1
Ext

Step 27 FORM-LEVEL DECLARATIONS & OBJECT POINTER:

Option Explicit On
Option Strict On

Public Class frmCustomerManagement
Thhkkhkkhkhkkhkkhkhkkhkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkkhkkkkhkkkhkkhkkkkhkhkkkhkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhx

' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION
Thkhkkhkkhkkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkkhkhkkkhkkkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhhkkk khkkkxk
'Module-level Object POINTER Declaration

Private objCustomer As clsPerson

Step 28 FORM LOAD EVENT:

Thhkkhkhkhkhkhkhkhkkhkkhkkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhhhkhhkhkhkhkhkkhkhhkhhkhhkkhhkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkhkhkkkkkk

"' <summary>
Form Load event. Calls Initialize() method to populate Customer List.
Creates object and popoulate Form controls with object's default values
</summary>
<param name="sender"></param>
<param name="e'"></param>
<remarks></remarks>

Private Sub frmCustomerManagement Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

'Step 1-Perform initialization by calling Module.Initialize() method
Initialize()

'Step 2-Create EMPTY Form-Level Object
objCustomer = New clsCustomer

'Step 3-Populate Form Controls with Object's data
With objCustomer
txtName.Text = .Name
txtIDNumber.Text = .CustomerID
txtBirthDate.Text = CStr(.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone
End With

End Sub

Step 29 Add code to the GET CLICK EVENT:

Thhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhhkkhkkhkhkhkhkhkhhkhhhkhhkkhkhhkkhhkhkhhkhkhkhkhkhkhkkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkhhkhkkhhkkhkx

' <summary>
Calls Search method of module to search database for object
whose ID is passed as argument. Returns a pointer to the object
found, else returns a Nothing.
</summary>
<param name="sender'"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub btnGet Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnGet.Click

'Step 1-Call Overloaded Search(ID) to search for object that match ID

'Return pointer to object found.
objCustomer = SearchCustomer (txtIDNumber.Text.Trim)

'Step 2-If result of search is Nothing, then display customer is not found

If objCustomer Is Nothing Then
MessageBox. Show ("Customer Not Found")

'Step 3-Clear all controls
txtName.Text = ""
txtIDNumber.Text = ""
txtBirthDate.Text = ""
txtAddress.Text = ""
txtPhone.Text = ""

Else
'Step 4-Then Data is extracted from customer object & placed on textboxes
With objCustomer

txtName.Text = .Name
txtIDNumber .Text = .CustomerID
txtBirthDate.Text = CStr(.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone
End With
End If
End Sub

86

Step 30 ADD code for the ADD CLICK EVENT:

Thhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkkkkx

""" <summary>
Calls Module Add method to Add a new object to the object database
We use the OVERLOADED ADD(x,y,z..) which takes paramters. In this case
we pass text boxes directly. Note how lite the form code is in this case
</summary>
<param name="sender"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub btnAdd Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnAdd.Click

'Step 1-Call Add method to add with Customer Properties as arguments
'to ADD new Customer to database

Dim result As Boolean = AddCustomer (txtName.Text.Trim, txtIDNumber.Text.Trim, _
CDate (txtBirthDate.Text.Trim),
txtAddress.Text.Trim, txtPhone.Text.Trim)

'Step 2-Test results & prompt user
If result Then
MessageBox. Show ("Customer Added Successfully")
Else
MessageBox. Show ("Database Full")
End If

End Sub

Step 31 Add code to the EDIT CLICK EVENT:

Thhkkkhkkkhkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhhkkhkhkkhhkkhkkk

' <summary>
' Calls Module EDIT(x,y,z..) method to modify object in list whose ID

is passed as argument. Note that OVERLOADED EDIT method is used and
form controls are passed as argument thus Form code is kept light.
Returns True or False
</summary>
<param name="sender"></param>
<param name="e"></param>

'''" <remarks></remarks>

Private Sub btnEdit Click (ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnEdit.Click

'Step 1-Call Add method to add with Customer Properties as arguments

'to ADD new Customer to database

Dim result As Boolean = EditCustomer (txtName.Text.Trim, txtIDNumber.Text.Trim, _
CDate (txtBirthDate.Text.Trim),
txtAddress.Text.Trim, txtPhone.Text.Trim)

'Step 2-Test results & prompt user
If result = False Then

MessageBox.Show ("Customer Not Found")
End If

End Sub

Step 32 Add code for the DELETE CLICK EVENT:

Thkhkkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkkhkhkkkhkkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhhkhkhkhkhkhkhkhkhkhkkhkhkkhhkhkkkhkkhkkxk
' <summary>
Calls Module Remove method to delete the object from the database

based on ID or key
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>
Private Sub btnDelete Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnDelete.Click

'Step 1-Call Add method to add new Customer to database
Dim result As Boolean = RemoveCustomer (txtIDNumber.Text.Trim)

'Step 2-Test results & promt user

If result Then
MessageBox.Show ("Customer Deleted")

Else
MessageBox. Show ("Customer Not Found!")

End If

End Sub

Step 33 Add code for the PRINT CLICK EVENT:

Thkhkkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhhkhkhkhkkhkhkkhkkhkkhhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkkhkhkkhhkhhkkkx
' <summary>
Calls module Print method to print the object's properties
</summary>
<param name="sender'"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub btnPrint Click (ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnPrint.Click

'Step 1-Call Add method to add new Customer to database

Dim result As Boolean = PrintCustomer (txtIDNumber.Text.Trim)

'Step 2-Test results & promt user
If result <> True Then
MessageBox. Show ("Customer Not Found!")

End If

End Sub

88

Step 34 Add code for the PRINT ALL CLICK EVENT:

Lok Ak Ak R AR A AR A AR A AR A AR A A A A A AR AR A AR A AR A AR A AR A AR A AR A AR AKX,k

'Y <summary>

Calls Module PrintAll method to print all the objects in database

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnPrintAll Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPrintAll.Click

'Step 1-Call PrintAll method in module

PrintAllCustomers ()

End Sub

Step 35 Add code for the EXIT CLICK EVENT:

Lok Ak Ak R Ak A A A A A A A A A A A A A A kA A A A A A A A A AR A AR A AR A AR A AR A AR A A A AR A A AR A AR A AR A AR A AR A AR A AR AKX kK

'Y <summary>
Closes the Form
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>

Private Sub btnExit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

Me.Close()

End Sub

89

Step 36 Create the RETAIL MANAGEMENT FORM and add the controls shown below:

Object Property Value
Formd Name frmManagerinformationForm
Text Manager Information Form
Manager Information Form !EE

Retail Screen

Customer Information %

Mame |

10 Mumber | Frink

Birth D ate |

Address |

Phone |

Shopping 5ection

Murnber of ltems ta Purchase Buy Mow
Tatal Purchages

Step 37 FORM-LEVEL DECLARATIONS & OBJECT POINTER:

Option Explicit On
Option Strict On

Public Class frmRetailManagement
Thhkkhkkhkhkkhkkhkhkkkhkhkkkhkhkkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkkhkkkkhkhkkkhkhkkkhkhkkkhkkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhx

' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION
Thkhkhkdhhhhhkhhhhhhkhhhhkdhhhhhhhhhhhkhhhhhhhhhhhhkhhhhhhhhhhhhhhkhhhkhkhkhkhkhkkhhhhhkkk

'Module-level Object POINTER Declaration
Private WithEvents objCustomer As clsCustomer

90

Step 38 FORM LOAD EVENT:

Thkhkkdhhhhhkhkhhhhhkhhhhkdhhhhhhhhhhhkhhkkkhhhhhhkhhhhhhkkdhhhhhhkhkhhhkkhhhkhkkkhhkhkhkkhkk
' EVENT-HANDLER DECLARATIONS SECTION

Thhkkkkkhkkhkkkhkkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkkkhkkkhkkhkkkhkkhkkkkhkkkkhkkkkhkkkkkkkkkkkx*x

Thhkhkhkhkhkhkkhkkhkkhkhkhkhhkhhkhkhkkhkhkhkhkhkhhkhhhkhhkkhkhhkkhhkhkhhkhkhkkhkkhkkhkhkhkhhkhkhkhkhkkhkhkhkhkhkhkhkkhhkkkhkhkkkx

<summary>
Form Load event. Create object and popoulate Form controls
With object's default values. Also Sets text box to Read-only
in MODULE
</summary>
<param name="sender'"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub frmRetailManagement Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
'Step 1-Create EMPTY Form-Level Object
objCustomer = New clsCustomer

'Step 2-Populate Form Controls with Object's data
With objCustomer
txtName.Text = .Name
txtIDNumber.Text = .CustomerID
txtBirthDate.Text = CStr (.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone
End With

'Step 3-Disable txtTotalPurchases Text Box to make it Read-only
txtTotalPurchases.Enabled = False

End Sub

Step 39 Add code to the PRINT CLICK EVENT:

Thhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhhkhkhkhkhkhhkkhkk

' <summary>

Event-handler call PRINT () METHOD of Form-Level object.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnPrint Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPrint.Click

'Step 1-Tell object to print itself
objCustomer.Print ()

End Sub

91

Step 40 Add code to the GET CLICK EVENT:

TAAAKEA A A AR A AR A AR A AR AR A AR ARk Ak Ak Ak kA hkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkk

' <summary>
' Calls Search method of module to search database for object

whose ID is passed as argument. Returns a pointer to the object

found, else returns a Nothing.

</summary>

<param name="sender'"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnGet_Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnGet.Click

'Step 1-Call Overloaded Search(ID) to search for object that match ID

'Return pointer to object found.

objCustomer = SearchCustomer (txtIDNumber.Text.Trim)

'Step 2-If result of search is Nothing, then display customer is not found
If objCustomer Is Nothing Then
MessageBox. Show ("Customer Not Found")

'Step 3-Clear all controls
txtName.Text = ""
txtIDNumber.Text = ""
txtBirthDate.Text = ""
txtAddress.Text = ""
txtPhone.Text = ""

Else

'Step 4-Then Data is extracted from customer object & placed on textboxes
With objCustomer

txtName.Text = .Name

txtIDNumber.Text = .CustomerID

txtBirthDate.Text = CStr (.BirthDate)

txtAddress.Text = .Address

txtPhone.Text = .Phone

'Set total purchases
txtTotalPurchases.Text = CStr(.TotalltemsPurchased)
End With
End If

End Sub

92

Step 41 Add code to the SHOP CLICK EVENT:

TAAAKEA A A AR A AR A AR A AR AR A AR ARk Ak Ak Ak kA hkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkk

' <summary>
' Calls customer object Shop() method to purchase items and cleas the text box.
Also displays total purchases of customer
</summary>
<param name="sender'"></param>
<param name="e"></param>
<remarks></remarks>
Private Sub btnShop Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnShop.Click

'Step 1-Call the Shop Method of the Object to shop and trigger event
objCustomer. Shop (CInt (txtItems.Text.Trim))

'Step 2-Clear Items textbox
txtItems.Text = ""

'Step 3-Set total purchases
txtTotalPurchases.Text = CStr (objCustomer.TotalIlItemsPurchased)

End Sub

Step 42 Add code to the ONSHOPPING EVENT HANDLER:

ThAAAKAA KA A AR A A AR A AR A AR ARk Ak Ak Ak kA hkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhhkhkhhkhkhkk

' <summary>
Event-handler of Customer Objects. Triggered when Shop() method is called.
Displays a message every time customer shops.
</summary>
<param name="intTotalItems"></param>
''' <remarks></remarks>
Private Sub objCustomer OnShopping(ByVal intTotalItems As Integer) Handles
objCustomer.OnShopping

MessageBox.Show ("The Total items purchased by the Customer is " & intTotalItems)

End Sub

93

Step 43 Add code to the EXIT CLICK EVENT:

ThAAAkKAAAk KA AR A AR A A AR A AR AR Ak Ak kA kA kA hkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhhkhkhrhkkhkk

' <summary>

Event-handler calls Form Close () method to close the Form.

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnExit Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

'Close yourself (Form)
Me.Close()

End Class

94

‘ Step 44: BUILD & RUN APPLICATION

Test 1,2 & 3 — Displaying Main & Customer Management Form. Also Clicking PRINT BUTTON:

[Main Form EEE

Customer Management
Fetail

[Customer Managment Form

Name

1D Number

Birth D ate

Address

Phone

i~ Customer Information

Customer Records

Hoe

111

|1 21121965

|1ﬂ Jay Stieet

I?‘I 8-434-5544

Add

Get

Edit
Delete:
Frint
Friet &1

Exit

Joe, 111, 12{12/1965, 111 Jay Strest, 7168-434-5544, 0

Test 4 — Displaying Retail Management Form & Purchasing Items by Clicking Buy Now Button:

[® Manager Information Form

Retail Screen

7 Custorner Information

Narne IAngeI

1D Murnber |222

Birth D ate |1;4,¢1 977

Address |222 Flathush Awve

Phane |718-230-6524

—Shapping Section

Mumber of [tems to Purchaze Iﬂ
Total Purchazes |1 1]

Buy Mow |

Frint |
Exxit |

The Total items purchased by the Customer is 15

Angel, 222, 1/4/1972, 222 Flatbush Ave, 718-234-5524, 10

95

Homework Assignment 4

Q

a
a
a

This program is an upgrade to Homework Assignment 3. Read and follow each of the following requirements.
Copy HW3 to another Folder call it what ever you want, HW4 etc.
Open the project; Rename the Solution and Project to HW4.
You will be graded based on all requirements being met. Add the following Class requirements:
I. Upgrade the Employee Class as follows:

1) NEW REQUIREMENTS: Create the following event in this class:
= Event named SecurityAlert(UserName, Password)
= Trigger or raise this event ONLY inside the Authenticate() method prior to the verification of the username &
password.

Il. (OPTIONAL BUT HIGHLY RECOMENDED)Write a simple test driver program to test this class. Same requirements as

HW# 3.

I1l. Keeping and re-using the code from HW #3 modify the Form and Module as follows:

Standard Module (NEW REQUIREMENTS):

1) DELETE the 5 Objects from HW # 3 and replace it with a Public Array of Objects.

2) This array is now the database of employees and will store via Load(), the 5 objects of the clIsEmployees Class.

3) Create a Method named Load() that will populate the objects to the Array as follows: (Joe,111, Manager), (Angel, 222,
Director), (Sam,333,0ffice Assistant), (Mary,444,Vice President), (Nancy,555,Secretary)

Public Sub Main:

4) You should not have to make too many changes to Sub Main(), ONLY a call to Load() to populate the array before
displaying the Login Form.

Public Function Authenticate:

5) Integrate this assignment with the previous Login Screen HW# 3. This time the module Authenticate Method is to
SEARCH the Array of Objects and CALLING EACH Object’s Object.Authenticate() to verify authenticity.

6) Most of the modifications will take place inside the Main Authenticate() Method which is replaced the old code with
NEW code to SEARCH the array. You need to Search the Array and interrogate each Object in array!

7) Inaddition, Authenticate needs to Trigger SecurityAlert() Event on the Object in the Login Form in order to execute the
Object_SecurityAlert(U, P) Event-Handler to trap for fired employees. This is explained in the Login Form
requirements below.

8) In the Sub Main() procedure we continue to use the code from HW# 3 to control the program: loop, message box etc.

Login Form:

1) The login form should keep all functionality from HW # 3 but add the following requirements
2) NEW REQUIREMENTS: Create an Object of the clIsEmployee Class inside the declaration section of the Form.
Declare & Create this Object so that via the Drop-down List Boxes in the Code Window of the Form it will
GENERATE the Object_SecurityAlert(U,P) Event-handler on the Form.
= Note that this Event-Handler Object_SecurityAlert(U,P) should execute EVERTIME the Login Form
Object.Authenticate(u,p) Method is executed since we RaiseEvent this event inside this method of the class!
= Inside the Event-Handler Object_SecurityAlert(U,P) enter code in a trap for the following user:
o When username = Sam and Password = 333 is authenticated in the Module, inside this Event-Handler do the
following:
o Display a message box stating this is a security breach! This employee has been fired!
o End the Program IMEDIATLY!!!

= Remember that it is the Authentication() Method of the Module that authenticates each of the Objects in the Array of
Objects and must also handle the triggering of the Security_Alert Event Handler in Login Form. It is your job to
figure out how to get the Object Created on the Form to react and trigger the Object_SecurityAlert(U,P) Event-
handler on the Login Form from the Authenticate method of the MODULE!

Q Due in one week!

96

