CS608 Lecture Notes

Visual Basic.NET Programming

(Part Il of I11)
(Lecture Notes 2C)

Prof. Abel Angel Rodriguez

CHAPTER 7 CLASSES & OBJECTS -ADVANCED CONCEPTS (CONT).cooeiiiriiieiiiiieee e 3

N = e gl = oo T aTo T TV 2 T AN A ISR 3
7.1.1 GeNEral DISCUSSION ON EITOIS. ... cviiiiiiitiiieiite ittt ettt ettt ettt s bt es e bt s e b e e es e b et e s e bt e e s bt b e st e bt et s e eb e s b et b e et e e nenbe e enes 3
SYINEAX EFTOFS ...tttk h et b e bbbt e b e Rt e b e 1E £ b e E e e84 2R e ea b e E e 4E £ b e Sh £ 2E £ 4R £ 28 b a8 e R e A b e e E £ eE £ e R e eh b e e et e nbeeb e e beene e e e nenbenreas 3
(oL TTorc L Ty (o] OSSPSR 3
RUN-TIME EITOTS 1.ttt ettt bbbt e s ke e skt s bt E st b R a8 E s Rt b b e st e b b e Rt e b b s e b b et e b et e e e e s b n e 3

T2 EXCEPTION 1N VBLNET ..ottt et h e etk b st bt bbb e e bt e b S h e £ e bt S b e e bt e b e At e bt e b e At e bt e b e b e bt e b et e bt e bt e b s be e et e s bt 6
7.2.1 EXCepLionS BaSiCS IN WBLINEToiiiiiiiieiie ettt bt bbb bt s bbb bbbt b bbbt bbbttt 6
THE EXIT TTY STALEIMENT ...ttt b etttk b et b e bt ekt s b e e bt e b £ eb e e b e e b e e b e e e bt e b b e b e ebenb e bt e b e nees e et e sbebeebenbe e 8
7.2.2 The VB.NET EXCEPLION CIASSviitiietiiteieeieite ettt b et bbb ekt b et b e bbbt b et b e bbbt e b st et et e sb et ebennenea 10
Introduction to the VB.NET EXCEPLION ClaSS.....c..cuiriiiiiiiiiiesieiesies e ste st s e e esae et ste e seeseeseeeesaestesbessaeseeseteseestesneaneeseenseseseens 10
Trapping all Errors using the VB.NET EXCEPLION CIaSS........ccviierieriiieiisiseeiestesiesestesteseeseeseessesaesressessesseessessessessessesssessnssessessnns 11
7.2.3 Trapping for Specific Error Using other Exception Classes Provided by VB.NETcccoioiiiieiiniisin e 15
Trapping for Specific Error using the EXCEPLION CIASSESiviieieriirierisesesiestesie e steste s e ee e e e saestesre s e eseesses e seessesresneeseenseseesenns 16
7.2.4 Trapping for Many Error using Multiple CatCh BIOCKScvciiiiie e 22
7.2.5 THE TRIOW STALEIMENTeiitiite ettt sttt bttt sb et e b e s b e e ek e nb e e e ke e be e e b e e be e e b e ebene e b e ebeneebeebesbereebeneeseabeneeseabeneereas 24
g o g F oo T aTo IS U 7= =T PSSR 24

L ST Lo o TN 1Y =T (0] £ 24
USING the TRIOW SEALEMENT.........eitiiiieie ettt e et e e st e be s beeseese e s e e eeseesteeaeeReesees b e seeaeenEeeReeRe e st enteseeaeenseaneeneeneneees 25

ST - U= I Y, =11 o o USRS 30
7.3.1 OVEIVIEW & DISCUSSIONeeuviteitieiesieetieiete st stesteaseeseestestesbesbesteaneeeessesbesbeeseeseenseseeaeeaEeeReeseeseenbeneeeEenEeeReaseensenteneeebenreaneeneensentenes 30
S S -1 =o AV 1 T o PSSR 31
T4 SNAEA VATTADIES........o.eciiecce ettt b bttt b s Rt b st R b e Rt e R b e st e b e b e e Rt e b e ke st e b b e st e b b et e b et et e ne st e e 32
T8 L OVEIVIBW ...ttt sttt sttt st ettt et e ebe e et e e ke s b e s e ek e s e a8 e ek e ee a8t eE e e e a8t e b e ebe e eE e e b e e e b e e be e e b e e be e eE e ek e ne e b e e be et eE e ebene e b e ebe st et abenbeseabenrereas 32

Chapter 7 Classes & Objects -Advanced Concepts (Cont)

7.1 Error Handling in VB.NET

7.1.1 General Discussion on Errors

O Inourreview of VB.NET we discussed the various types of errors that can occur in a program.
O There are three varieties of programming errors:

1. Syntax
2. Logical
3. Run-Time

Syntax Errors

O Syntax Errors — Errors generated due to the code not following the rules of the language
= These errors usually involve improper punctuation, spelling or format
= These problems are easier to solve since the compiler identifies the erroneous statement by displaying a BLUE Wiggly Line
under the incorrect VB.NET Statement.
= To resolve this problem, you just have to review the rules of the language for that statement and make sure you are writing
the statement properly

Logical Errors
O Logical Error — The program is not doing what is supposed to do.
= The algorithm fails to solve the problem the program was written to resolve
= These problems are very difficult to solve since you need to re-think and go back to the planning phase and review the
Algorithm.

Run-Time Errors

0 Run Time Errors — These are programs that occur when the program is executing. The program passed the syntax or compiler
test but fails during execution. .
= These errors can be caused by the user entering a wrong data type via keyboard or performing some illegal operation,
program logic not doing what is supposed to do, or system errors.
= These problems are usually caused by improper arithmetic execution, attempting to access recourses that are not available etc
= These problems are difficult to solve since they only show up when the program runs.

= When a run-time error is generated, the built-in default Error handling mechanism of VB.NET will trap the error and
terminate the execution of the program.

= Itis the responsibility of the programmer to provide a alternate mechanism to trap or handle these errors in order to
prevent the default VB.NET mechanism from terminating the program execution.

O Run time errors can be a nuisance since the default error mechanism of VB.NET cause the program execution to stop.
O Once execution is halted, VB.NET will display a message indicating the nature of the error.

Example 7-1:
O For example the code below attempts to divide a number by 0:

ErrorHandlingExampll.¥h | q

=
¥

I@ErrurHandlingExampll j Im(Declaratinns}
= Module ErrorHandlingExampll

=) Sub Main()

Dim ¥ As Integer = 0

Dim ¥ As Integer 100

Dim Div ALz Integer

g

Div = ¥ / X

MessagebBox.3how("The Division of Y/X is ™ & Div)

- End Sub
“End Module

-
1| | 5

O We know this is illegal and will cause a problem. Once this error is encountered, the program execution will stop and the
following message is displayed:

A overflowException was unhandled X

Arithmetic operation resulked in an overflow,

Troubleshooting tips:
iMake sore wou are not dividing by zera, | j

Get general help Far this exception,

Seatch far more Help Onling. ..

Actions:
Yigw Detail...

Caopy exception detail ta the clipbaard

O At this point the execution of the program will halt. You have the following choices:

= Troubleshooting Tips — Access to Microsoft on-line help to get information on these types of errors.

Get general Help for this exception — Access to additional on-line help to get information on these types of errors.

= Search for more Help Online — Additional help Online.

= View Details — View details on the actual error, such as data type, location of program etc..

View Detail 2| x|
Exception snapshat:
B Swstem.OwerflowE xception {"arithmetic operation resulted in an overflow, "}
{3wstem. Collections, ListDictionaryInkernal}

[System. Collections. ListDictionaryInkernal] {5wstem. Collections. ListDictionaryInkernal}
Counk i}
IsFixedSize False
IsReadOnly False
Isaynchronized False
Ttem In order to evaluate an indexed property, the properky must |
Keys {Swstem. Collections. ListDictionaryInternal ModekeyyalueColle
SyncRook {0bject}
Values {5wstem. Collections. ListDictionaryInternal ModekeyyalusColle

HelpLink. Mothing

InmerExcepkion Makhing

Message "Arithmetic operation resulted in an overflow,"

Saurce "DivideByZera”

StackTrace " at DivideByZero.modErrorExample. Main) in CHDocuments

Targetsite 4 Swstem.Reflection. RuntimeMethodInfo}
Vi

In summary, if the programmer does not provide a mechanism to handle such errors during run-time, then the program will halt
and display the message to the user. The user of the application will have to make these decisions and obviously a user won’t
know what to do at this point.

Also, not handling errors will make our programs unprofessional.

7.2 Exception in VB.NET

7.2.1 Exceptions Basics in VB.NET
O Once again:

% IT IS THE RESPONSIBILITY OF THE PROGRAMMER TO ADD THE REQUIRED ERROR HANDLING
MECHANISM TO A PROGRAM IN ORDER TO PREVENT THE BUILT-IN VB.NET ERROR HANDLING
MECHANISM FROM STOPING THE EXECUTION OF APROGRAM DURING AN ERROR.

0 Exceptions handling is the mechanism provided by VB.NET to allow programmers to trap Run-time errors.

0 An Exception is an anomaly or error that occurs during the execution of a program. This error can be caused by the user, logic or
simply the system itself.

0 VB.NET provides the following Keywords to handle Exceptions:

Try
Catch
Finally
Exit Try
Throw

Q The general form to a Try —catch-Finally block is as follows:

‘General Try-Catch-Finally Block Syntax:
Try

‘Code Statement which can cause the exception
“Your regular code goes here!

‘[Optional} Code Statement for handling the exception
‘You can have as many Catch statements as necessary to handle the exceptions
‘Also we can specify what type of error to look for

Finally

‘[Optional] Code that will always executed regardless of whether and exception is caught

End Try

Q Theideais as follows:

= Within the Try Block statement, you place the code where you think an exception can occur.

= If any exception or error occurs inside the try block, the control of the program is transferred to the appropriate Catch block
(Remember there can be more than one Catch Block) to handle or take care of the exception.

= After the Catch block handles the exception, control is transferred to the Finally Block, which will always executes by
default.

0 Keep the following rules in mind when working with exceptions:

= Both catch and finally blocks are optional.

= The Catch Block is where we handle the error. VB.NET provides various error definitions that we can catch using the Catch
with parameters for the unique error we are trapping for. Or simply trap all errors using the Catch block with no parameters.

= The try block can exist either with one or more catch blocks or a finally block or with both catch and finally blocks.

= If no exception occurred inside the try block, the control directly transfers to finally block. The statements inside the finally
block are executed always.
= Note that it is an error to transfer control out of a finally block by using the keywords break, continue, return or goto

Example 7-2:

O Let’s look at the previous example where we tried to divide a number by 0 and generated the default VB.NET error mechanism
which stopped execution of the program. In this case we will add our own error handling mechanism via the Try-Catch-Finally
Block statement to handle the error ourselves:

ErrurHandIingEHamle.\rh*| q b =
I@ErrurHandlingEuampll j IIN, (Declarations) j
=] Sub Main() ZI
Dim ¥ A= Integer = 0
Dim ¥ A= Integer = 100

Dim Div k= Integer

'Set the Div wvariable to a Default wvalue for example purpose only
Diwv = -1

'Begin Error trapping Section
Ty

Div = ¥ / X
MessageBox.Show ("The Division of /X iz ™ & Diw)

Catch

MessageBox . Show ("Exception was raised™)

MessageBox . Show ("Code Inside the Catch Statement is executing™)
Finally

MessageBox.3how ("Code Inside the Finally S3tatement is executing™)

MessageBox.3how ("The Divigion of ¥/X iz ™ & Diwv)

End Try 'End error trapping section

= End 3Zub e

“End Module -
1| | r

Discussion of Example:
Q This example results in the following:

= We set Div=-1simply to show at the end that this variable was not set since the error handling routine prevented the
computation by 0 to take place.
= We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block:

Div =Y / X
MessageBox.Show ("The Division of Y/X is " & Div)

= When the program attempts to execute this code, an error is generated and the Catch block code is executed to handle the
error:

MessageBox.Show ("Exception was raised")
MessageBox.Show ("Code Inside the Catch Statement is executing")

< N x|

Exception was raised Zode Inside the Catch Statement is executing

= Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")
MessageBox.Show ("The Division of Y/X is " & Div)

EE x| E x

Code Inside the Finally Statement is executing Thee Division of %X is -1

= Note that we once again display the value of Div. and its content is -1 since it was never modified.

% The important point here is that THE PROGRAM DID NOT STOP RUNNING AND END UNEXPECTALLY. The
built-in VB.NET error handling mechanism did not stop the program but simply passed controlled to our error handling
mechanism, the Catch & Finally blocks for execution of the code inside the these blocks.

The Exit Try Statement

O The Exit Try Statement will allow you to break out of the Try or Catch Block and continue to the Finally block.
O This statement gives us flexibility to exit under certain conditions if we wish to.
O Lets look at the previous example modified to exit out of the Catch Block under a certain condition:

Example 7-3:
O Modify the Example 7-2 to exit out of the Catch Block when a divide by zero error is trapped:

=
*

ErrorHandlingExampl2.¥b | 4
IﬁErrurHandlingExampleZ j I':':QMain

[Module ErrorHandlingExample:z

=l Sub Maini()

Dim X Az Integer = 0

Dim ¥ As Integer = 100
Dim Diwv A= Integer

1

'3et the Diwv wariable to a Default walue for example purpose only
Div = -1

'Begin Error trapping Secticn
Tevy
Div = ¥ / I
MezzageBox.3how ("The Divi=ion of Y/E is ™ &£ Div)
Catch
If £ = 0 Then
NessageBox.3how ["Caught a diwvide by =zero error™)
Exit Try
Else
NessageBox.3how ("Error Not diwvide by 0O™)
End If
Finally
Messagebox.3how [("Code Inside the Finally Statement is executing™)
Messagebox.3how (" The Division of T/ is ™ & Divwv)

End Tevy 'End error trapping section

= End Sub T

~End HModule -
e — ;d

Discussion of Example:
O This example results in the following:

= In the Catch block we test to verify if the error was a divide by O error, if so we break out of the Catch Block, other wise we
inform the user that is not a divide by zero error:

If X = 0 Then
MessageBox.Show ("Caught a divide by zero error")
Exit Try

Else
MessageBox.Show ("Error Not divide by 0")

End If

= Of course since we are always dividing by zero in this example the result will always be:

EE

Zaught a divide by zero error

= When we break out of the Catch block, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")
MessageBox.Show ("The Division of Y/X is " & Div)

N x| E X

Code Inside the Finally Statement is executing The Division of ¥[x is -1

= Note that we once again display the value of Div. and its content is -1 since it was never modified.

7.2.2 The VB.NET Exception Class

O Now is when things get a bit more interesting.
Q The Error handling features of VB.NET is powerful and offers a variety of features, but can be confusing.
Q Inthis course we will touch upon the basics and try to keep it as simple as possible

Introduction to the VB.NET Exception Class

In VB.NET an exception is really an Object which is either directly or indirectly derived from the Exception Class.

In the System Namespace, there is a built-in Exception Class

This is the Main Error handling Class from which all other Exception classes are derived from.

Yes that is correct, all other Exception Classes. What this means is that VB.NET provides a list of Exception classes each
specifically design to trap a particular error.

So in addition to the System.Exception Class, VB.NET provides many standard exception classes for us to use in order to trap
for a particular exception.

O We can build our own custom Exception Classes based on the built-in Exception Classes.

000D

O

O The System.Exception Class contains Properties and methods that we can access with information about the error.
0 Note that the main System.Exception Class traps all possible errors.

The point here is that the Try-Block-Finally Statement really returned an Object of the Exception Class.
But using the Catch Block alone will not give us access to the object’s properties and method; we would need to
specify an Object of the exception class ourselves.

7
0‘0
7
0.0

0 Keeping in mind that an exception is really an object, lets look at another form or the syntax for the Try —catch-Finally block that
is automatically generated when working with the VB.NET development environment:

‘General Try-Catch-Finally Block Syntax:

Try
‘Code Statement which can cause the exception
Your regular code goes here!

Catch ex As Exception
‘[Optional} Code Statement for handling the exception
‘Exception is the main Exception class provided by VB.NET

‘ex is a variable referencing the exception object, this is a variable so we can name it what ever we want.
You can have as many Catch statements as necessary to handle the exceptions

Finally

‘[Optional] Code that will always executed regardless of whether and exception is caught

End Try

= Inthis case, an object of the Exception Class is created in the Catch block.
= This allows us to now use some of the properties and methods of the Exception Class.
= Note that since all other exception classes are derived from the System.Exception Class this class traps for all errors.

10

O The Exception Class contains the following Properties & Methods:

Properties of the Exception Class:

Property Description

HelpLink String indicating the link to the help for this exception

Message A string that contains the error

Source A string containing the name of an object that generated the error

Other....... I will not list the other properties. For further info. See VB.NET
documentation.

Methods of the Exception Class:

Method Description

GetType This method returns an Object which contains additional information
about the type of error.

ToString Similar to the Message Property, but returns the a string containing
the error and includes a lot more information about the error, such as
path etc.

Other....... I will not list the other methods. For further info. See VB.NET
documentation.

Trapping all Errors using the VB.NET Exception Class

O Since the Exception Class is used as the main class from which all other Exceptions classes are generated from,

System.Exception Class traps all possible errors
O Let’s look at some example of using the Exception class to trap all errors

Example 7-4: Trapping for all errors using object of Exception Class
O Let’s look at the previous example but this time we will create an object of the exception class to trap all errors:

ErrorHandlingExampl3.¥h | 4

the

I@ErrurHandlingEuampleS j Im {Declarations)

= Module ErrorHandlingExample3
B Sub Main()

Dim ¥ As Integer = 0O
Dim ¥ is Integer = 100
Dim Div As Integer

'"3et the Div wariable to a Default wvalue for example purpose only
Div = -1

'Begin Error trappihg Jection
Ty
Div = ¥ / X
MessageBox.3how (" The Division of ¥/X is ™ & Diwv)

Catch objException As 3ystem.Exception
MessageBox. Show ("Caught an Exception™)

Finally
MessagebBox.3how ("Code Inside the Finally Statement is executing™)
MessageBox.3how (" The Division of ¥/X is ™ & Diwv)

End Try 'End error trappihg section

= End ZJub
—End Module

X
=

11

Discussion of Example:
O This example results in the following:

= Inthis example, we create an object of the Exception Class in the Catch block to trap for any:

Catch objException As System.Exception

= When the error is trapped the Catch block code is executed to handle the error:

MessageBox.Show ("Caught an Exception")

E

Caught an Exception

= Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")

MessageBox.Show ("The Division of Y/X is " & Div)

EE x| E X

Code Inside the Finally Statement is executing

The Divisian of)% is -1

= At this point you may ask yourself what is the difference between our previous examples where we used the Catch Block

statement alone:

Catch
MessageBox.Show ("Exception was raised")

MessageBox.Show ("Code Inside the Catch Statement is executing")

And this version:

Catch objException As System.Exception
MessageBox.Show ("Caught an Exception")

can access the object’s properties and methods. As shown in the next example.

«» The answer is NONE!! Both these code trap for all errors. The difference is that with the second version using the object, we

12

Example 7-5: Trapping for all Errors using Object of Exception Class and accessing Properties & Methods

O Let’s look at the previous example but this time we will create an object of the exception class to trap all errors and we will use

the following properties and methods:

= Message Property — Returns a string describing the type of error

= ToString() Method — Returns a string describing the type of error and additional information such as path in code were error

was generated from etc.

= GetType() Method — Returns an object which contains more detailed information about the error such as the full name of the

built-in VB.NET class for this particular error.

Q The code is as follows:

Diw X A= Integer = 0
Diw ¥ A= Integer = 100
Ditw Div As Integer

'Zet the Div wariabhle to a Default walue for exawple purpose only
Div = -1

'Begin Error trapping Section
Ty
Div = 7 / X
NessageBox.Show ("The Division of ¥/X iz ™ & Diw)

Catch objException Ls System.Exception
'T=ze exception obiject's Message Property to display type of error
MessagebBox.Show(objException. Message)

'Tze exception object's Toltring Method to display detailed error information
MessageBox.Show(okjException. ToString())

'Tze exception object's GetType.FulllName Method to display name of error type
HNezszsageBox.3how(objException.GetType.Fulllame)

Finally
MessageBox.3how("Code Inside the Finally Statement is executing'™)
NessageBox.3how ("The Division of ¥/X is ™ & Diwv)

End Try 'End error trapping section

o End 3Sub
“End Module

I@ErrurHandlingEHample-ﬂl j IIN {Declarations) j
F Module ErrorHandlingExatopled =
= Sub Maini) —

< |

Discussion of Example:
O This example results in the following:

= Inthis example, we create an object of the Exception Class in the Catch block to trap for any:

Catch objException As System.Exception

13

= When the error is trapped the Catch block code is executed to handle the error, but in this case we use the properties of the
Exception Object to describe the error:

'Use exception object's Message Property to display type of error
MessageBox.Show (objException.Message)

N x|

Arithretic operation resulked in an overflow,

'Use exception object's ToString Method to display detailed error information
MessageBox.Show (objException.ToString())

I x|

System. OverflowException: Arithmetic operation resulted in an overflow,
at ErrorHandlingDivByZerowindppl ErrorHandlingEx ampled . Main in iy
Documentsitycke CSa081 Code Classhotes\ErrorHandlingl ErrorHandlingDivEyZerotinappd ErrorHandlinaExampl, vbiline 12

'Use exception object's GetType.FullName Method to display name of error type
MessageBox.Show (objException.GetType.FullName)
MessageBox.Show ("Caught an Exception")

X

System, CverflowExcepkion

= Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")
MessageBox.Show ("The Division of Y/X is " & Div)

B x| E X

Code Inside the Finally Statement is executing The Division of ¥[& is -1

7

+« In this example we see that we were not only able to trap for all errors but we were able to use the properties and methods of
the Exception Class for information about the error or to perform what ever functionality is available for us by the Exception
Class.

14

7.2.3 Trapping for Specific Error Using other Exception Classes Provided by VB.NET

O Inaddition to the System.Exception Class, VB.NET provides many standard exception classes for us to use in order to trap for a
specific error.

O Inthis case we may have code that performs some specific task and we suspect that this task may result in a specific error. We
may want to trap for this error so that we can perform some corrective process etc.

O VB.NET provides a variety of Classes for this purpose. Note that all these classes are derived from the main Exception Class.

O Examples of such Exception Classes are as follows:

= System.OutOfMemoryException

» System.NullReferenceException

» Syste.InvalidCastException

» Syste.ArrayTypeMismatchException
» System.IndexOutOfRangeException
= System.ArithmeticException

» System.DevideByZeroException

= System.OverFlowException

O Each of these classes contains properties and methods for the specific error in which they were created to identify.

O You can view a listing of all the Exception Classes in the VB.NET documentation or using the IDE and the keyboard you can
enter Ctri+Alt+E to displays the Exceptions dialog box:

Excepkions:

]

E L

=-£.3 Common Language Runtime Exceptions
#-{_} I5cript Exceptions
=3 Syskbem

@ System, AppDomaininloadedE xception
----- 3 System, ApplicationException

----- @ Syskem, ArgumentException Find. ..
----- @ Syskem, ArgurmentMullException —
----- @ System, ArgumentoutOFR angeException Find Mext
----- @ Syskem, ArithmeticException

----- 3 Syskem, ArrayTypeMismatchException
----- & System.BadImageFormatException Clear Al
----- @ System, CannotUnloaddppDomainException

----- @ System, ConkextMarshalException

----- @ System,DivideBy ZeroException Add. ..
----- @ System,DINotFoundException

----- 3 Swskem. Donlicatew aitOhiscFvrenkinn ;I
—When the exception is thrown:

{” Break into the debugger

¥ Continue

Cancel

d

Delete

e Ilse parent: setking

—If the exception is not handled:
¥ Break into the debugger

" Continue

£ Use parent sething

15

Trapping for Specific Error using the Exception Classes
O Let’s look at some examples of using a particular Exception class to trap for a unique error

Example 7-5: Trapping for an Overflow Exception.

O An Overflow is when we perform a mathematical operation and the result is beyond the range of the data type.

a Inthis example we will divide two integer variables and place the result in a short variable, but the result of the division will
exceed the limits of an short.

O We will use the System.OverflowException Class to trap for this specific error only.

O The code is as follows:

ErrurHandIingEHampIS.vh| 9 X
I@ ErrorHandlingExample5 j Ilh {Declarations) j
F Module ErrorHandlingExamplebS =
=) Sub Maini) (=

Dim X As Integer = 10
Dim ¥ k= Integer = 100000000
Dim Diwv A= Short

'Jet the Diwv wariable to a Default walue for example purpose only
Div = -1

'Begin Error trapping Section
Try
Div = ¥ / X
Messagebox. 3how ("The Division of Y/X iz ™ & Diwv)

Catch obhijException As System.OwerflowException
MessageBox.3how (" Caught and Cwverflow exception®™)

'Tze exception okject's Message Property to display type of error
MessageBox.3how (objException. Message)

Finally
MessageBox.3how ("Code Inside the Finally Statement is executing™)
MessageBox.3how("The Division of YT/X is "™ & Diwv)

End Try 'End error trapping section

- End Zub —_—
“End Module

-
1| b

Discussion of Example:
O This example results in the following:

= In this example, we create three variables, where two are initialize with numbers and the third we will use to hold the result of
a division. The third variable is of a short data type which is smaller than an integer:

Dim X As Integer = 10

Dim Y As Integer = 100000000
Dim Div As Short

16

= We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block. Since
we the result of this division is large and will be placed in a short variable, this will yield an error:

Try
Div =Y / X
MessageBox.Show ("The Division of Y/X is " & Div)

= We then create an object of the OverflowException Class in the Catch block to trap for this specific type of error, where
the result of an operation will overflow or exceed the limitation of the data type:

Catch objException As System.OverflowException

= Inthe Catch block when only this specific error is trapped, we display a message box indication that an exception was
raised:

MessageBox.Show (" Caught and Overflow exception")

B X

Zaught and Cverflow excepkion

In the Catch block we also use the Message Property of the Overflow Object to display the information about the exception:

'Use exception object's Message Property to display type of error
MessageBox.Show (0bjException.Message)

EE x|

Arithmetic operation resulked in an owverflow,

Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")

MessageBox.Show ("The Division of Y/X is " & Div)
E x| B
Code Inside the Finally Statement is executing The Division of %= is -1

In this example we were able to trap for this specific error only.
Note that if another error occurs, we are not trapping for it, therefore the built-in VB.NET error mechanism will take over and
stop the program. Point is we need to be aware of this when trapping for specific errors.

7
0‘0
7
0‘0

17

Example 7-6: Trapping for a DivideByZero Exception.
An DivideByZero Exception occurs when we attempt to divide a Decimal Number by 0. Note that this only occurs with a
floating point decimal number, not the integer data type. If we divide by zero using the Integer data type the exception raised is
the OverflowException not the DivideByZeroException.

Q In this example we will divide two Decimal variables and place the result in another Decimal variable, but we will attempt to
divide by 0.

0O We will use the DivideByZeroException Class to trap for this specific error only.

Q The code is as follows:

i
X

ErrorHandlingExamplé.vhb | 4

I@ ErrorHandlingExample5 j IIF:; (Declarations)

F Module ErrorHandlingExamples
=] Sub Maini)

Dim X Az Decimal
Dim ¥ A=z Decimal

g

]
100

Dim Diwv As Decimal

'3et the Div wvariable to a Default wvaluese for example purpose only
Div = -1

'Begin Error trapping Section
Ty
Div = ¥ / X
MeszageBox.S3how ("The Division of ¥/X iz " & Div)

Catch objException As Svstem.DivideBvZeroException
MessageBox.Show (" Caught a divide by zero exception™)

'UTse exception ohject's Message Froperty to display type of error
Messagebox . S3how (objException. Hessage)

Finally
MessageBox.Show ("Code Inside the Finally 3tatement is executing™)
MessageBox . 3how ("The Diwvision of ¥/X is " & Div)

End Try 'End error trappihg sSection

- End 3Jub -

—hnd Module -
4| | Ll—l

Discussion of Example:
Q This example results in the following:

= Inthis example, we create three Decimal variables, where one is initialize with 0:

Dim X As Decimal = 0
Dim Y As Decimal = 100
Dim Div As Decimal

= We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block:

Try
Div =Y / X
MessageBox.Show ("The Division of Y/X is " & Div)

= We then create an object of the DivideByZeroException Class inthe Catch block to trap for this specific type of
error, where the result of an operation will overflow or exceed the limitation of the data type:

Catch objException As System.DivideByZeroException

» Inthe Catch block when only this specific error is trapped, we display a message box indication that an exception was
raised:

MessageBox.Show (" Caught a divide by zero exception")

B

—aught a divide by zero exception

= Inthe Catch block we also use the Message Property of the Overflow Object to display the information about the exception:

'Use exception object's Message Property to display type of error
MessageBox.Show (objException.Message)

B

attempted to divide by zero,

= Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")
MessageBox.Show ("The Division of Y/X is " & Div)

L x| N

Code Inside the Finally Statement is executing The Division of ¥/ is -1

7

% In this example we were able to trap for the DivideByZeroException exception error only.

19

Example 7-7: Trapping for the wrong Exception.

a

Q

In this example we will trap for the wrong exception. We will make some simple modifications to Example 7.6 to demonstrate

what happens when we trap for one specific exception and another exception is raised.

As with the previous example we will trap for a DivideByZeroException.

attempt to divide a Decimal Number by 0. If we divide by zero using the Integer data type the exception raised is the
OverflowException not the DivideByZeroException.
Again we will use the DivideByZeroException Class to trap for this specific error only.

The code is as follows:

ErrorHandlingExampl7.vb |

-
X

I@ ErrorHandlingExample?

j Il]‘t;, {Declarations)

&

4

F Module ErrorHandlingExample?
S3ub Mainf)

Dim ¥ A= Integer = 0O
Dim ¥ A=z Integer = 100
Dim Div As Integer
'Jet the Div warisble to a Default walue for example purpose only
Diwv = -1
'"Begin Error trapping Section
Try
Div = ¥ / X
MezzageBox.Show ("The Division of ¥/ /X iz * & Diwv)
Catch objException As 3ystemw.DivideByZeroException
MeszagebBox.3how (™ Caught a divide by zero exception™)
'T=ze exception okbject's Message Property to display type of error
MessageBox.3how (objException. Message)
Finally
MessageBox.3how ("Code Inside the Finally Statewment is executing™)
MessageBox.3how ("The Division of ¥/X iz "™ £ Diwv)
End Try 'End error trapping sSection

End Sub
“End Module

oy

Discussion of Example:
Q This example results in the following:

In this example, we modify the variables by making them integers and initialize them accordingly:

Dim X As Integer = 0
Dim Y As Integer
Dim Div As Integer

100

Remember this exception is raised when we

20

We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block and
the code that will handle the error in the Catch Block using the object of the DivideByZeroException Class:

Try

Div = Y / X
MessageBox.Show ("The Division of Y/X is " & Div)
Catch objException As System.DivideByZeroException

MessageBox.Show (" Caught a divide by zero exception")

'Use exception object's Message Property to display type of error
MessageBox.Show (ocbjException.Message)

= When we execute the program we get the following message:

A 0verflowException was unhandled *

Arithmetic operation resulted in an overflow,

Troubleshooting tips:
iMake sure wou are nob dividing by zero, | j

et general help faor this exception,

Search far more Help Online, .,

Actions:
Wigw Dekail. ..

Copy excepkion detail to the clipboard

= The code in the In the Catch block is never executed AND PROGRAM ENDS!!

¥ In this example we attempted to trap for the DivideByZeroException exception error only but what we generated was

an Overflow Exception since when we divide an integer by zero the result is infinity which overflows the Div integer
variable.

% The lesson here is that we need to be aware of the which error we are trapping for and make sure we take into account other
errors that may occur.

21

7.2

a
a

Q

.4 Trapping for Many Error using Multiple Catch Blocks

In example 7.7 we saw how trapping for a specific error runs the risk of not trapping for another.

To resolve this problem we can create multiple Catch Blocks, one for each of the specific error we wish to trap and one to trap all
errors.

Lets look at an example

Example 7-8: Trapping for Multiple Errors.

An In this example we use the wrong exception class but we will add an additional Catch block to trap any other error. This is
good programming practice to trap for a particular error but then protect the code by trapping for any other error in case.

In this example we will divide two Decimal variables and place the result in another Decimal variable, but we will attempt to
divide by 0.

We will use the DivideByZeroException Class to trap for this specific error and we will use the only main Exception
Class to trap all other errors that may occur.

The code is as follows:

1

I@ ErrorHandlingExamples j IIR {Declarations) j
=

[]Hbdule ErrorHandlingExampled
= Sub Main()

Dim ¥ ks Integer
Iim ¥ A=z Integer = 100
Dim Div Ls Integer = -1

]
]

'Begin Error trapping Jection
Tewy
Div = T / X
MessageBox.2how ("The Division of Y/X iz "™ & Diwv)

Catch obijD As Systew.DivideByZeroException
'Uze exception object's Message Property to display type of error
NessagebBox. Show (objD. Message)

'Trap for all cother errors
Catch ob]jException As System.Exception

HMeszsagebox.Show (TAn unexpected error has occured™)
'Use exception object's Message Property to display type of error
HessagebBox.3how (obhjException. Hessage)

Finally
He=zsageBox. 3how("Code Inside the Finally 3tatement i=s execucing™)
MessageBox.2how ("The Division of Y/X iz "™ & Diwv)

End Try 'End error trapping section

- End Sub b

LEnd Module _ILI
| >

Discussion of Example:

Q

This example results in the following:
= Inthis example, we create three integer variables and initialize them accordingly:
Dim X As Integer = 0

Dim Y As Integer 100
Dim Div As Integer = -1

22

7
0‘0

We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block:

Try
Div =Y / X
MessageBox.Show ("The Division of Y/X is " & Div)

We then create an object of the System.DivideByZeroException Class inthe Catch block to trap for this specific
type of error, we also use the Message Property of the DivideByZeroException Object to display the information about the
exception:

Catch objException As System.DivideByZeroException

'Use exception object's Message Property to display type of error
MessageBox.Show (objException.Message)

We then create another Catch Block using an object of the System.Exception Class in the Catch block to trap for all
other errors, and we display a message box indicating of the unexpected error:

Catch objException As System.Exception

MessageBox.Show ("An unexpected error has occured")
'Use exception object's Message Property to display type of error

B x|

an unexpected error has occured

We also use the Message Property of the Exception Object to display the information about the exception:

'Use exception object's Message Property to display type of error
MessageBox.Show (objException.Message)

N x|

Arithmetic operation resulted in an owerflow,

Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("Code Inside the Finally Statement is executing")
MessageBox.Show ("The Division of Y/X is " & Div)

EE x| E x

Code Inside the Finally Statement is executing The Division of ¥/ is -1

The important thing to notice here is that by using multiple blocks we were able protect the code from other unexpected
errors.

23

7.2.5 The Throw Statement

Error Handling Summarized

O So far the objectives has been for us to trap errors or exceptions caused by our code using the Try..Catch..Finally statement.
O Apointto focus on is that the Error or Exception that our code causes is raised by the VB.NET engine. So here is the algorithm
of what happens when our code generates an error and what we do about it with the Try Statement.

The code does something wrong or causes the error

VB.NET detects the error and raises or throw an error and attempts to stop the program
We have in our code a Try..Catch..Finally Statement to trap or catch the error.

In the Catch block, we handle the error appropriately.

el N>

In summary, the program does not allow VB.NET to stop the program, but simply let the Try Statement handle it.
The point that VB.NET has the responsibility of raising the error, and we have the responsibility to trap it using the
Try Statement

7
0‘0
7
0‘0

Raising our own errors

It turns out that we can also programmatically raise or throw an error ourselves.

This means that we, NOT VB.NET are raising an error.

But this in turn means that if we raise an error then we are also responsible to trap the error using the Try statement to handle it.
So now we have the responsibility of raising and catching this error.

We do this using the Throw Statement.

The Throw Statement syntax is as follows:

ocoo0ododo

‘General Throw Statement Syntax:
Throw New System.ExceptionClass(argument)

‘The Exception Class can be any of the Exception Classes provided by VB.NET
‘Which class you use depends on which type of error you want to throw.
“You can use the regular Exception class or DivideByZeroException etc.

‘The argument is a text message we would like to display when the error is trapped.
Note that the System keyword is optional, the following statement would be the same:

Throw New ExceptionClass(argument)

You may be asking yourself, why would we want to throw an error?

It turns out that there are many situations where this is necessary. As we progress with the course, we will see these situations.
Also, we can throw an error to indicate something that was supposed to happen did not, therefore we can throw an error and then
catch it later. When we catch it we can warn the user that things did not happen as expected.

0ooo

+» Remember that if we throw an error than it is our responsibility to catch it as well.

24

Using the Throw Statement
O There are two ways to use the Throw statement:

= To re-throw an exception — Used inside an Try-Catch-Finally statement to re-throw the exception that you caught
= Any other location (out-side an Try-Catch-Finally)

Re-Throwing an Exception

O We can use a Throw statement inside a Try-Catch-Finally Statement to re-throw the exception caught by the Try Statement.

O This means we can Catch an error, perform what ever necessary processing and then re-throw it so that it is trapped elsewhere or
the further on in the program.

o Of course, we need to provide another Try-Catch-Finally Statement to catch the exception we just threw.

O The following example demonstrates this concept:

Example 7-9: Re-Throwing

0 Inthis example we extend the divide-by-zero example by creating a function named Divide(X,Y) which divides the values passed
as arguments.

O Lets first take a look at this function code:

I@ ErrorHandlingExampled j I':':.Divide j

é Public Function Divide (BEvyWal intX Az Integer, BEyWal int¥ As Integer) As Integer =
Dim Ans A= Intedger
'Begin Error trapping Section
Trvy
hns = int¥ / intX
Feturn ins

'Trapping for all errors
Catch okbjException As System.Exception

'Be—-throw the exception with a custom message
Throw New Svstem.Exception(Thin error with the diwvision has occurd™)

End Try

- End Function

-
1| | b

Discussion of Function:
O This example results in the following:

= The important processing of this function is that it takes the arguments and divides them: intY/intX and return the results:

Ans = intY / intX
Return Ans

= We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block, which
is the code the performs the arithmetic:

Try

Ans = intY / intX
Return Ans

25

= Inthe Catch block, we create an object of the System.Exception Class to trap for all errors. We then call the Throw
statement to re-throw the exception again:

Catch objException As System.Exception

'Re-throw the exception with a custom message
Throw New System.Exception("An error with the division has occurd")

= The key point to this example is that in the Catch block, we Re-Throw the exception programmatically. We include a
custom message in the argument.

= Itis now the responsibility of the calling program to trap this error using a Try-Catch-Finally Statement; otherwise
execution of the program will stop, since the built-in VB.NET mechanism will take over.
+» Note that no Finally statement was used. This was simply my choice for this example.

O Lets see how the calling program, in this case Main() handles the exception we just threw:

Iﬁ ErrorHandlingExampled j I':':‘ Main j
F Module ErrorHandlingExamwpled

=) Sub Maini)

Dim ¥ A=z Integer a
Dim ¥ Az Integer 100
Dim Div As Integer = -1

Try
Diwv = Diwide (Z, ¥)
Messagebox.3how ("The results of division is "™ & Diwv)

Catch objException bLs System.Exception
'Using the exception ohject's Message Property to display type of error
Meszsagebox . 3how(objException. Message)

Finally

MessagebBox.3how("The Division of ¥/X is "™ & Diwv)
End Try 'End error trapping section

- | End sub
L ;Ij
L —————

Discussion of Main:
O This example results in the following:

= Inthis example, we create three integer variables and initialize them accordingly:
Dim X As Integer = 0

Dim Y As Integer = 100
Dim Div As Integer = -1

26

= We begin the error trapping section by adding the code which we suspect that will generate error inside the Try block, which
is the call to the function Divide(X,Y):

Try
Div = Divide (X, Y)

MessageBox.Show ("The results of division is " & Div)

= We then create an object of the System.Exception Class in the Catch block to trap for any error. We also use the
Message Property of the Exception Object to display the information about the exception:

Catch objException As System.Exception

'Using the exception object's Message Property to display type of error
MessageBox.Show (objException.Message)

- x|

&n errar with the division has ocourd

7

+« The important thing to notice here is that the error we are trapping is the error we generated via the Throw Statement.

= Once this code is executed, control is passed to the Finally Block for any cleanup code to be executed.

MessageBox.Show ("The Division of Y/X is " & Div)

EE

The Division of ¥ is -1

27

O Inthe previous example we trapped for all errors using the general Exception Object, but we could have also used one of the
custom built-in classes to trap for a specific error.

O Inthe previous example, we could trap specifically for the overflow by using the class System.OverFlowException. This way we
trap for an overflow only.

O But remember that if we trap for a specific exception we should also trap for any other exceptions that may happen as a
precaution using multiple Catch statements.

o The following example demonstrates this concept:

Example 7-10: Re-Throwing Example Trapping for specific exception
O We will extend the previous example to trap the overflow exception and also trap for all other exception just in case.
O Lets first take a look at this function code:

gErrorHandIingEHamplell] j I-:-;‘Divide

el LL

é Public Function Diwvide (ByWal int¥ As Integer, ByWal int¥ As Integer) Lls Integer
Iim Ans is Integer
'Begin Error trapping Section
Tey
Anz = int¥ / intE

Eeturn Ans
'Trapping for Cverflow Error Only

Catch objOwF b=z System.CwverflowException
'Re-throw the exception with a custom message

Fhrow HNew System.OwverflowException ("ATTENTICH! The Division operation has generated and Owverflow error'™)

'Trap for all other errors
Catch objException As System.Exception

'In case any other errocr occurs, this wessage will display
MessageBox. Show ("TARNING'! An unexpected error has occurred™)

End Try

o End Function

| o

Discussion of Function:
O This example results in the following:

= Again we begin the error trapping section by adding the code which we suspect that will generate error inside the Try block,
which is the code the performs the arithmetic:

Try
Ans = intY / intX
Return Ans
= We trap for the overflow exception in the first Catch block using an object of the System.OverflowException Class
to trap only overflow errors:

Catch objOvF As System.OverflowException
= Asthe previous example, we will re-throw the exception so that the error is propagated to the calling program:
'Re-throw the exception with a custom message
Throw New System.OverflowException ("ATTENTION! The Division operation has

generated and Overflow error")

= It is now the responsibility of the calling program to trap this error using a Try-Catch-Finally Statement; otherwise
execution of the program will stop, since the built-in VB.NET mechanism will take over.

28

O As the previous example, the calling program is simply trapping for all errors
error. We could do what ever we want:

. Or we could have trapped again only for overflow

Iﬁ ErrorHandlingExampled

j I':':‘ Main

-] Module ErrorHandlingExamwmples
= Sub Maini)

Dim ¥ A=z Integer
Dim ¥ As Integer
Dim Diwv A=z Integer

m]
100
-1

Try
Diw

Divide (X, T

Catch objException As System.Exception

MessageBox.Show (obhjException. Message)
Finally

MezsageBox.Show("The Division of T/X is
End Try 'End error trappinhg section

| End sun

'T=ing the exception object's Message Property to display type of error

& Diwv)

Meszsagebox . 3how ("The results of division is ™ & Diwv)

Discussion of Main:
O Same as previous example.

Throwing an Exception in other location (NOT inside Try-Catch-Finally)

O We can use a Throw statement in other location of a program, not just inside a Try-Catch-Finally Statement.

O But remember, we need to have a Try-Catch-Finally in the section that follows the code in order to trap it, otherwise the
program will stop.

O We will cover this type of approach to using the Throw statement in future lectures.

29

7.3 Shared Methods

7.3.1 Overview & Discussion
0 In the beginning of this course you learned the 3 BASIC STEPS TO AN OBJECT-ORIENTED PROGRAM:

Create the class specification or Class Module
= Private Data, Properties & Methods

Il. Create Object of the Class

1. Use the Object of the Class
= Write the program to manipulate, access or modify the objects
data & Call the Methods & and Trigger Events

We also emphasized on the difference between a Class and the Object.

A Class is a template which defines what the object will look like and the object is an instance or manifestation of a Class.
We also pressed the issue that we CANNOT use the class methods and members prior to creating an object. For example
supposed we have the following class and object declarations:

0ooo

Example 1:

‘Class Declaration:
Public Class clsEmployee

Public Function Authenticate (sUser As string, sPass As String) As Boolean
‘function code

End Function

End Class

'SYNTAX ERROR !!!Using class name to access members results in Syntax Error:
bolResults = clsEmployee.Authenticate(“joe”, “111”) ‘Result in Syntax Error

30

O Inthe example we called the Class.Method() syntax to use the class and we know this is a violation. You don’t use the Class but
the object of a class. The class is only a template and it’s members are only available after an object is created. Let’s look a the
correct syntax:

Example 2:

‘Class Declaration:
Public Class clsEmployee

Public Function Authenticate (sUser As string, sPass As String) As Boolean
‘function code
End Function

End Class

'‘Object Declaration:
Public objEmployeel As New clsEmployee

‘Correct Declaration using object:
bolResults = objEmployeel.Authenticate (“joe”, “111”)

7.3.2 Shared Methods

O VB.NET actually provides a mechanism called Shared Methods , which allows us to use member methods (procedures/functions)
without the need to create an object.

0 lunderstand that from the start you were taught that this is not allowed and is a violation. Now we take it back. There are
circumstances were it may be best to actually be able to call a class method WITHOUT having to instantiate or create an object.

0 You have actually used this already without realizing it. For example when using Console Applications, to display information to
the screen we used the following syntax:

Console.WritelLine (“Access Granted”)

0 Did you realized that Console is the Class name? and that there is no object declared when we called the WriteLine() method? In
the Namespace Console is the class that handle console applications and WriteLine() is a method of this class. So, you were
using the Class.Method() syntax and did not realize it.

QO It turns out that WriteLine() is a Shared method this is why we were able to do this.

O The Syntax to implement a Share method is as follows:

‘Syntax for Shared Sub Procedure:
Public Shared Sub ProcedureName ([argument list])
‘Body Code!
End Sub

‘Syntax for Shared Function Procedure:

Public Shared Function ProcedureName ([argument list]) As ReturnType
‘Body Code!
Return = ReturnValue

End Function

31

O Now lets’ look at our previous CLASS DECLARATION example, but this time we make the METHOD A SHARED METHOD:

Example 3:

‘Class Declaration:
Public Class clsEmployee

Public Shared Function Authenticate (ByVal sUser As String, ByVal sPass As String) As
Boolean

'function code
End Function

End Class

'GOOD CODE! EXECUTED METHOD WITHOUT OBJECT'!
bolResults = clsEmployee.Authenticate(“joe”, “111”) ‘RETURNS

7.4 Shared Variables

7.4.1 Overview

a Inourreview of VB.NET we discussed the various types of errors that can occur in a program.
0 INCOMPLETE SECTION!

32

