

CS608 Lecture Notes

Visual Basic.NET Programming

Object-Oriented Programming

Inheritance

(Part I of II)

(Lecture Notes 3A)

Prof. Abel Angel Rodriguez

 2

CHAPTER 8 INHERITANCE..3

8.1 Introduction to Inheritance...3
8.1.1 Introduction to Inheritance..3
8.1.2 Implementing Basic Inheritance ...5
8.1.3 Available Access to Base Class Members from SubClasses ..15

8.2 Inheritance Concepts...16
8.2.1 Inheritance Features..16
8.2.2 Method Overloading in Inheritance ..17

General Method Overloading Review ...17
Implementing Method Overloading in Inheritance..18

8.2.3 Method Overriding ...25
Introduction..25
Implementing Method Overriding ...25

 3

Chapter 8 Inheritance

8.1 Introduction to Inheritance

8.1.1 Introduction to Inheritance
Reusability

 Previously we introduced the concept of reusability. That is re-using objects that we create in one program into another.
 This concept has revolutionized the field of programming. Applications which took longer to developed are now being created at

a much faster rate since objects from other applications are being reused, thus saving time on programming and testing.
 The Objects re-used have already been tested in previous programs so they are guaranteed to work safely thus yielding a robust

program.
 This concept of reusability spawned a new software industry where companies were established whose sole business is to create

ready tested Objects to sell to other software development houses.
 The main Object-Oriented Programming concept provided to implement reusability is Inheritance.

Inheritance

 Inheritance is probably the most powerful feature of Object-oriented programming.
 Inheritance is the process of creating new class, called Sub Class, (Derived Class) from an existing parent class. The parent

class is called a base class.
 The derived class inherits all the capabilities of the base class but can add features of its own. Note that the base class is

unchanged by this process.
 Any class you created can be a base class and any derive class can become a base class to its derived children classes.

 Inheritance is a big payoff since it permits code reusability. Once the base class is written and debugged, it needs not to be

touched again, but can be adapted to work in different situations. Reusing existing code saves time and money and increases
program reliability.

 The diagram below illustrates the concept of inheritance. A base class contains several features such as features A & B. By

feature we mean data, property & methods. All derived child classes will inherit Features A & B and can add their own
additional features, thus making them more powerful.

Derived Classes

Feature A

Feature B

Feature A

Feature B

Feature A

Feature B

Feature A

Feature B

Base Class

Feature A

Feature B

Feature C

Feature D

Feature E
Feature F

 4

 For example supposed we create an Employee Class, which contain standard employee features such as name, id, address,
benefits etc. We can then derive classes for each of the different category of employees in the company, such as managers,
scientist, laborers etc.

 The UML illustration below demonstrates this concept:

Employees

Employee
Features

Derived Class Manager Derived Class Scientist Derived Class Laborer

Manager
Features

Employee
Features

Scientist
Features

Employee
Features

Employee
Features

Laborer
Features

 5

8.1.2 Implementing Basic Inheritance
Creating the Base Class

 Any class we create can be a base class.
 Note that I will use as a convention of using the prefix m_ for all private variables of the base class to differentiate them from

the variables of the derived class. I will use the prefix m for all private variables of the derived class.
 The Syntax and example of requirement in the Derived or SubClass to inherit from a Base class is as follows:

 ‘Class Header
Public Class SubClassName

Inherits BaseClassName

End Class

 Data Definitions

 Properties Definitions

 Methods

Example:

 Creating a Classes:

 Example a) - Creating a Derived Class Video from a Base Class Product:

Public Class Video
 Inherits Products

‘Properties,
‘Methods
‘ Event-Procedures

End Class

 Example b) - Creating an Employees class from a Person Class:

Public Class Employee
 Inherits Person
‘Properties,
‘Methods
‘ Event-Procedures

End Class

 6

 Lets look at the following clsPerson class example (Note the UML diagram):

Example 1 (Base Class):
 Declaring the base class:

Public Class clsPerson

Private m_strName As String
Private m_intIDNumber As Integer
Private m_dBirthDate As Date

‘Property Declarations
Public Property Name () As String

Get
 Return m_strName

End Get

Set (ByVal Value As String)
m_strName = Value

End Set
End Property

Public Property IDNumber () As Integer

Get
 Return m_intIDNumber

End Get

Set (ByVal Value As Integer)
m_intIDNumber = Value

End Set
End Property

Public Property BirthDate () As Date

Get
 Return m_dBirthDate

End Get

Set (ByVal Value As Date)
m_dBirthDate = Value

End Set
End Property

‘Person Method Declarations
Public Sub Print ()

 MessageBox.Show("Printing Person Data " & _
 m_strName & ", " & m_intIDNumber & ", " & m_dBirthDate)

End Sub

End Class

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

Print()

 7

Creating the Subclass (Derived Class)

 Using the Inherit keyword in a class declaration, we can derive other classes from the clsPerson class.
 For example supposed we wished to create an Employee class clsEmployee as a subclass to clsPerson, which inherits the feature

from clsPerson, but adds additional properties and method.
 Suppose we want the following UML diagram implementation:

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

Print()
clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double

PrintEmployee()

Example 1 (SubClass):
 Declaring the SubClas:

Public Class clsEmployee
 'Keyword used to implement Inheritance:
 Inherits clsPerson

 '***
 'Class Data or Variable declarations
 Private mdHireDate As String
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As String
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As String)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Integer
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Integer)
 mdbSalary = Value
 End Set
 End Property

 '***
 'Employee Class Method
 Public Sub PrintEmployee()
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

E d Cl

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double

PrintEmployee()

 8

Using the Base Class & SubClass

 Now that our subclass is derived from the base class, we can use the properties of the subclass.
 Due to inheritance, objects of the subclass will inherit the functionality of the base class
 For example, the subclass clsEmployee does not implement the properties Name, BirthDate and IDNumber, but objects of this

class will show that Name, BirthDate and IDNumber are property members but they are really not, they are implemented by
clsPerson the base class.

 Note that the private variables m_intName, m_BirthDate and m_IDNumber will not be accessible by the child class, since they
are private. The child or subclass only has access to public members and inherits them directly

 Let’s look at a main test program. We will create an object of the base class as well as the subclass in order to demonstrate
inheritance.

 Main() test program:

Example 1 (Main Program):
 Driver Program for testing inheritance:

 'Declare & Create Public Person & Employee Objects
 Public objPerson As clsPerson = New clsPerson()
 Public objEmployee As clsEmployee = New clsEmployee()

 Public Sub Main()

 'Populating Person Object with Data
 With objPerson
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 End With

 'Call Person Object Only Method
 objPerson.Print()

 'Populating Employee Object with Data
 With objEmployee
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1970#
 .HireDate = #3/9/2004#
 .Salary = 30000
 End With

 'Call Employee Object two available Methods
 objEmployee.Print()
 objEmployee.PrintEmployee()

 End Sub

 9

Explanation of Test program:

 When we execute the program, the following occurs:

1. We expose the only two property of the Base Class objPerson object, and populate them with data and we call it’s
Print() method:

 'Populating Person Object with Data
 With objPerson
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 End With

 'Call Person Object Only Method
 objPerson.Print()

Results and Explanation:

o Note that the person object has no access to its derived child’s data; it only sees its three properties Name, BirthDate and
IDNumber.

o Calling the objPerson.Print() method will result printing only the Person object’s information as expected:

o There is nothing new here in what we have done so far.

2. We now populate the SubClass object objEmployee and notice that it has a total of 5 properties and two methods. We
populate each of the properties and call each of the methods: Print() and PrintEmployee():

 'Populating Employee Object with Data
 With objEmployee
 .Name = "Mary Johnson"
 .IDNumber = 111
 .BirthDate = #4/12/1970#
 .HireDate = #3/9/2004#
 .Salary = 30000
 End With

 'Call Employee Object two available Methods
 objEmployee.Print()
 objEmployee.PrintEmployee()

 10

Results and Explanation:

o The derive child objEmployee sees five properties, three properties from the Base Class Person object: Name, BirthDate
and IDNumber, and two properties which the clsEmployee class added: HireDate & Salary.

o We can clearly see that objects of the Employee class inherited the properties Name, BirthDate and IDNumber from
Person, and added two of its own HireDate & Salary.

o We also notice that the derived child, has two methods, one which it inherited from the parent Base class Person and one

it added itself.

o Calling the objEmployee.Print() method will result printing only the Person object’s information as expected:

o Calling the objEmployee.PrintEmployee() method will result printing only the Employee object’s information as
expected:

Summary:

 We clearly showed that we can inherit all the features of the Base Class and add features of our own in the subclasses.
 We took advantage of the interface and behavior of the Person class and extended it via an Employee class to represent

an employee.
 By using an existing Person class we saved development time when creating an Employee class. Another example of

reusability!

 11

Alternate Implementation of the Subclass PrintEmployee Method

 As we have seen, using the Inherit keyword will allow us access to the Public Properties & Methods of the base class clsPerson.
 If this is the case, there is nothing stopping us from calling the Person Class Print() method from within the Employee’s Class

PrintEmployee() method.
 This makes more sense, when we call Employee.PrintEmployee in one shot we print both the Base Class Print() and the Derived

Class PrintEmployee().
 Not only does this makes more sense, but it also represents a real world entity (Employee) since we only make calls to the

Employee object
 Let’s look at our new implementation of the SubClass clsEmployee.
 Note that we assume the Base Class clsPerson, is the same as the previous example:

Example 2 (SubClass):
 Declaring the SubClass:

Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As String
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As String
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As String)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Integer
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Integer)
 mdbSalary = Value
 End Set
 End Property

 '***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double

PrintEmployee()

 12

Using the SubClass in a Main Program

 As in the previous Example 1, due to inheritance, objects of the subclass will inherit the functionality of the base class
 This main program is identical to Example 1, with the exception that for the Employee Object created, we only need to call it’s

PrintEmployee() method, which in turns automatically calls the Base Class Print().
 Main() test program:

Example 2 (Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'Declare & Create Public Person & Employee Objects
 Public objPerson As clsPerson = New clsPerson()
 Public objEmployee As clsEmployee = New clsEmployee()

 Public Sub Main()

 'Populating Person Object with Data
 With objPerson
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 End With

 'Call Person Object Only Method
 objPerson.Print()

 'Populating Employee Object with Data
 With objEmployee
 .Name = "Mary Johnson"
 .IDNumber = 111
 .BirthDate = #4/12/1970#
 .HireDate = #3/9/2004#
 .Salary = 30000
 End With

 'Call Employee Object Method
 objEmployee.PrintEmployee()

 End Sub

End Module

 13

Explanation of Example 2 program:

 When we execute the program, the following occurs:

1. We Populate the only two property of the Base Class objPerson object, and populate them with data and we call it’s
Print() method:

 'Populating Person Object with Data
 With objPerson
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 End With

 'Call Person Object Only Method
 objPerson.Print()

Results and Explanation:

o Note that the person object has no access to its derived child’s data; it only sees its three properties Name, BirthDate and
IDNumber.

o Calling the objPerson.Print() method will result printing only the Person object’s information as expected:

2. We now populate the SubClass object objEmployee. Now we only need to call the PrintEmployee() Method:

 'Populating Employee Object with Data
 With objEmployee
 .Name = "Mary Johnson"
 .IDNumber = 111
 .BirthDate = #4/12/1970#
 .HireDate = #3/9/2004#
 .Salary = 30000
 End With

 'Call Employee Object Method
 objEmployee.PrintEmployee()

 14

Results and Explanation:

o The derived child object objEmployee only needs to call its one objEmployee.PrintEmployee() method, which

automatically calls its inherit Print() method will result printing only the Person object’s information first, follow by the
derived object’s data:

Summary:

 Since we inherit all the features of the We clearly showed that we have flexibility as to where we call the Base Class
public members.

 To better meet the Object-Oriented Programming requirements, it is better to abstract all the Base class implementations
from within the Sub Class.

 15

8.1.3 Available Access to Base Class Members from SubClasses
Access Public & Private Members of the Base Class

 In the previous example we saw how the Base Class had NO access to Members of the SubClass.
 More important, we saw how the sub class only had access to Public Members of the Base Class (Public Properties & Methods)
 The rule data encapsulation of Object-Oriented-Programming always hold

Private data is private and only members of the class have access to it!

 Therefore derived classes DO NOT have access to their parent’s Private data only to the Public Interface (Properties & Methods)
 So, a derived class cannot directly access the private data, but it does automatically inherit the public interface, thus it seems that

the child class contains these parent public interfaces as its own.

The “Protected” Access Keyword

 In inheritance there is another level of security in the Base Class offered for SubClasses. This level is known as Protected Data,
using the keyword “Protected”.

 The Protected keyword means that derived classes are the only ones that can access protected members of the base class
 To any other class a variable declared with the keyword Protected is Private. The rule is:

No other classes other than a derived class have access to a Protected Member!

 You use protected members when you want to give derived classes direct access to these members.
 The moral is that if you are writing a class that you suspect might be used, at any point in the future, as a base class for other

classes, then any data or functions that the derived classes might need to access should be made protected. This ensures that the
class is “inheritance ready”

 There is a disadvantage to making members protected. Protected members are less secure because anyone can derive a class and
access the protected members. Therefore precautions should be taken

 We will show examples of the Protected Keyword in later sections

Summary

 The table below is a summary of the basic access specification for classes in general:

ACCESS
SPECIFIER

ACCESSIBLE FROM
ITSELF

ACCESSIBLE FROM
DERIVED CLASS

ACCESSIBLE FROM
OBJECTS OUTSIDE CLASS

Public Yes Yes Yes
Protected Yes Yes No
Private Yes No No

 16

8.2 Inheritance Concepts

8.2.1 Inheritance Features
 In this section we will cover some of the features available via inheritance.
 Inheritance is a powerful tool of VB.NET and contains much functionality. I will only cover the following:

 Overloading Methods & Properties
 Overriding Methods & Properties
 MyBase Keyword
 MyClass Keyword
 Level of Inheritance
 Constructors
 Protected Scope
 Abstract Base Class

 17

8.2.2 Method Overloading in Inheritance

General Method Overloading Review
 In past lectures we covered the topic of Method Overloading.
 Method Overloading gave us the ability to implement methods with the same name, as long as their Method Signature is

different.
 The Method Signature refers to the number of parameters and return type of a method.
 As long as the numbers of arguments are different, we can create methods having the same name.
 Let’s look at an old example of the various valid declarations of the method CalculateTotal():

 Using Method Overloading we can declare the following Methods inside a class named Invoice:

‘No parameters version
Public Sub CalculateTotal ()

‘Code in what ever you desire here!
decTotal = decSubTotal + (decSubTotal * decTax)

End Sub

‘Two parameters version with data type: dec & dec
Public Sub CalculateTotal (ByRef decTotal As Decimal, ByVal decTax As Deciaml)

decTotal = decSubTotal + (decSubTotal * decTax)
End Sub

‘One parameters version with data type: dec
Public Sub CalculateTotal (decTotal As Decimal)

decTotal = decSubTotal * decTax
End Sub

‘One parameters version with data type: int
Public Sub CalculateTotal (ByVal intTotal As Integer)

intTotal = intValue
End Sub

‘Two parameters version with data type: int & int
Public Sub CalculateTotal (intTotal As Integer, charName As String)

intTotal = intValue
charNamel = charValue

End Sub

 Note that not one of these methods are identical..ONLY THE NAME!!!!!!

 From these declarations, we can make the following calls:

objInvoice.CalculateTotal(decTotalCharges) ‘Will call the one-paremeter dec version

objInvoice.CalculateTotal(decTotalCharges, decSalesTax) ‘2-parameter, 2-dec data types

objInvoice.CalculateTotal() ‘No argument version

objInvoice.CalculateTotal(intTotalValue, charClientName) ‘2-par, int & char data types

objInvoice.CalculateTotal(intValue) ‘1-par, int data type version

 Each of these calls will call the corresponding method that matches its number of parameter & data type

 18

Implementing Method Overloading in Inheritance
 Method overloading can be applied to our Derived or SubClasses.
 In other words, we can overload a Base Class Method thus extending and providing another implementation of the inherited

method.
 As long as the names are the same but the number of parameters are different, we can overload a base class method
 Note that the original Base class method is still available, but in the child class we extended it by adding another one the performs

some other implementation of the base class method.
 This is the beauty of inheritance, not only can we inherit, but we can extend the features currently available by the Base Class
 Lets look at another version of the previous example where we will overload the Print() method of the Base Class by adding a

Print(int X) method in the derived class that will Print the Base Class data X times, and overload the Name Property to add a
comment to the Name string.

Example 3 – Overloading Methods
Creating the Base Class

 Re-using the clsPerson class from the previous example:

Example 3 (Base-Class):
 Declaring the base class:

Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal Value As String)
 m_strName = Value
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal Value As Integer)
 m_intIDNumber = Value
 End Set
 End Property

 Public Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal Value As Date)
 m_dBirthDate = Value
 End Set
 End Property

 '***
 'Regular Class Methods
 Public Sub Print()
 MessageBox.Show("Printing Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)

 End Sub

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

Print()

 19

Overloading the Print Method using the OverLoads Keyword

 We create the clsEmployees class and as usual we use the Inherit keyword in a class declaration to inherit from the clsPerson
Class.

 In order to implement method overloading we need to use the keyword Overload in the declaration of the method or property.
 Using the keyword Overload, we add another Name Property which takes as argument a string representing a comment that will

be added to the Name string.
 Using the keyword Overload, we overload the Base Class Print() method by adding another Method named Print(X) which takes

one argument.
 Lets look at the derived class clsEmployee:

Example 3 (SubClass):
 Declaring the SubClas:

Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As String
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As String
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As String)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Integer
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Integer)
 mdbSalary = Value
 End Set
 End Property

'Overloading the Base Class Name Property
 Public Overloads Property Name(ByVal strComment As String) As String
 Get
 Return Name
 End Get
 Set(ByVal Value As String)
 'Add the Comment to the end of the name
 Name = Value & " (" & strComment & ")"

 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

Print(X)

PrintEmployee()

 20

Example 3 (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Regular Class Methods

 'Overloaded Base Class Method
 Public Overloads Sub Print(ByVal intNumberOfPrints As Integer)
 Dim i As Integer

 For i = 1 To intNumberOfPrints
 MessageBox.Show("Multiple Print Jobs for: " _
 & Name & ", " & IDNumber & ", " & _
 BirthDate)
 Next

 End Sub

 Public Sub PrintEmployee()
 'Call Print() Method to display Base Class Data
 Print()

 'Display Derived Class Data
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

End Class

 21

Using the SubClass and Calling the Overloaded Property & Method

 Now let’s look at the driver program.
 In this example we create two objects of the clsEmployee class. We will no longer need to create objects of the Base Class,

unless necessary, since the derived class objects contain everything from the base and more.
 We assign values to the first Employee Object using the standard Properties inherited by the Base Class: Name, BirthDate and

IDNumber, those provided by the derived class: HireDate & Salary.
 We call the first Employee Object PrintEmployee Method to print both the Base Class data and Derived Class data.
 In the second Employee Object, we assign values to only two of the properties inherited by the Base Class: BirthDate and

IDNumber, we chose NOT to use the inherited property Name, but decided to use the properties provided by the derived class:
Overloaded Property Name(X), and the regular HireDate & Salary

 In the second Employee object we call the PrintEmployee() method to print both Base & Derived Class data and in addition we
call the overloaded method Print(X) to print only the Base Class data X times.

 Main() test program:

Example 3 (Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()

 Public Sub Main()

 'Populating Person Object with Data
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Object Method
 objEmployee1.PrintEmployee()

 'Populating Employee2 Object with Data
 With objEmployee2
 'Assign Overloaded Property
 .Name("Alias") = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1970#
 .HireDate = #3/9/2004#
 .Salary = 30000
 End With

 'Call Employee Class PrintEmployee method
 objEmployee2.PrintEmployee()

 'Call Overloaded PrintPerson method
 objEmployee2.Print(3)

 End Sub

End Module

 22

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create two Employee Objects:

 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()

2. We populate the First Object using the Inherited properties from the Base Class and added properties of the
Employee Class and we call it’s PrintEmployee() Method to print Base & Derived Class data:

 'Populating Person Object with Data
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Object Method
 objEmployee1.PrintEmployee()

Results and Explanation:

o When populating Name, BirthDate and IDNumber we are using the Base Class Properties, and when populating
HireDate & Salary we are using the Derived Class properties.

o Calling the objEmployee1.PrintEmployee() method will result printing both the Base Class data and Derived Class data.
This is how it was programmed:

 23

3. We now populate the Second Object using two of the Inherited Properties from the Base Class and added properties

of the Employee Class including the Overloaded Name property. In addition we call it’s PrintEmployee() Method to
print Base & Derived Class data:

 'Populating Employee2 Object with Data
 With objEmployee2
 'Assign Overloaded Property
 .Name("Alias") = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1970#
 .HireDate = #3/9/2004#
 .Salary = 30000
 End With

 'Call Employee Class PrintEmployee method
 objEmployee2.PrintEmployee()

Results and Explanation:

o In this object we chose to only populate the populate from the Base Class the BirthDate and IDNumber. For the derived
class we populate HireDate & Salary but in addition populate the Overloaded Name(X) Property and send a text string
as an argument.

o We then call the objEmployee2.PrintEmployee() method will result printing both the Base Class data and Derived Class
data:

o Calling the objEmployee.PrintEmployee() method will result printing only the Employee object’s information as
expected:

 24

4. We now call the Overloaded Print(X) method to print the Base class data X times:

 'Call Overloaded PrintPerson method
 objEmployee2.Print(3)

Results and Explanation:

o We then call the objEmployee2.Print(3) method will are actually calling the Employee Class Overloaded representation
of the Base Class. The Base Class data will print 3 times:

Summary:

 We clearly showed that we can not only inherit all the features of the Base Class and add features of our own in the
subclasses but also extend the Base Class features by Overloading them and extending them to perform more
functionalities.

 25

8.2.3 Method Overriding

Introduction
 In the previous section we learned Method Overloading. Overloading allowed us to extend the functionality of a Base class

Method or Property by adding a new version in the Derived Class with the same name, but as long as the parameter list is
different.

 The key point to Overloading is that we kept the original functionality of the base and just added a new or additional
functionality in the child or SubClass.

 Now let’s supposed we want NOT just extend an implementation of the base class, but change or completely replace a
functionality of a method or property.

 This is where Method Overriding comes in to play.
 Method Overriding gives us the ability to completely replace the implementation of a base class method or property with a NEW

or overridden method in the SubClass with the Same Name and signature.
 The key point here is that we are replacing! The new method has the same signature (Name, # of parameters, return type etc).

Implementing Method Overriding
 To implement Method Overriding we need to use two keyword: Overridable & Overrides
 To implement we first need to realize that we just can’t simply override a Base Class. The base class needs to give us permission

to do so, in other words the Method or Property in the Base Class must grant this feature. This is where the keyword Overridable
is used.

Overridable keyword
 The Overridable must be stated in the Base Class on every Method or Property in which the Base Class allows the Derived

Classes to override.
 The idea here is that the Base Class is in control of which Methods and Property a Derived class can override.

Overrides keyword

 Once a Property or Method has the Overridable keyword, the derived class can override the Method/Property using the keyword
Overrides. This keyword tells the SubClass that this Method/Property is to override the one in the Parent or Base Class.

 The overridden method in the Base class will not execute at all via the Sub Class. Only the new version will execute.
 Now don’t get confuse by this statement. Note that we are saying that the overridden method in the derive class will run and not

the one in the base class. But this is only when we are trying to call the method from and object of the child or derived class that
the new one executes. You can still run the original but only if you create an object of the Base Class as expected.

 26

Example 4 – Overriding Property & Methods
 Lets look at another version of the previous example where this time we will override the BirthDate Property and the Print()

method of the Base Class by replacing it with a NEW version of BirthDate and Print() method in the derived class.
 In this example we will prove the following:

 Method Overridden executes and not Base Class Method
 Original Method in Base class can be accessed but only by Base Class Objects
 Throwing an Exception

Creating the Base Class

 Using the keyword Overridable we allow the Birthdate & Print() method to be overridden:

Example 4 (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal Value As String)
 m_strName = Value
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal Value As Integer)
 m_intIDNumber = Value
 End Set
 End Property
 'We allow Property to be overridden
 Public Overridable Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal Value As Date)
 m_dBirthDate = Value
 End Set
 End Property

 '***
 'Regular Class Methods

 'We allow Method to be overridden
 Public Overridable Sub Print()
 MessageBox.Show("Printing BASE CLASS Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)
 End Sub

E d Cl

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

Print()

 27

Creating Derived Class & Overriding the BirthDate Property

 We create the clsEmployees class and as usual we use the Inherit keyword in a class declaration to inherit from the clsPerson
Class.

 We create a New BirthDate Property inside the clsEmployee Class and we use the keyword Overrides in the declaration of the
property to always use this BirthDate Property instead of the Base BirthDate version.

 This new implementation of BirthDate, implements a new policy within the company that every employee must be at least 16
years old. If an employee is under 16, we need to raise a flag or a warning.

 I implemented this warning by Throwing an Exception. This will help us review Throwing Exceptions
 You will also notice that we are FORCED to create a new Private Variable mdBirthDate in order to store the New BirthDate

Data
 This is very important and difficult to understand.
 Why are we force? Because the Base Class m_dBirthDate is private an inaccessible. More important we cannot call the Base

Class Public BirthDate Property to access m_dBirthDate from within our NEW version of BirthDate Property since the compiler
will get confused with which Birthdate are you referring to, the new one or old one, it cannot tell, once overridden the one in the
Base Class is not recognized from within the child. This is important…more on this later….

 Lets look at the derived class clsEmployee:

Example 4 (SubClass):
 Declaring the SubClas:

Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As String
 Private mdbSalary As Double
 'Create a new private variable to store new birthdate information
 Private mdBirthDate As Date

 '***
 'Property Procedures
 Public Property HireDate() As String
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As String)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Integer
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Integer)
 mdbSalary = Value
 End Set
 End Property

 'We Override the Birthdate Property
 Public Overrides Property BirthDate() As Date
 Get
 Return mdBirthDate
 End Get
 Set(ByVal Value As Date)
 'Test to verify that Employee meets age requirement
 If DateDiff(DateInterval.Year, Value, Now()) >= 16 Then
 mdBirthDate = Value
 Else
Throw New System.Exception("Under Age Employee, an Employee must be 16 Years old")
 End If

 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

Print(X)

PrintEmployee()

 28

Overriding the Print() Method

 Now we override the Print() Method using the keyword Overrides.
 This is the new version that will execute instead of the one written in the Base Class.
 Note that the code in this new method is simply printing the Base Class data as the Base Class Counterpart. I am doing this for

teaching purpose only, the point you need to keep in mind is that it is this NEW Print() that will execute Not the Base Class
Print().

 Lets continue our implementation of the class clsEmployee:

Example 4 (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Regular Class Methods

 'NEW Overriden Method
 Public Overrides Sub Print()

 'Display Inherited Base Class Properties, NEW Overriden BirthDate Property
 MessageBox.Show("Printing NEW IMPROVED Employee Data " _
 & Name & ", " & IDNumber & ", " & BirthDate)

 End Sub

 Public Sub PrintEmployee()
 'Call Overriden Print() Method to display Base Class Data
 Print()

 'Display Derived Class Data
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub
End Class

 29

Proving our theory by Calling the Overridden Property & Method

 Now let’s look at the driver program.
 In this example we create three objects, one of the Base Class clsPerson and two of the clsEmployee class.
 The will use the Base Class Object simply to prove that the Print() Method of this object is still valid for Person Objects, but

NOT for the Derived Classes. We will do this by assigning values to this object and calling the Print() method.
 In the first Employee object we will assign values using the standard Properties inherited by the Base Class: Name and

IDNumber, (Note that Birthdate is overridden and no longer inherited) those provided by the derived class: BirthDate
(Overridden), HireDate & Salary.

 We call the first Employee Object PrintEmployee() Method to print both the Base Class data and Derived Class data.
 In the second Employee Object perform the same operations.
 Main() test program:

Example 4 (Main Program):
 Driver Program for testing inheritance:

Option Explicit On
Module modMainModule
 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

 Public Sub Main()

 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#
 End With

 'Call Person Print Method to Execute Base Class Print()
 objPerson.Print()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee1.PrintEmployee()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1989#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

 End Sub

End Module

 30

Explanation & Results of Main Program:

 When we execute the program, the following occurs:

1. We create one Person Object and two Employee Objects:

 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

2. We populate the Base Class Object data and call it’s Print() Method to print Base Class data:

 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#
 End With

 'Call Person Print Method to Execute Base Class Print()
 objPerson.Print()

Results and Explanation:
 Note that the Print() method for the Base is still operational as the resultant message box indicates, but only for Base

Class Objects:

3. We populate the first Employee Object using the Inherited properties from the Base Class, the Overridden Birthdate
Property of the derived class and the remaining properties added by the Employee Class. In addition and we call it’s
PrintEmployee() Method to print the Overridden Base Class Print() method & Derived Class data:

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee1.PrintEmployee()

Results and Explanation:
 Note that the BirthDate Property used here is the Overridden Property not the one from the Base. We will prove this

in the following set of code.
 Also note that it is the NEW Overridden Print() method that is executing not the Base Class Print():

 31

4. We now populate the Second Object using two of the Inherited Properties from the Base Class, the Overridden

BirthDate properties of the Employee Class and the other added Employee Class properties (Salary & HiredDate).
In addition we call it’s PrintEmployee() Method to print Overridden Base Class Print() method and Derived Class
data:

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1989#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

Results and Explanation:
 In this object we populate the populate from the Base Class the Name and IDNumber. For the derived class we

populate the Overridden BirthDate Property, HireDate & Salary.
 Remember that the NEW BirthDate Property has code that will test to make sure that the employee is over 16 years of

age. Yet the value chosen for the BirthDate Property is a year which will indicates that the employee is under 16,
therefore an Exception is thrown by our code.

 Since our code contain no Error Handling Code (Try-Catch-Finally Statement) the program will stop execution:

 If the data chosen would have not made the employee under 16, the program would have proceeded to the next code
which calls the objEmployee.PrintEmployee() method to call the Overriden Print() method and Derived Class data.

 Supposed we would have chosen 1970 as the Birth date year for the Employee Object as follows (NOTE I am changing
the date):

 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1970#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

 Note that it is the NEW Overridden Print() method that is executing not the Base Class Print():

 32

Example 5 – Example 4 with Error Handling (Overriding Property & Methods Cont)
 In our previous Example 4 we clearly showed how Method Overriding works.
 But our example raised and Exception using the Throw Keyword. This means that we need to add error handling code using the

Try-Catch-Finally Statement in order to prevent the program from stopping and informing the user during execution.
 In this example we will do the following:

 Add error handling methods to Example 4 to trap the BirthDate Property Generated Exception
 The Error Handling code will reside in the Main Program.

Creating the Base Class

 Same as Example 4

Creating Derived Class, Overriding the BirthDate Property & Print() Method

 Same as Example 4.

 33

Main Program with Error Handling Code

 Ok the Main program is still the same, but this time we will add a Try-Catch-Finally statement to trap and handle the error.
 Main() test program:

Example 2 (Main Program):
 Driver Program for testing inheritance:

Option Explicit On
Module modMainModule
 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

 Public Sub Main()
 'Begin Error Trapping section
 Try
 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#

 End With

 'Call Person Print Method to Execute Base Class Print()
 objPerson.Print()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee1.PrintEmployee()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1989#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

 'End Error Trapping section & Begin Error Handling Section
 Catch objException As Exception
 MessageBox.Show(objException.Message)
 End Try

 End Sub

 34

Explanation & Results of Main Program:

 When we execute the program, the following occurs:

1. We Create the three Objects As in Example 4

2. We populate the Base Class Object data and call it’s Print() Method to print Base Class data As in Example 4 with
the same results:

Results and Explanation:

 Note that the Print() method for the Base is still operational as the resultant message box indicates, but only for Base
Class Objects:

3. We populate the first Employee Object using the Inherited properties from the Base Class, the Overridden Birthdate
Property of the derived class and the remaining properties added by the Employee Class. In addition and we call it’s
PrintEmployee() Method to print the Overridden Base Class Print() method & Derived Class data. Same results as
Example 4:

Results and Explanation:
 Note that the BirthDate Property used here is the Overridden Property not the one from the Base. We will prove this

in the following set of code.
 Also note that it is the NEW Overridden Print() method that is executing not the Base Class Print():

 35

4. We now populate the Second Object Same as Example 4, but since we have Error handling method we will trap and

handle the error appropriately:

Results and Explanation:
 In this case when we populate the NEW BirthDate Property with an age is under 16; the Exception thrown is trapped by

the Try-Catch-Finally statement Catch Block and handled appropriately by displaying the Exception Object Message
Property.

 'Begin Error Trapping section
 Try
 'Populating Person Object with Data

 'Call Person Print Method to Execute Base Class Print()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)

 'Call Employee Print Method which Executes embedded Overridden Print()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1989#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

 'End Error Trapping section & Begin Error Handling Section
 Catch objException As Exception
 MessageBox.Show(objException.Message)
 End Try

 Also note that the code the follows the error is NOT executed:

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

 This is because immediately after the Exception is thrown, the program execution JUMPS to the Catch Block to handle
the error.

 This is what we want anyway, we don’t want to print this employee, she is under aged!!!

