

CS608 Lecture Notes

Visual Basic.NET Programming

Object-Oriented Programming

Inheritance (Part II)

(Part II of II)

(Lecture Notes 3B)

Prof. Abel Angel Rodriguez

 2

CHAPTER 8 INHERITANCE..3

8.2 Inheritance Concepts (Cont)...3
8.2.4 Inheritance Features (Cont) ..3
8.2.5 MyBase Keyword ...4

Introduction..4
Implementing MyBase Keyword ...5

8.2.6 Shadows Keyword ..12
Introduction..12
Using the Shadows Keyword...12

8.2.7 Constructors in Inheritance...20
Introduction..20
Simple Constructor ..20
Review - Implementing Regular or Simple Constructors ..21
Constructor and Inheritance...25

8.2.8 The Protected Scope ...39
Introduction..39
Protected Variables ..39

8.2.9 MustInherit & MustOverride Keywords...47
MustInherit Keyword...47
MustOverride Keyword (Abstract Method or Pure Virtual Function)...54

 3

Chapter 8 Inheritance

8.2 Inheritance Concepts (Cont)

8.2.4 Inheritance Features (Cont)
 Below is a listing of the inheritance topics already covered and those that we will go over in this document.
 Topics already covered:

 Overloading Methods & Properties
 Overriding Methods & Properties

 Remaining topics:

 MyBase Keyword
 Level of Inheritance
 Constructors
 Protected Scope
 Abstract Base Class

 4

8.2.5 MyBase Keyword

Introduction
 In the previous section we learned Method Overrinding, which allows us to completely replace a property or method of the Base

class
 Method Overriding gives us the ability to completely replace the implementation of a base class method or property with a NEW

or overridden method in the SubClass with the Same Name and signature.
 Method Overriding was implemented using the keywords Overridable and Overrides
 We implemented Example 4 & 5 to show how Overriding works and we added Error Trapping code to handle the Exception

generated by the Overridden BirthDate Property.

Introduction to MyBase Keyword

 The Keyword MyBase explicitly exposes the Base Class methods to the Derived Classes.
 Don’t get confused, a derived Class automatically inherits the Public Base class feature but we could if we want use the keyword

MyBase as well.
 For example:

 In our previous examples we created a Base Class called clsPerson which contained the properties Name, BirthDate and
IDNumber and a method named Print()

 We derived from clsPerson a derived class named clsEmployee which inherited Name, BirthDate and IDNumber and added
HireDate & Salary and a method named PrintEmployee() which called the Base class Print() as follows:

 Public Sub PrintEmployee()
 'Call Base Class Method
 Print()

 'Display Derived Class Data
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

 Point here is that we automatically inherit Print() and can simply call it.
 Nevertheless, if we wanted, we could have also used the Keyword MyBase to explicitly reference the Method Print() as

follows:

 Public Sub PrintEmployee()
 'Call Base Class Method Using MyBase Keyword
 MyBase.Print()

 'Display Derived Class Data
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

 OK we are really not gaining anything here, but just simply showing that using the Keyword MyBase we can explicitly

reference Base Class Properties & Methods to achieve the same thing.

 5

Application of the MyBase Keyword

 Now let’s see were this keyword is important.
 We implemented Example 4 & 5 to show how Overriding works and we added Error Trapping code to handle the Exception

generated by the Overridden BirthDate Property.
 There was one issue with Example 4 & 5 and Overriding the BirthDate Property.
 If you recall, we were FORCED to create a new Private Variable mdBirthDate in the Derived Class clsEmployee in order to store

the New BirthDate Data
 We were forced to do this because the Base Class m_dBirthDate is private an inaccessible. More important we cannot call the

Base Class Public BirthDate Property to access it’s m_dBirthDate from within our NEW version of BirthDate Property since the
compiler will get confused with which Birthdate Property you are referring to, the NEW Overridden BirthDate Property in the
Derived Class or the inherited BirthDate Property in the Base Class. The compiler cannot tell, therefore you will have a run time
error.

 Nevertheless we added this new BirthDate variable in the derived class and that was that.
 Well this is OK, but we were forced to create a new variable thus add more memory. Would it have been nice just to be able to

call the Base Class BirthDate Property directly without confusing the compiler with the Overriden Birthdate Property of the
subclass?

 This is where the Keyword MyBase comes into play.
 Instead of creating this additional mdBirthDate in the derived class clsEmployee to store the Birth Date data, we can simply

explicitly call the Base Class BirthDate Property using the Keyword MyBase as follows:

MyBase.BirthDate

 Here the compiler WON’T get confused since we are explicitly telling it that the BirthDate Property we are referring to is the one
in the Base Class and NOT the new Overridden one in the Derived Class.

 Now we can implement the Overridden BirthDate Property in the clsEmployee Class without the need to create the private
variable mdBirthDate.

Implementing MyBase Keyword
 To use the MyBase feature simply use when you desire to call the Base Class Methods & Properties directly.
 Remember that you automatic inherit the Public Methods & Properties, so the MyBase keyword is usually NOT necessary, but

there will be times when you may wish to call Base Class Methods & Properties but the Overriden ones have the same name and
the compiler will yield errors, in these situation use the keyword MyBase to explicitly tell the compiler that is the base class
method version you want executed.

 6

Example 6 – Example 5 using MyBase Keyword in Overridden Property & Methods
 Let’s redo Example 5, this time removing the mdBirthDate private data from the derived class and using the MyBase Keyword.
 In this example we will prove the following:

 As in Example 4 & 5, Overriding Properties & Methods, and handling exceptions thrown by program code.
 MyBase Keyword can be used to explicitly call base class methods & properties.

Creating the Base Class

 Same as before, use the keyword Overridable to allow the Birthdate & Print() method to be overridden:

Example 6 (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal Value As String)
 m_strName = Value
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal Value As Integer)
 m_intIDNumber = Value
 End Set
 End Property
 'We allow Property to be overridden
 Public Overridable Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal Value As Date)
 m_dBirthDate = Value
 End Set
 End Property

 '***
 'Regular Class Methods

 'We allow Method to be overridden
 Public Overridable Sub Print()
 MessageBox.Show("Printing BASE CLASS Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)
 End Sub

E d Cl

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

Print()

 7

Creating Derived Class & Overriding the BirthDate Property

 We create the clsEmployees class and as usual we use the Inherit keyword in a class declaration to inherit from the clsPerson
Class.

 We create a New BirthDate Property inside the clsEmployee Class and we use the keyword Overrides in the declaration of the
property to always use this BirthDate Property instead of the Base BirthDate version.

 This new implementation of BirthDate, implements the policy that every employee must be at least 16 years old. If an employee
is under 16, we need to throw an execption.

 This time we are NOT creating a private variable to store the Birth Date data since we are using the MyBase Keyword to
explicitly call the Base Class BirthDate Property to give us access to the Base Class Private m_dBirthDate data.

 Lets look at the derived class clsEmployee:

Example 6 (SubClass):
 Declaring the SubClas:

Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As String
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As String
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As String)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Integer
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Integer)
 mdbSalary = Value
 End Set
 End Property

 'We Override the Birthdate Property
 Public Overrides Property BirthDate() As Date
 Get
 'Use Base Class Property
 Return MyBase.BirthDate
 End Get
 Set(ByVal Value As Date)
 'Test to verify that Employee meets age requirement
 If DateDiff(DateInterval.Year, Value, Now()) >= 16 Then

 'Use Base Class Property
 MyBase.BirthDate = Value
 Else
 Throw New System.Exception("Under Age Employee, an Employee must be 16 Years old")
 End If

 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

Print(X)

PrintEmployee()

 8

Overriding the Print() Method

 Now we override the Print() Method using the keyword Overrides as we did in Examples 4 & 5.
 In this case, implemented the overridden Print() method differently. Here I take advantage that the Base Class already has a

Print() method, so why not utilize it.
 Therefore I use the keyword MyBase to explicitly call the Base Class Print(), then I add any new features I want an so on.
 In the PrintEmployee() method we also make a call to a Print() method, but this time the compiler will automatically use the one

from this class or the overridden one, so here we DON’T need to worry about the compiler getting confused.
 Lets continue our implementation of the class clsEmployee:

Example 4 (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Regular Class Methods

 'NEW Overridden Method
 Public Overrides Sub Print()
 'Using MyBase to directly call the Base Class Print() Method
 MyBase.Print()

 'Adding NEW features inside this NEW overridden method
 MessageBox.Show("Implementing ADDITIONAL NEW IMPROVED Features for Birthdate"
 & BirthDate)
 End Sub

 Public Sub PrintEmployee()
 'Call Overriden Print() Method to display Base Class Data
 Print()

 'Display Derived Class Data
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub
End Class

 9

Main Program

 Ok the Main program is still the same, we will continue to trap errors using the Try-Catch-Finally statement to satisfy the under
16 years old trap.

 For easy of explanation, I will NOT use a birth date that will force the error in this example.
 Main() test program:

Example 2 (Main Program):
 Driver Program for testing inheritance:

Option Explicit On
Module modMainModule
 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

 Public Sub Main()
 'Begin Error Trapping section
 Try
 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#

 End With

 'Call Person Print Method to Execute Base Class Print()
 objPerson.Print()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee1.PrintEmployee()

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1970#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

 'End Error Trapping section & Begin Error Handling Section
 Catch objException As Exception
 MessageBox.Show(objException.Message)
 End Try

 End Sub

 10

Explanation & Results of Main Program:

 When we execute the program, the following occurs:

1. We create one Person Object and two Employee Objects:

 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

2. We populate the Base Class Object data and call it’s Print() Method to print Base Class data:

 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#
 End With

 'Call Person Print Method to Execute Base Class Print()
 objPerson.Print()

Results and Explanation:
 Note that the Print() method for the Base is still operational as the resultant message box indicates, but only for Base

Class Objects:

3. We populate the first Employee Object using the Inherited properties from the Base Class, the Overridden Birthdate
Property of the derived class and the remaining properties added by the Employee Class. In addition and we call it’s
PrintEmployee() Method to print the Overridden Base Class Print() method & Derived Class data:

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Salary = 50000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee1.PrintEmployee()

Results and Explanation:
 The BirthDate Property used here is the Overridden Property not the one from the Base as we have shown in

previous examples.
 The PrintEmployee() method first calls the Overridden Print() which calls the Base Class Print() method using the

MyBase keyword as shown below

 11

 The PrintEmployees() method then displays the derived class data:

4. We now populate the Second Object using two of the Inherited Properties from the Base Class, the Overridden
BirthDate properties of the Employee Class and the other added Employee Class properties (Salary & HiredDate).
In addition we call it’s PrintEmployee() Method to print Overridden Base Class Print() method and Derived Class
data:

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1970#
 .HireDate = #5/23/2004#
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 objEmployee2.PrintEmployee()

Results and Explanation:
 In this object we populated the Base Class Name and IDNumber. For the derived class we populate the Overridden

BirthDate Property, HireDate & Salary.
 The NEW BirthDate Property has code that will test to make sure that the employee is over 16 years of age. Here the

value chosen for the BirthDate Property will NOT trigger the exception; we tested that feature in Example 5.

 Again here the PrintEmployee() method first calls the Overridden Print() which calls the Base Class Print() method
using the MyBase keyword followed by displaying the derived class data:

 12

8.2.6 Shadows Keyword

Introduction
 In the previous section we learned Method Overrinding, which allows us to completely replace a property or method of the Base

class
 With Method Overriding we were able to completely replace the implementation of a method or property in the Base Class NEW

or overridden method in the SubClass with the Same Name and signature.
 To implement Method Overriding the Base Class must have the keywords Overridable and in the Sub Class version the key word

Overrides
 Permission to override the Base Class method is given by the Base Class designer via the keyword Overridable otherwise you

cannot override the method.
 VB.NET provides another way of overriding a Base Class Method or Property, without the Base Class Method having the

keyword Overridable. This feature is called Shadowing, using the keyword Shadows
 Shadowing means you don’t need permission from the Base Class to override.
 This feature gives the Sub Class developer the freedom to change any method and alter the behavior of the Sub Class; therefore it

no longer behaves like the Base Class.
 This is a radical deviation of the principles of inheritance and should be used with caution. Use Shadowing only when necessary.

Using the Shadows Keyword
 To implement shadow, simply create the new method or property in the Sub Class with the same name as the Base Class using

the keyword Shadows.

 13

Example 7 – Shadows Keyword
 In this example we will prove the following:

 Shadows Keyword can be used to replace the implementation of a property or method in the Base class with a new one
in the Sub Class, without the consent of the Base Class.

 To implement with leave the Base Class as is from the previous examples. On the other hand, we Shadow or replace the
implementation of the Base Class Phone Property in the Employee Sub Class.

 To prove that this works, we replace the implementation of the Employee Overriden Print method from the previous
example by displaying the Base Class Public Properties. This will show that the public Phone property displayed is not
the one from the Base Class but the new one that was Shadowed.

Creating the Base Class

 Same as before:

Example 7 (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date
 Private m_strAddress As String
 Private m_strPhone As String
 Private m_intTotalItemsPurchased As Integer
 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal Value As String)
 m_strName = Value
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal Value As Integer)
 m_intIDNumber = Value
 End Set
 End Property
 'We allow Property to be overridden
 Public Overridable Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal Value As Date)
 m_dBirthDate = Value
 End Set
 End Property

 Public Property Address() As String
 Get
 Return m_strAddress
 End Get
 Set(ByVal Value As String)
 m_strAddress = Value
 End Set
 End Property

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date
Address(): String
Phone(): String
TotalItemsPurchase(): String

Print()

 14

Creating the Base Class

 Same as before:

Example 7 (Base-Class Cont):

 Public Property Phone() As String
 Get
 Return m_strPhone
 End Get
 Set(ByVal Value As String)
 m_strPhone = Value
 End Set
 End Property

 Public Property TotalItemsPurchased() As Integer
 Get
 Return m_intTotalItemsPurchased
 End Get
 Set(ByVal Value As Integer)
 m_intTotalItemsPurchased = Value
 End Set
 End Property

 '***
 'Regular Class Methods

 'We allow Method to be overridden
 Public Overridable Sub Print()
 MessageBox.Show("Printing BASE CLASS Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)
 End Sub

End Class

 15

Creating Derived Class & Shadowing the Phone Property

 We create the clsEmployees class and as usual we use the Inherit keyword in a class declaration to inherit from the clsPerson
Class.

 We create a New Phone Property inside the clsEmployee Class and we use the keyword Shadows in the declaration of the
property to always use this Phone Property instead of the Base Phone version.

 This new implementation of Phone, implements simply appends the text “(Cell)” to the Get portion of the property. This really
has no meaning and is done simply for teaching purpose to differentiate it from the Base Class Phone..

 We use the keyword MyBase to explicitly call the Base Class BirthDate Property to give us access to the Base Class Private
m_dBirthDate data.

 Lets look at the derived class clsEmployee:

Example 7 (SubClass):
 Declaring the SubClas:

Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As String
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As String
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As String)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Integer
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Integer)
 mdbSalary = Value
 End Set
 End Property

 'Shadowing the Phone Property. This new implementation
 'will override the Base Class.
 'To distinguish from the Base Class Phone
 'We will append the word (Cell)
 Public Shadows Property Phone() As String
 Get
 Return MyBase.Phone & "(Cell)"
 End Get
 Set(ByVal Value As String)
 MyBase.Phone = Value
 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Phone(): String

Print(X)

PrintEmployee()

 16

New Implementation of the Overridden Print() Method

 The Print() Method is overridden using the conventional keyword Overridable & Overrides combination.
 But the focus here is not the override, but a different implementation of Print() which displays the Properties of the classes.
 This is done to prove which Phone property is actually executing. By calling the Phone Property, the program needs to decide

which Phone to print, the Base Class or the Sub Class? But since we are using Shadows, the one printed is the one in the Sub
Class

Example 7 (SubClass-(Cont)):
 Declaring the SubClass Methods:

 'We Override the Birthdate Property
 Public Overrides Property BirthDate() As Date
 Get
 'Use Base Class Property
 Return MyBase.BirthDate
 End Get
 Set(ByVal Value As Date)
 'Test to verify that Employee meets age requirement
 If DateDiff(DateInterval.Year, Value, Now()) >= 16 Then

 'Use Base Class Property
 MyBase.BirthDate = Value
 Else
 Throw New System.Exception("Under Age Employee, an Employee must be 16 Years old")
 End If

 End Set
 End Property

 '***
 'Regular Class Methods

 'Different Implementation of the Overriden Print Method.
 'Attempting to Display the Base Class Properties. All can be called
 'But the Phone. Phone property displayed is not the Base but the
 'Shadowed version. Nevertheless, the same applies to the Birthdate
 'Property which is overriden, but using the conventional overridable
 'keyword
 Public Overrides Sub Print()

 MessageBox.Show("Printing Employee Data " _
 & Name & ", " & IDNumber & ", " & _
 BirthDate & ", " & Phone)
 End Sub

 Public Sub PrintEmployee()
 'Call Overriden Print() Method to display Base Class Data
 Print()

 'Display Derived Class Data
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

 17

Main Program

 Ok the Main program is still the same, we will continue to trap errors using the Try-Catch-Finally statement to satisfy the under
16 years old trap.

 But we will show that is the new implementation of Phone that is being executed and displayed since we will see the word (Cell)
appended to the phone number when print is called since we shadowed the method in the Sub Class.

 Main() test program:

Example 2 (Main Program):
 Driver Program for testing inheritance:

Option Explicit On
Module modMainModule
 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

 Public Sub Main()
 'Begin Error Trapping section
 Try
 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#
 .Phone = "718 260 1212"

 End With

 'Call Person Print Method to Execute Base Class Print()
 'Displaying the Base Class Phone as expected
 objPerson.Print()

 'Populating Employee Object with Data
 '(Note that Phone property is the one that was shadowed)
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Phone = "718 223 5454"
 .Salary = 50000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 'We will see the Shadowed Phone displayed with the (Cell) string
 'Appended, proving that the Sub Class method is executing.
 objEmployee1.PrintEmployee()

 'Populating Employee Object with Data
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1990#
 .HireDate = #5/23/2004#
 .Phone = "718 555 2121"
 .Salary = 30000
 End With

 'Call Employee Print Method which Executes embedded Overridden Print()
 'The Shadowed Phone is displayed with the (Cell) string here as well.
 'Note that Because of the Birthdate rule this method may not execute.
 objEmployee2.PrintEmployee()

 'End Error Trapping section & Begin Error Handling Section
 Catch objException As Exception

MessageBox Show(objException Message)

 18

Explanation & Results of Main Program:

 When we execute the program, the following occurs:

1. We create one Person Object and two Employee Objects:

 'Declare & Create Public Person & Employee Objects
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee()
 Public objPerson As clsPerson = New clsPerson()

2. We populate the Base Class Object data and call it’s Print() Method to print Base Class data:

 'Populating Person Object with Data
 With objPerson
 .Name = "Frank Lee"
 .IDNumber = 123
 .BirthDate = #4/23/1968#
 .Phone = "718 260 1212"
 End With

 'Call Person Print Method to Execute Base Class Print()
 objPerson.Print()

Results and Explanation:
 Note that the Print() method prints the Base class properties including the Base Class Phone:

3. We populate the first Employee Object using the Inherited properties from the Base Class, the Overridden Birthdate
Property of the derived class and the remaining properties added by the Employee Class. In addition and we call it’s
PrintEmployee() Method to print the Overridden Base Class Print() method & Derived Class data:

 'Populating Employee Object with Data. The phone property is set
 With objEmployee1
 .Name = "Joe Smith"
 .IDNumber = 111
 .BirthDate = #1/2/1965#
 .HireDate = #5/23/2004#
 .Phone = "718 223 5454"
 .Salary = 50000
 End With
 'Call Employee Print Method which Executes embedded Overridden Print()
 'The (Cell) string is appended to the phone, proving that the Shadowed
 'Phone property of the Sub Class is executed
 objEmployee1.PrintEmployee()

Results and Explanation:
 The Shadowed Phone property is displayed proving the Shadows process works.

 19

 The remaining print code is executed:

4. We now populate the Second Object with phone information as well as :

 'Populating Employee Object with Data
 '(Note that BirthDate Property used is actually the overridden Version)
 '(Also note that BirthDate = Date < 16, thus Error will be raised)
 With objEmployee2
 .Name = "Mary Johnson"
 .IDNumber = 444
 .BirthDate = #4/12/1990#
 .HireDate = #5/23/2004#
 .Phone = "718 555 2121"
 .Salary = 30000
 End With
 'Call Employee Print Method which Executes The Shadowed Phone property
 objEmployee2.PrintEmployee()

Results and Explanation:
 The value assigned to the BirthDate Property is chosen to raises an exception because of the under 16 years of age.

Therefore, according to the code in Main() the exception is raised and the program termintes.

 20

8.2.7 Constructors in Inheritance
Introduction

 So far we have with the features of inheritance we have covered, we can pretty much create applications that will utilize the
benefits of inheritance. Nevertheless, we have one MAJOR problems, how do we intitialize the Base Class Data when we create
a Derived Class Object?

 Here we need to review Contructors and see how they play a role in inheritance.
 As you recall, the constructor method is a special method that automatically invoked as an Object is created.
 What this means is that every time an object is created, this method is automatically executed, thus the name Constructor.
 This method will contain Initialization code or code that you want executed when the object is created.
 The Constructor Method has the following characteristics:

 It is named Public Sub New()
 Automatically executes before any other methods are invoked in the class
 We can overload the constructor method as we wish
 Default Constructor is created by default but we can explicitly create it with our own initialization coed = New()
 Parameterized Constructor take arguments and assign the private data with the parameters passed = New(ByVal par1 As

Type, ByVal par2 As Type…..)

Simple Constructor
 Simple Constructors are those that we have been using so far, that is using default and Parameterized constructors inside the

class.
 We have seen examples of these in HW & Exams.

 21

Review - Implementing Regular or Simple Constructors
 The following example is a brief review of using simple Constructors.
 We will create the Base Class of previous examples but this time we will add a default & parameterized Constructor.
 We then create two object of the class, one which calls the default constructor and the other which takes arguments and invokes

the parameterized constructor.

Example 8a – Simple Constructor Methods
Creating the Base Class

 Re-using the clsPerson class from the previous example:

Example 8a (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal strTheName As String)
 m_strName = strTheName
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal intTheID As Integer)
 m_intIDNumber = intTheID
 End Set
 End Property

 Public Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal dTheBDate As Date)
 m_dBirthDate = dTheBDate
 End Set
 End Property

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

New()
New(String, Integer , Date)
Print()

 22

Example 8a (Base-Class Cont):
 Declaring the remaining base members:

 '***
 'Class Constructor Methods
 Public Sub New()
 Name = ""
 IDNumber = 0
 BirthDate = #1/1/1900#

 'Demostrate that constructor is actually executing
 MessageBox.Show("Base Class Default Constructor executed....")
 End Sub

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date)
 Name = strN
 IDNumber = intIDNum
 BirthDate = bBDate

 'Demostrate that constructor is actually executing
 MessageBox.Show("Base Class Parametize Constructor executed....")
 End Sub

 '***
 'Regular Class Methods
 Public Sub Print()
 MessageBox.Show("Printing Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)

 End Sub

End Class

 23

Using Simple Constructor Methods

 Now let’s look at the driver program.
 In this example we create two objects of the clsPerson class, one using the default constructor and the other the parameterized

constructor.
 We then demonstrate that that objects are initialized to the values assigned in the default constructor. On the other hand the

object created with arguments is initialized via the parameterized constructor.
 We the call the print method of each object to demonstrate that the constructor method did it’s job
 Main() test program:

Example 8a (Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'Declare & Create Public Person Objects
 'Create Person objects that invokes default & Parametized Constructors
 Public objPerson1 As clsPerson = New clsPerson()
 Public objPerson2 As clsPerson = New clsPerson("Joe Smith", 111, #1/2/1965#)

 Public Sub Main()
 'DEMONSTRATING SIMPLE CONSTRUCTORS IN REGULAR CLASS
 'Call Person Object to display data initialized by default constructor
 objPerson1.Print()

 'Call Person Object to display data initialized by Paremetized constructor
 objPerson2.Print()

 End Sub

End Module

 24

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create two Person Objects, one using the defult constructor and the other the parameterized:

 Public objPerson1 As clsPerson = New clsPerson()
 Public objPerson2 As clsPerson = New clsPerson("Joe Smith", 111, #1/2/1965#)

 When we create each object, their constructor is executed, for example for the first object, the default constructor is
executed. Since we placed a message box as a test to show us that the constructor executed, the message box will
display:

 For the second object the parameterized constructor is automatically executed:

2. We Person Class Print() Method to print each object’s data to verify initialization values:

 Calling the Print() method of the first object will show that the private data was initialized to the default values:

 Calling the Print() method of the second object will show that the private data was initialized to the parameterized
values:

Summary of Results:

o Nothing unusual happened here, a class constructors were invoked when the object is created.
o So, constructors are operating as normal.

 25

Constructor and Inheritance
 Now let’s see what happens to constructors when we have a Base Class and Derived Classes.

Example 8b – Constructor Methods in Base and Derived Classes
Creating the Base Class

 Re-using the clsPerson class from the previous example:

Example 8b (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal strTheName As String)
 m_strName = strTheName
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal intTheID As Integer)
 m_intIDNumber = intTheID
 End Set
 End Property

 Public Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal dTheBDate As Date)
 m_dBirthDate = dTheBDate
 End Set
 End Property

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

New()
New(String, Integer , Date)
Print()

 26

Example 8b (Base-Class):
 Declaring the remaining base members:

 '***
 'Class Constructor Methods
 Public Sub New()
 Name = ""
 IDNumber = 0
 BirthDate = #1/1/1900#

 'Demostrate that constructor is actually executing
 MessageBox.Show("Base Class Default Constructor executed....")
 End Sub

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date)
 Name = strN
 IDNumber = intIDNum
 BirthDate = bBDate

 'Demostrate that constructor is actually executing
 MessageBox.Show("Base Class Parametize Constructor executed....")
 End Sub

 '***
 'Regular Class Methods
 Public Sub Print()
 MessageBox.Show("Printing Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)

 End Sub

End Class

 27

Derived or Sub Class

 The derived class has it’ own constructors are well.
 We will use straight forward or simple constructor to demonstrate issues with the constructor implementation.
 Lets look at the derived class clsEmployee:

Example 8b (SubClass):
 Declaring the SubClas:

Option Explicit On
Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As Date
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As Date
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As Date)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Double
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Double)
 mdbSalary = Value
 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

New()
New(Date, Double)

Print(X)
PrintEmployee()

 28

Example 8b (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Constructor Class Methods

 Public Sub New()
 HireDate = #1/1/1900#
 Salary = 0.0

 'Demostrate that constructor is actually executing
 MessageBox.Show("Sub Class Default Constructor executed....")
 End Sub

 Public Sub New(ByVal dHDate As String, ByVal dbSal As Double)
 HireDate = dHDate
 Salary = dbSal

 'Demostrate that constructor is actually executing
 MessageBox.Show("Sub Class Parametize Constructor executed....")
 End Sub

'***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

End Class

 29

Using Constructor in Inheritance (Main)

 Now let’s look at the driver program.
 In this example we create two objects of the clsEmployee class, one using the default constructor and the other the parameterized

constructor.
 We then demonstrate that in the clsEmployee class objects, the default constructors of the derived class clsEmployee are invoked,

but since clsEmployee is a child of clsPerson, the default constructor to person is also automatically invoked.
 On the other hand the object created with arguments initialize the parameterized constructor of the clsEmployee class, it DOES

NOT in turn automatically invoke the parameterized constructor of the clsPerson Class, but instead automatically calls the default
constructor of the Base class only!

 These two situations are important. Base class default constructors were automatically called by the Sub Class default and

parameterized constructors. But the Base class parameterized constructor was NOT called automatically!!!
 This is a problem!!!

 We the call the print method of each object to demonstrate that the constructor method did its job.
 Main() test program:

Example 8b (Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'Create Employee objects that invokes default & Parametized Constructors
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee(#3/9/2004#, 30000)

 Public Sub Main()

 'DEMONSTRATING CONSTRUCTOR OPERATION IN SUB CLASSES
 'Call Employee Object to display data initialized by default constructor
 objEmployee1.PrintEmployee()

 'Call Employee Object to display data initialized by Paremetized constructor
 objEmployee2.PrintEmployee()

 End Sub
 End Sub

End Module

 30

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create two Employee Objects, one using the defult constructor and the other the parameterized:

 'Create Employee objects that invokes default & Parametized Constructors
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee(#3/9/2004#, 30000)

 When we create the first object, there are no arguments so the default constructor is executed. But since the
clsEmployee class is derived from clsPerson, the clsPerson default constructor is invoked automatically by the
clsEmployee class default constructor. Since we placed a message box as a test to show us that the Base Class
default constructor is executed, the message box will display:

 Then of course the clsEmployee class default constructor continues to execute its code as shown by the message box:

 When we create the second object, the parameterized constructor of the clsEmployee Class is executed. Since the
clsEmployee class is derived from clsPerson, you would expect that the clsPerson parameterized constructor will be
invoked automatically by the clsEmployee class parameterized constructor, but it DOES NOT! Instead the
DEFAULT constructor of the Base Class is invoked again! Note the messaged box showing that the Base Class
default constructor is executed, the message box will display:

 Then of course the clsEmployee class parameterized constructor continues to execute its code as shown by the
message box:

 NOTE here how the Base Class default constructor was automatically executed by the derived class clsEmployee
default and parameterized constructor.

 The Base Class parameterized constructor was never called automatically!!!

 31

2. We call the Employee Class Print() Method to print each object’s data to verify initialization values:

 'Call Employee Object to display data initialized by default constructor
 objEmployee1.PrintEmployee()

 'Call Employee Object to display data initialized by Paremetized constructor
 objEmployee2.PrintEmployee()

 Calling the objEmployee1.PrintEmployee()method of the first object will show that the Base class Print()
is executed as expected and initialized to the default values:

 Now the objEmployee1.PrintEmployee()method continues to execute it’s code and prints the employee
information as expected:

 Calling the objEmployee2.PrintEmployee()method of the second object will show that the Base Class
Print() is executed:

 Calling the objEmployee2.PrintEmployee()method of the second object will show the Derived Class data
printed:

Summary of Results:

 Some interesting things happened in this example:

1) Creating default objects of the derived class the default Constructor automatically called the Base Class default
constructor to unitize the Base Class data and then continue it’s own execution to initialize it’s default data.

2) On the other hand, the parameterized constructor also called the Base Class default constructor INSTEAD of
calling the Parameterized one as we would expect. This means that the Base Class Parameterized constructor is
never called automatically.

3) To summarize, for the parameterized Constructors, VB.NET cannot automatically make the call to the
Parameterized constructor of the Base Class on our behalf. This means that the Base Class data cannot be
initialized via the Parameterized constructor. THIS IS A BIG PROBLEM!!

 32

Additional Discussion of Constructors Example 7b.

 To understand what is going on here, let’s take a look at this issue in more detail.
 I am now going to re-do the default & Parameterized constructor of the derived class clsEmployee and explicitly show what

VB.NET is automatically doing for us by writing the code ourselves.
 What VB.NET is doing for us is that it inserts the MyBase keyword in the background as follows:

 The final point here is whether we explicitly call the Base class default constructor by using MyBase.New() keyword, or let
VB.NET automatically do it for us, we are still NOT able to execute the parameterize constructor:

 MyBase.New()

Example 8b (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Constructor Class Methods

 Public Sub New()

 MyBase.New()

 HireDate = #1/1/1900#

 Salary = 0.0

 'Demostrate that constructor is actually executing
 MessageBox.Show("Sub Class Default Constructor executed....")
 End Sub

 Public Sub New(ByVal dHDate As String, ByVal dbSal As Double)

 MyBase.New()

 HireDate = dHDate

 Salary = dbSal

 'Demostrate that constructor is actually executing
 MessageBox.Show("Sub Class Parametize Constructor executed....")
 End Sub

'***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

End Sub

 33

Solution to the Problem with Parameterized Constructor.

 The solution to the problem is to call the explicitly call the Base Class Parameterized constructor from the Sub Class
Parameterized constructor.

 Lets look at the example again.

Example 8c – Handling Parameterized Constructor Methods in Base and Derived Classes
Creating the Base Class

 Re-using the clsPerson class from the previous example:

Example 8c (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures

 ‘SAME AS BEFORE……

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

New()
New(String, Integer , Date)
Print()

Example 8c (Base-Class):
 Declaring the remaining base members:

 '***
 'Class Constructor Methods
 Public Sub New()
 Name = ""
 IDNumber = 0
 BirthDate = #1/1/1900#

 'Demostrate that constructor is actually executing
 MessageBox.Show("Base Class Default Constructor executed....")
 End Sub

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date)
 Name = strN
 IDNumber = intIDNum
 BirthDate = bBDate

 'Demostrate that constructor is actually executing
 MessageBox.Show("Base Class Parametize Constructor executed....")
 End Sub

 '***
 'Regular Class Methods
 Public Sub Print()
 MessageBox.Show("Printing Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)

 End Sub

End Class

 34

Derived or Sub Class Handling of Parameterized Constructor

 Now we see how the derived class must accommodate for the values to initiate the Base Class Parameterized constructor.
 Lets look at the derived class clsEmployee:

Example 8c (SubClass):
 Declaring the SubClas:

Option Explicit On
Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As Date
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As Date
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As Date)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Double
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Double)
 mdbSalary = Value
 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

New()
New(Date, Double)

Print(X)
PrintEmployee()

 35

Explanation:

 Note that the Parameterized constructor must contain in the heading the parameters to initialize the Base Class constructor as well
as it’s own data.

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date, ByVal dHDate As String, ByVal dbSal As Double)

 In addition, we explicitly must explicitly call the Base Class Parameterized constructor with the arguments being passed to the
Sub Class Parameterized constructor.

 MyBase.New(strN, intIDNum, bBDate)

Example 8c (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Constructor Class Methods

 Public Sub New()

 MyBase.New()

 HireDate = #1/1/1900#

 Salary = 0.0

 'Demostrate that constructor is actually executing
 MessageBox.Show("Sub Class Default Constructor executed....")
 End Sub

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date, ByVal dHDate As String, ByVal dbSal As Double)

 MyBase.New(strN, intIDNum, bBDate)

 HireDate = dHDate
 Salary = dbSal

 MessageBox.Show("Sub Class Parametize Constructor executed....")
 End Sub

'***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

 36

Using Constructor in Inheritance (Main)

 Now let’s look at the driver program.
 Note that now the second object has to include values for the Base Class Parameterized constructor as well.
 Main() test program:

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create two Employee objects Objects, one using the defult constructor and the other the parameterized
constructor. But this time we initialize the Parameterized Object with data for the Base Class:

 'Create Employee objects that invokes default & Parametized Constructors
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 When we create the first object, there are no arguments so the default constructor is executed and the clsPerson
default constructor is invoked from the clsEmployee class default constructor. The message box will display:

 Then of course the clsEmployee class default constructor continues to execute its code as shown by the message box:

Example 8c (Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'Create Employee objects that invokes default & Parametized Constructors
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

Public Sub Main()

 'DEMONSTRATING CONSTRUCTOR OPERATION IN SUB CLASSES
 'Call Employee Object to display data initialized by default constructor
 objEmployee1.PrintEmployee()

 'Call Employee Object to display data initialized by Paremetized constructor
 objEmployee2.PrintEmployee()

 End Sub
 End Sub

End Module

 37

 When we create the second object, the parameterized constructor of the clsEmployee Class is executed. Since

explicitly call the clsPerson, parameterized constructor in the Base Class, the message box will display:

 Then of course the clsEmployee class parameterized constructor continues to execute its code as shown by the
message box:

 NOTE here how the Base Class Parameterized constructor was executed by the derived class clsEmployee
parameterized constructor as it should be.

2. We call the Employee Class Print() Method to print each object’s data to verify initialization values:

 'Call Employee Object to display data initialized by default constructor
 objEmployee1.PrintEmployee()

 'Call Employee Object to display data initialized by Paremetized constructor
 objEmployee2.PrintEmployee()

 Calling the objEmployee1.PrintEmployee()method of the first object will show that the Base class Print()
is executed as expected and initialized to the default values:

 Now the objEmployee1.PrintEmployee()method continues to execute it’s code and prints the employee
information as expected:

 38

 Calling the objEmployee2.PrintEmployee()method of the second object will show that the Base Class

Print() is executed. Note how this time the values stored in the base class are displayed, showing that the
parameterized constructor did its job:

 Calling the objEmployee2.PrintEmployee()method of the second object will show the Derived Class data
printed:

Summary of Results:

 By passing the Base class parameters and explicitly calling the Base Class Parameterized constructor as follows, we
were able to initialize both the Base and Derived Class appropriately:

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date, ByVal dHDate As String, ByVal dbSal As Double)

 MyBase.New(strN, intIDNum, bBDate)

 HireDate = dHDate
 Salary = dbSal

 MessageBox.Show("Sub Class Parametize Constructor executed....")
 End Sub

 39

8.2.8 The Protected Scope
Introduction

 We saw how Sub or Derived Class automatically inherit all the Public Methods and Properties of the Base Class.
 This is also true for Friend Methods and Properties which are seen to everyone in the Project.
 But if you noticed, Private Methods, Data and Properties are NOT inherited or seen by the Sub Classes.
 Private data is only accessible to members of the class NOT it’s children or anyone else.
 That is great that Sub Classes can automatically inherit the Public Methods and Properties of the Base Class, but what are we

gaining, besides encapsulation and convenience, everyone else can also see or get the data?
 There are times when we would like the Sub Classes to have direct access to certain data and properties of the Base Class, but not

allow anyone else. That is private for others, but Public for the Sub Classes.
 That is where the Protected keyword comes into play.
 The table below is a summary of the basic access specification for classes in general:

 The Protected scope can be applied to Data variables, Sub , Functions and Properties.

Protected Variables
 We can use Protected when declaring variables that we want to make accessible to the Sub Classes, but private to everyone else.
 There are times when this is useful, but this is NOT recommended. Exposing variables to subclasses is typically not ideal.
 It is best to expose Properties using the Protected instead of the variables, this way we can enforce business rules on the

Properties at the Base Class Level instead taking the chance that the author of the Sub Class will do it for you.
 In the next section we show example of the recommended way of using protected, that is in the Properties and methods of the

Base Class only, NOT the data variables.

ACCESS
SPECIFIER

ACCESSIBLE FROM
ITSELF

ACCESSIBLE FROM
DERIVED CLASS

ACCESSIBLE FROM
OBJECTS OUTSIDE CLASS

Public Yes Yes Yes
Protected Yes Yes No
Private Yes No No

 40

Example 9 – Protected Properties in Base Class
Creating the Base Class

 We now create the base class. We will Create a Protected SocialSecurityNumber Property that sets and gets the IDNumber
variable.

 This Protected Property will be available to the Sub Classes only. No one else can call this property:

Example 9 (Base-Class):
 Declaring the base class:

Option Explicit On
Public Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal strTheName As String)
 m_strName = strTheName
 End Set
 End Property

 Protected Property SocialSecurityNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal intSSNum As Integer)
 m_intIDNumber = intSSNum
 End Set
 End Property

 Public Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal dTheBDate As Date)
 m_dBirthDate = dTheBDate
 End Set
 End Property

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

New()
New(String, Integer , Date)
Print()

 41

Example 9 (Base-Class):
 Declaring the remaining base members:

 '***
 'Class Constructor Methods
 Public Sub New()
 'Note that private data members are being initialized
 Name = ""
 SocialSecurityNumber = 0
 BirthDate = #1/1/1900#
 End Sub

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date)
 Name = strN
 SocialSecurityNumber = intIDNum
 BirthDate = bBDate
 End Sub

 '***
 'Regular Class Methods
 Public Sub Print()
 MessageBox.Show("Printing Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)

 End Sub

End Class

 42

Derived or Sub Class

 The derived class has it’ own constructors are well.
 We will use straight forward or simple constructor to demonstrate issues with the constructor implementation.
 Lets look at the derived class clsEmployee:

Example 9 (SubClass):
 Declaring the SubClas:

Option Explicit On
Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As Date
 Private mdbSalary As Double

 '***
 'Property Procedures

 'Calling Protected Property from Base Class
 Public Property IDNumber() As Integer
 Get
 Return SocialSecurityNumber
 End Get
 Set(ByVal intTheID As Integer)
 SocialSecurityNumber = intTheID
 End Set
 End Property

 Public Property HireDate() As Date
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As Date)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Double
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Double)
 mdbSalary = Value
 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

New()
New(Date, Double)

Print(X)
PrintEmployee()

 43

Example 9 (SubClass-(Cont)):
 Declaring the SubClass Methods:

 '***
 'Constructor Class Methods

 Public Sub New()

 MyBase.New()

 HireDate = #1/1/1900#
 Salary = 0.0
 End Sub

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, _
 ByVal bBDate As Date, ByVal dHDate As String, ByVal dbSal As Double)

 MyBase.New(strN, intIDNum, bBDate)
 HireDate = dHDate
 Salary = dbSal
 End Sub

'***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub

End Class

 44

Calling Protected Base Class Member from Sub Class Public Property (Main)

 Now let’s look at the driver program.
 In this example we create two objects of the clsEmployee class and one object of the Base Class clsPerson.
 The object of the clsPerson class will be used to demonstrate that we cannot call the Protected member since it is Private to

everyone else and only available to the Sub Classes.
 Main() test program:

Example 9 (Main Program):
 Driver Program for testing inheritance:

Module modMainModule
 'Create Employee objects that invokes default & Parametized Constructors
 Public objPerson As clsPerson = New clsPerson()
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 Public Sub Main()

 'YOU CANNOT CALL THE FOLLOWING PROPERTY SINCE IT IS PRIVATE!!!
 'objPerson.SocialSecurityNumber = 1123507865

 'FOR EMPLOYEE OBJECTS ONLY THE SSNUMBER IS AVAILABLE THROUGH THE PROPERTY IDNUMBER
 With objEmployee1
 .Name = "Angel Rodriguez"
 .BirthDate = #5/12/1972#
 .IDNumber = 1123507865
 .HireDate = #7/8/2004#
 .Salary = 75000
 End With

 'Call Employee Object to display data of Employee1
 objEmployee1.PrintEmployee()

 'Call Employee Object to display data initialized by Paremetized constructor
 objEmployee2.PrintEmployee()

 End Sub

End Module

 45

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create three Objects as follows:

 Public objPerson As clsPerson = New clsPerson()
 Public objEmployee1 As clsEmployee = New clsEmployee()
 Public objEmployee2 As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 We show that if we attempt to use the Protected member of the Person Class we will get a compiler error: :

 'YOU CANNOT CALL THE FOLLOWING PROPERTY SINCE IT IS PRIVATE!!!
 'objPerson.SocialSecurityNumber = 1123507865

 We then show that we populate the objEmployee1 members via the properties including the IDNumber which got
it’s data from the protected Base Class SocialSecurityNumber Property:

 With objEmployee1
 .Name = "Angel Rodriguez"
 .BirthDate = #5/12/1972#
 .IDNumber = 1123507865
 .HireDate = #7/8/2004#
 .Salary = 75000
 End With

2. We call the Employee Class Print() Method to print each object’s data to verify initialization values:

 'Call Employee Object to display data of Employee1
 objEmployee1.PrintEmployee()

 'Call Employee Object to display data initialized by Parameterized constructor
 objEmployee2.PrintEmployee()

 Calling the objEmployee1.PrintEmployee()method of the first object will show that the Base class Print()
is executed populated values are shown:

 Now the objEmployee1.PrintEmployee()method continues to execute it’s code and prints the employee
information as expected:

 46

 Calling the objEmployee2.PrintEmployee()method of the second object will show that the Base Class

Print() is executed:

 Calling the objEmployee2.PrintEmployee()method of the second object will show the Derived Class data
printed:

Summary of Results:

 In this example we proved the following:

1) Using Protected scope for Property of the Base Class
2) Protected members can only be seen by the Sub Classes. They are private for everyone else.

 47

8.2.9 MustInherit & MustOverride Keywords
MustInherit Keyword

 From what we have learned of Inheritance, we can create Base Classes and derived Sub Classes.
 In addition we can create Objects of the Sub or Derived Classes as well as the Base Class.
 But, there are circumstances when we may want to create a class such that it can only be used as a Base Class ONLY!
 This means that we CANNOT CREATE OBJECTS from this class. It MUST be used as a Base Class ONLY!
 To implement this we need declare the Base Class using the Keyword MustInherit.
 Once Base Class is declared with keyword MustInherit, we can NEVER CREATE OBJECTS of the Base Class.
 This is so strict that you will not be able to see the Base Class in the list of classes when making declarations of object.
 The syntax for using this keyword is:

 ‘Class Header
Public MustInherit Class BaseClassName

End Class

 Data Definitions

 Properties Definitions

 Methods

Example:

 Creating a MustInherit Base Class:

 Creating Base Class Products using MustInherit keyword:

Public MustInherit Class Products
‘Properties,
‘Methods
‘ Event-Procedures
End Class

 Creating an Sub Class VideoTape from Base class Product:

Public Class VideoTape

Inherits Product
‘Properties,
‘Methods
‘ Event-Procedures

End Class

 Declaring Object of Sub Class VideoTape:
Dim objVideosForSale As New VideoTape

‘The following statement will be illegal!!!
Dim objTemProduct As New Products ‘## Illegal ##

 48

Example 10 – MustInherit Base Class
Creating the Base Class

 We now create the base class.
 We will use the keyword MustInherit. This will not allow the creation of objects of this Base Class:

Example 10 (Base-Class):
 Declaring the base class:

Option Explicit On
'Declare Class for MustInherit
Public MustInherit Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal Value As String)
 m_strName = Value
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal Value As Integer)
 m_intIDNumber = Value
 End Set
 End Property
 'We allow Property to be Overridden
 Public Overridable Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal Value As Date)
 m_dBirthDate = Value
 End Set
 End Property

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

New()
New(String, Integer , Date)
Print()

 49

Example 10 (Base-Class):
 Declaring the remaining base members:

 '***
 '***
 'Class Constructor Methods
 Public Sub New()
 'Note that private data members are being initialized
 m_strName = ""
 m_intIDNumber = 0
 m_dBirthDate = #1/1/1900#
 End Sub

Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date)
 'Note that we are NOT using the private data but the Property Procedures instead
 Name = strN
 IDNumber = intIDNum
 BirthDate = bBDate
End Sub

'***
'Regular Class Methods
'We allow Method to be Overridden
Public Overridable Sub Print()
 MessageBox.Show("Printing BASE CLASS Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)
End Sub

 50

Derived or Sub Class

 Lets look at the derived class clsEmployee:

Example 10 (SubClass):
 Declaring the SubClass:

Option Explicit On
Public Class clsEmployee
 Inherits clsPerson
 '***
 'Class Data or Variable declarations
 Private mdHireDate As Date
 Private mdbSalary As Double

 '***
 'Property Procedures
 Public Property HireDate() As Date
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As Date)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Double
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Double)
 mdbSalary = Value
 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double

HireDate(): Date
Salary(): Double
Name(String): String

New()
New(Date, Double)

Print(X)
PrintEmployee()

 51

Example 10 (SubClass-(Cont)):
 Declaring the SubClass Methods:

'***
‘Default Constructor Using MyBase to invoke Base Class Constructor

Public Sub New()
 MyBase.New()

 HireDate = #1/1/1900#
 Salary = 0.0
End Sub

'Parameterized Constructor using MyBase to invoke Base Class Parameterized Constructor
Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date, _
 ByVal dHDate As String, ByVal dbSal As Double)

 MyBase.New(strN, intIDNum, bBDate)
 HireDate = dHDate
 Salary = dbSal
End Sub
 '***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary)

 End Sub
 '***
End Class

 52

Creating Sub Class Objects ONLY!(Main)

 Now let’s look at the driver program.
 Since the Base Class was created using the keyword MustInherit, we can only create objects of the Sub Class clsEmployee.
 Main() test program:

Example 10 (Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'You can only Create Employee object
 Public objEmployee As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 'CANNOT DECLARE OBJECT OF CLSPERSON! VB.NET & COMPILER WILL NOT LET YOU!!
 'Public objPerson As New clsPerson()

 Public Sub Main()

 'Call Employee Object to display data
 objEmployee.PrintEmployee()

 End Sub

End Module

 53

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create on Objects of the clsEmployee Class as follows:

 'You can only Create Employee object
 Public objEmployee As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 We show that if we attempt to create an Object of the Base Class clsPerson we will get a compiler error: :

 'CANNOT DECLARE OBJECT OF CLSPERSON! VB.NET & COMPILER WILL NOT LET YOU!!
 'Public objPerson As New clsPerson()

2. We call the Employee Class Print() Method to print each object’s data to verify initialization values:

 'Call Employee Object to display data
 objEmployee.PrintEmployee()

 Calling the objEmployee.PrintEmployee()method of the first object will show that the Base class Print() is
executed populated values are shown:

 Now the objEmployee.PrintEmployee()method continues to execute it’s code and prints the employee
information as expected:

 54

MustOverride Keyword (Abstract Method or Pure Virtual Function)
 The MustOverride Keyword works in conjunction with the MustInherit keyword.
 This keyword gives us the ability to create Methods (Sub, Function or Property) that MUST be overridden in the derived class.
 This means that the implementation of this class MUST be done in the Sub Class.
 Method using the keyword MustOverride, DO NOT contains any sort of implementation; there is no body or the keyword End

Sub or End Function or End Property. This type of method is also known as Abstract Method or Pure Virtual Function.
 The idea is that the Base Class contains a DECLARATION of the method ONLY! Implementation MUST be done inside the

Sub Class.
 NOTE THAT YOU MUST IMPLEMENT OR CREATE THE overridden METHOD IN THE SUB CLASS, YOU CANNOT

CREATE THE SUB CLASS WITHOUT THE IMPLEMENTED VIRTUAL OR ABSTRACT METHOD, OTHEWISE A
COMPILER ERROR WILL OCCUR WHEN CREATING OBJECTS OF THE SUB CLASS.

 Rules:
 Base Class: Declaration only of Abstract or Virtual function using keyword MustOverride.
 Sub Class: You must implement or create the method using the keyword: Overrides

Example 10B – MustOverride Keyword
Creating the Base Class

 We now create the base class.
 Again we use the keyword MustInherit:

Example 9B (Base-Class):
 Declaring the base class:

Option Explicit On
'Declare Class for MustInherit
Public MustInherit Class clsPerson
 '***
 'Class Data or Variable declarations
 Private m_strName As String
 Private m_intIDNumber As Integer
 Private m_dBirthDate As Date

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_strName
 End Get
 Set(ByVal Value As String)
 m_strName = Value
 End Set
 End Property

 Public Property IDNumber() As Integer
 Get
 Return m_intIDNumber
 End Get
 Set(ByVal Value As Integer)
 m_intIDNumber = Value
 End Set
 End Property
 'We allow Property to be Overridden
 Public Overridable Property BirthDate() As Date
 Get
 Return m_dBirthDate
 End Get
 Set(ByVal Value As Date)
 m_dBirthDate = Value
 End Set
 End Property

clsPerson

strName: String
intIDNumber: Integer
dBirthDate: Date

Name(): String
IDNumber(): Integer
BirthDate(): Date

New()
New(String, Integer , Date)
Print()

 55

Example 10B (Base-Class):
 Declaring the remaining base members:

 '***
 '***
 'Class Constructor Methods
 Public Sub New()
 'Note that private data members are being initialized
 m_strName = ""
 m_intIDNumber = 0
 m_dBirthDate = #1/1/1900#
 End Sub

Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date)
 'Note that we are NOT using the private data but the Property Procedures instead
 Name = strN
 IDNumber = intIDNum
 BirthDate = bBDate
End Sub

'***
'Regular Class Methods
'We allow Method to be Overridden
Public Overridable Sub Print()
 MessageBox.Show("Printing BASE CLASS Person Data " _
 & m_strName & ", " & m_intIDNumber & ", " & _
 m_dBirthDate)
End Sub

 'Declaration of MustOverride Method (Note that there is no End Sub)
 'This method is also Known as Abstract Method or Virtual Function
 Public MustOverride Sub Shop(ByVal intItems As Integer)

 56

Derived or Sub Class

 In this example we will add a data member to store the total items purchased by employee object.
 We will also add the corresponding Property TotalItemsPurchased
 In addition, we will implement the Pure Virtual Function or Abstract Method declared in the Base Class Shop()
 Lets look at the derived class clsEmployee:

Example 10B (SubClass):
 Declaring the SubClass:

Option Explicit On
Public Class clsEmployee
 Inherits clsPerson
 '***
 '***
 'Class Data or Variable declarations
 Private mdHireDate As Date
 Private mdbSalary As Double
 Private mintTotalItemsPurchased As Integer

 '***
 'Property Procedures
 Public Property HireDate() As Date
 Get
 Return mdHireDate
 End Get
 Set(ByVal Value As Date)
 mdHireDate = Value
 End Set
 End Property

 Public Property Salary() As Double
 Get
 Return mdbSalary
 End Get
 Set(ByVal Value As Double)
 mdbSalary = Value
 End Set
 End Property

 Public Property TotalItemsPurchased() As Integer
 Get
 Return mintTotalItemsPurchased
 End Get
 Set(ByVal Value As Integer)
 mintTotalItemsPurchased = Value
 End Set
 End Property

clsEmployee

dHireDate: Date
dbSalary: Double
mintTotalItemsPurchased: Double

HireDate(): Date
Salary(): Double
Name(String): String

New()
New(Date, Double)

Print(X)
PrintEmployee()

 57

Example 10B (SubClass-(Cont)):
 Declaring the SubClass Methods:

'***
 Public Sub New()
 MyBase.New()

 HireDate = #1/1/1900#
 Salary = 0.0
 TotalItemsPurchased = 0
 End Sub

Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date, _
 ByVal dHDate As String, ByVal dbSal As Double)

 MyBase.New(strN, intIDNum, bBDate)
 HireDate = dHDate
 Salary = dbSal
 End Sub
'***
 'Regular Class Methods
 Public Sub PrintEmployee()
 'Call Inherited Print Method to display Base Class values
 Print()

 'Now display Derived Class values
 MessageBox.Show("Printing Employee Data " _
 & mdHireDate & ", " & mdbSalary & ", " & mintTotalItemsPurchased)

 End Sub
 '***
'Implementation of Pure Virtual Function
'Shop() must use keyword Overrides since it's declared MustOverride in Base Class
 Public Overrides Sub Shop(ByVal intItems As Integer)

 mintTotalItemsPurchased = mintTotalItemsPurchased + intItems
 End Sub

End Class

 58

Creating Sub Class Objects ONLY!(Main)

 Now let’s look at the driver program.
 Since the Base Class was created using the keyword MustInherit, we can only create objects of the Sub Class clsEmployee.
 We also show the use of the Implemented Virtual Method Shop().
 Main() test program:

Example 10B(Main Program):
 Driver Program for testing inheritance:

Module modMainModule

 'Create Object of Sub Class Employee
 Public objEmployee As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 'CANNOT DECLARE OBJECT OF CLSPERSON! VB.NET & COMPILER WILL NOT LET YOU!!
 'Public objPerson As New clsPerson()

 Public Sub Main()

 'Call Employee Object PrintEmployee to display data
 objEmployee.PrintEmployee()

 'Call to Employee Object Shop() method to purchase 10 items
 objEmployee.Shop(10)

 'Call Employee Object PrintEmployee again to display data
 'The data displayed will show that the purchase Item value is equal to 1o items.
 objEmployee.PrintEmployee()

 End Sub
End Module

 59

Explanation of Test program:

 When we execute the program, the following occurs:

1. We create on Objects of the clsEmployee Class as follows:

 'You can only Create Employee object
 Public objEmployee As clsEmployee = New clsEmployee("Joe Smith", 111, #1/12/1965#, _
 #3/9/2004#, 30000)

 We show that if we attempt to create an Object of the Base Class clsPerson we will get a compiler error: :

 'CANNOT DECLARE OBJECT OF CLSPERSON! VB.NET & COMPILER WILL NOT LET YOU!!
 'Public objPerson As New clsPerson()

2. We call the Employee Class Print() Method to print each object’s data to verify initialization values:

 'Call Employee Object to display data
 objEmployee.PrintEmployee()

 Calling the objEmployee.PrintEmployee()method of the first object will show that the Base class Print() is
executed populated values are shown:

 Now the objEmployee.PrintEmployee()method continues to execute it’s code and prints the employee
information as expected. Note the additional TotalPurchasedItems value = 0:

 60

3. We call the Implementation of Employee Class Shop() Method purchase 10 items:

 'Call to Employee Object Shop() method to purchase 10 items
 objEmployee2.Shop(10)

4. We call the Employee Class Print() Method again to print each object’s data to verify that 10 items were purchased:

 'Call Employee Object to display data
 objEmployee.PrintEmployee()

 Calling the objEmployee.PrintEmployee()method of the first object will show that the Base class Print() is
executed populated values are shown:

 Now the objEmployee1.PrintEmployee()method continues to execute it’s code and prints the employee
information as expected. Note the additional TotalPurchasedItems value = 10:

