CS708 Lecture Notes

Visual Basic.NET Object-Oriented Programming
Implementing Business Objects (Part I1)
Business Rules & Validation

Part (Il of III)
(Lecture Notes 3B)

Professor: A. Rodriguez

CHAPTER 5 BUSINESS RULES & VALIDATION ...ttt 4

5.1 BUSINESS ODJECES REVIEW & STALUS.cuveieieiiiitiie st stese st s e eete e e et e e st e s te e e esae e et e tesbesbeaReeseess e eeseeabeabeensesee e enteseeneeaneeneeseeneenrenes 4
5.1.1 Business ODJECtS REQUITEMENTS STATUSciirueiitirieiittiteieet sttt ettt ettt bt bbb s bt b s bbbt nb e bbbttt b e enes 4
5.1.2 Key Technologies to Implement BuSiness OBJECt REVIEWc.ciiiiiiriiiiinie ettt 6
5.1.3 Business Objects Requirements OVErVIEW & SUMMAIYcviiveiierierieiesieeeeeetessestestessessessssssessessessesssssssssessessessessessssssessessessens 6
5.2 Business Objects — Data ACCESS REQUITEITIENTSciuiiiiiierieieste ettt sttt sttt sb et b et b et et b ettt s b ettt sbe st et b e et b e 7
5. 2.0 OVBIVIBW ...cviteiietiete ettt ettt ettt s b et e s ekt e b e s ek b e st ekt b e s e b et e s a8t b 48 e84 b e e e R4 b e e e R4 b e e R £ R4 AR e R £ R e R e R e R e AR R Rt Rt bt n et e nes 7
DAL ACCESS O ECIIVES: . .e.vtvvetitieetiite ittt ettt ettt ettt s bt e sttt e st b e b e stk e b e st R e b et e Rt b s e R e e b e b e st e b e e st e b e b et e be e b e e e be st e e e be e nr e 7
Implementing the Data ACCESS ODJECLIVES:eiiiiieiite ettt sttt sttt st sttt e et esbe e et e sbe st et e ebesbeseebesbeseabesbeseebeseeneatesbe e 7
5.2.2 IMPIEMENTALION OVEIVIEW.eviuieiiiiesietiite ettt sttt st et st st e te st e sbe e e besae e ebesbe e ebesbe s e et e ebese e b e ebeneeEeebe st ebeabe st ebeabeneeseabeneeseateneereas 11
Data ACCESS MELNOAS DELAIIS:eiviieeieerieiiie sttt et e st teese e st e eeseestesteesee e esteseeaeenbeaseeseeseenteseeabesreeneeseenseneenes 11
5.3 Creating the Business Logic & Rules. Business Classes, & BusinessBase Class TeMpPIatesccocvvvvieveriiienensiesiensiesennans 12
oIS 0 I Y =T YT S 12
BUSINESS RUIES ...ttt ettt b e et b e s b e s ek b e ekt e b e e e bt e b et e bt ehe e e bt e b e ne e b e e b e s e e bt e b e ne e bt ebe et et e ebenbe e ebenrenea 12
BIUSINESS CIASS. ...ttt ettt et b ettt e ettt b bt b e s b st e bt s b s e e b e b £ ekt b e e e Rt e b £ e R e eR e £ e Rt R e AR e R e R e nEeE e e R e ne e Rt e be et e b e benr et ebenre e 12
BUSINESSBASE CHASS ...ttt ettt ettt st b st b e e b ek e st e bt e b e ekt eb e e e Rt e R e e bt eb e e eE e e b e nE e Rt R e e b e be e b e b e ereebenrenea 12
5.3.2 Implementing BUSINESSBASE CHaSS.........cuiitiitiitieieiieie ettt sttt bbbt sb e bt bt e b et e s b e ebe e bt sbeehe e b e e e e benbeebenbeaneene e et ee 12
5.3.3 IMPORT REQUITEA LIDIAIIES.eeiteieieiieieeite sttt b bbbt e e b eh e bt bt e b et e a e eb e e b e e b e ehe e b e e meem b e nbeebeebeentene e e et nee 13
5.5.4 Convert Class into Distribute Object/UNanchOred CIASSc.ciiiieiiiiiieisie ettt sr e e sr e e e ne e 13
5.3.5 TraCKING DIFtY ODJECEc.eiuiitieetiiteiett ittt ettt b bbbtk b ekt e b ekt e bt e e b £ 4Rt e e bt e bt b e b e e bt e ekt e bt nb e s e ebenb e st ebenbeseabenneneas 14
IMPIEMENTING DIMLY OBJECTttt bbbt h e e £kt e bt E bt b bt e bt e b et e bt e bt e bt b e bt b 14
5.3.6 TraCKING INEW ODJECL ...ttt bbbkt b e e b bt e e bt e b b e bt bt e ek e eb e s b e he e bt nb e st ebenreseabenneneas 15
IMPIEMENTING NEWW ODJECScuiitiiitiiteiete sttt ettt bbb et b e e s ekt e btk s bt b e e b et e bt e b b e bt eb et et s b e bt ne e 15
5.3.7 Adding Tracking Mechanism to BUSINESSBASE CIaSScuiiiiiiirieiiiie e bbbttt 16
5.3.8 MustOverride Data Access Methods — Declared in BUSINESSBASEcoeviirieiiirieieesie ettt ettt sbe s 17
BUSINESBASE & MUSTOVEITIUR ... e veitieiieieies st teeee ettt st te st se et e besbesteeseeseeseesesbesbeebeeseeseene e besbeabeabeameeneeseenbenbeaneeseaneeneeneenas 17
Declaring Public & Protected Data Access Methods in BUSINESSBASEcouciiiiiiiiiiiiee s 17
5.3.8 Other Data Access Helper Methods (BUSINESSBASE)c..eviuiriiiitirieiaiesie ettt sttt sttt sb et b et sb e bbb nr et et sr e ebesre e 18
5.4 Business Base Template — Putting the Base Class TOGELNET ..ot 20
5.4.1 IMPIEMENLING BUSINESS BASEcueiueieiiiteieriitesieteete st st ste st seesestesteseetesbeseetesbe e etesbe e eteabe e eseabene et e abeneebeabesbebeabenbe e abesbeseabeneereas 20
5.4.2 Sample Program #1 — Creating the BUSINESSBASE ClaSS........ccuiiiiiiieiiiiieieesie ettt st st et eeetesneneas 21
5.5 Creating our Business Classes — BUSINESS Class TEMPIALEccoiiriiiiiii e 24
5.5.1 IMPIemMENtING BUSINESS CIASScutiveieiiiteiieiiite ettt sttt ettt b ettt b e ekt b etk e bt e bt b e s b bt e b st e bt ebenb e bt ebene et et e sb et ebennenea 24
IR IVZ N 1\, [@] = I o 0T (=0 I o U 1SS 24
5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from BusinessBase Class.........cccoveveiererievnninnivenicresenes 24
5.5.4 Implementing Data, Properties, Methods and EVENLScccviiiieieriiirese e ste st ettt sreenaeaenee e nes 25
5.5.5 Public Data Access Methods — Forced Upon DY BUSINESSBASEccvviiiireieeieiesiesieseereeseeieseesre e e eaessesaessesnesnesnseseensessenes 25
Public Data Access Methods Implementation DELAIIScciviiiiiieie it sre e e e e neenee e 25
5.5.6 Protected Data Access Methods — Implemented in BUSINESS ClaSSciviviiirieieriieseeeeieese e s se e se et ne e 27
5.5.7 Implementing BUSINESS Class TEMPIALEceiuiiieiice ettt e et e e e e st e st e teeneese e s e testesbesreenseseeseneenns 29
COMPONENLS OF BUSINESS ClaSSvveuviieieitisiesieeteeteste st st esteete et e e st e te s e eseese e s e ee st e besbeeteeseeste e et e beaReaEeeneenee e enteseeateereensenseneeneees 29
5.4.8 Sample Program #2 — Creating the Busingss Class TeMPIALe.........cccovviiiiieiieeie e 30
5.4.9 CONCLUSIONoeiiitittietettrist ettt ettt b btk s b bt e e e h e e e b b e e e R b e e e b e R e e R e R £ £ e bR £ E R e R A e e bR £ A b b £ A e e Rt R e e R bt ne e b e s e e b bt nn e b e e nna 34
5.5 BUSINESSCOIECTIONBASE ClASS. ... e.viteitieiiesienieriesteseattetee e testeste s e aseeseestesteseesteaseeseeseeseesbeseesbeameeseeneebenbeabeabeameeseeneenbesbeeseaseenseneeneeees 35
TSI I @ T TS P 35
5.5.2 IMPORT REQUITEA LIDTAIIES.cveiviietiite ettt sttt b ek b e ekt b e ekt b e ekt b e e b e e b e e eb e e b e e ekt e b e nb e bt ebese e st abenrenea 35
5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from DictionaryBasec.ccovvreiierineneneiese s 35
5.5.4 TraCKiNG DIFtY ODJECES. ... c.eeuiiueietiiteietiite ettt bttt b etk b etk s bt ekt e bt ebeeb e s e e b e e bt e e bt eb e s e e b e eb et ekt ab e nb e s e ebenbe bt et e nreseabenrerea 36
Implementing Dirty COIECTION ODJECL.........ciiiiiiieieiite bbbt bbbttt b et b e bt et benn st b 36
5.5.5 Declared Data ACCESS IMEBINOUScuveuieiirieieiieese ettt sttt e e eesbe st e beeteese e e seeebesbeesees e e s entesteebesreeneeneeneeneenes 37
MustOverride PUBLIC DATA ACCESS METHODS ..ottt bbbttt bt n b 37
Declaring Public & Protected Data Access Methods in BUSINESSBASEcoveiiiiiiiirieisisieise st 37
5.5.6 Other Data Access Helper Methods (BusineSSCOIECTION BASE)cveveiiieiiiiieiiiiie ettt sttt sessesaesens 38

5.6 BusinessCollection Base IMPIEMENTALION. ..ottt bbbt bbbt b ettt 39

5.6.1 Implementing BUSINESSCOIECTION BASE.........cuiiiiiiuiiieiiiti ittt et b e et b e bbb bbb e b nr e b nne e 39

5.6.2 Sample Program #3 — Creating the BusineSSCOIIECIONBASE CIASScoeviirieiiiieieiite ettt 40
5.6.3 CONCLUSION ..ottt ettt sttt bttt e ket se et es e b e be s e e b e be e b eb e e£ s 4 e b e s e e b e b e e e b e R e A £ e b e b e S E b e Re A e e b e b e e b b e £ ee e b e R e e b ket neebene s b be e e bebe et 42
5.7 BUSINESSCOIIECTION ClaSS DELAIIS..........civiteiieieiiiieieisee ettt bt e bbbt bbb bbbttt e bt s 43
5.7 1 OVEIVIBW ...tttk stttk et bbb bbb e R4 E R £ E R e R R £ £ R R £ e E R €0 R e R AR R e R £ E b e £ AR R e R e R R e e bt b Rt r e na 43
5.7.2 BUSINESS ClaSs REGQUITEMENES........cueiieieiiiiteitestesteeeeste st estestestesseesseeessestesteeseeseessesseabestesbeaseessesbeseeabeabeeasasseseenteseeatesseenseseerenrees 43
A 1Y/ @] = I o 0T C=To B I o] U 1SS 43
5.7.4 Convert Class into Distribute Object/Unanchored Class & Inherit from BusinessCollectionBase Class..........ccocovvvvveiinciinnns 43
5.7.5 Implementing Data, Properties, Methods and EVENLS ..ottt sb e et see e 44
5.7.6 Public Data Access Methods Forced upon us by BUsSineSSCOIECLIONBASE............cvieieiiierieesie ettt 44
Public Data Access Methods IMplementation DELAIIScoveiiiiiiiiicie bbb 44
5.7.7 BusinessCollection Class — Protected Data ACCESS MENOUS.ciririiriiirei ettt 45
5.8 Creating the BusinessColleCtioNClass TEMPIALEciiiiiiiie bbbt bbbttt 48
5.8.1 Implementing BusinessCollection Class TEMPIALEcoiiiiiiiiiece bbb ettt sre e 48
Components Of BUSINESSCOIECLION CHASS. ..ottt bbbt bbb bbbtk b et st b et et b r e 48
5.8.2 Sample Program #4 — Creating the BusinessCollection Class TEMPIALEc.ccvveriirieiieieeiie e 49
5.8.3 CONCLUSIONcoiiteiiiateitrisreiees ettt s ettt r st n e Rt e E R e e e bR R e R R e R R £ e e R R R e e R e e e Rt e R Rt ne b et e rer et nre e nna 58
5.9 Business Rules and Validation (Business Object REQUITEMENTS)..........ciiiiiiiiiiieie e 59
5.9.1 Implementing Dirty & NEW Business Rule In Properties & MethodS...........ccoe i 59
5.9.2 Implementing Validation BUSINESS RUIE.............ciiiiiiiiiei ettt bbb et b et eb e bt eb e b e b nn e abenre e 63
Implementing Max-Length inSide ClIass PrOPEITY: ..ottt ettt bttt b e n e 63
Handling Max-Length in User-INterface 0 CHIENT: ...ttt 64
Implementing WIite-ONCE INSIAE CHASS:oiiiieieiie bbbt bbbttt bbbt b et be e 64
Handling WRITE-ONCE in USer-INterface 0F CHENT:ooiiiiiiiiicei ettt 64
Implementing NO BLANK INSIAE CIASS:cvoiiiieiiieieie ettt ettt bbbt b ettt bbbt et b et et be e 65
Handling NO-BLANK/EMPTY Rule in User-Interface 0 CHENE: ..ot 65
Implementing EXACT-LENGTH INSIAE ClIASS:civiiiiiitiiecieieite ettt ettt st eesa e et s ee st e besbeete e e e besbesbesteeneeseeneeeeneens 66
Implementing EXACT-LENGTH Rule in User-Interface or CHENL: ..ot 66
5.9.3 Constructor Methods & BUSINESS RUIES..........cuiviieiieiiiiiet ettt nr bbbt 67
Implementing the Default CONSLIUCION MEBINOM...........ccoiiiiiie e ettt sttt st b e 67
Implementing the Parameterized CoNStrUCtOr METNOMoci ittt 67
5.9.4 Listing of all Base Classes & TemPIateS (SUMIMAIY).......ceiuiiieirerieiaestesieesteseetestesee e steseesesseseesasbeseesessessesesseseesessessesensessesens 68
C1aSS MUSLINNENTE CISBUSINESSBASE.ccveueiteiiieteiesietei sttt sttt sttt b bbbttt b b b E bt bbb bbbt bbbt bbbt et r b 68
Class MustInherit CISBUSINESSCOHECIONBASEceiviuiiiieiiiiieteireee ettt bbbt bbbttt b et e bbbt ne e 68
C1aSS CISBUSINESSCOIIECLIONCIASSttt etttk bbb bbbt bbb bbb bbbt bbbt bbbt bbbt r b 68
1SS CISBUSINESSCIASS. ...tttk b ket b bt bbb bbb bR £ £ e b b £ bR e R £ £ e b b e b bR £ b e bR e b b e Rt s b ek e bt bt r b 68

5.9 User-Interface SUPPOIt fOr BUSINESS ODJECLSviiiieiie ettt s e e ettt e s reeneesaeseentesaeeneereeneeneeneenes 70
5.9.1 OVBIVIBW ...ttt s et R R e et E Rt E e E R0 R AR R e R e R AR R e R R R e Rt r Rt nna 70
5.9.2 Programming the Ul t0 USe the BUSINESS ODJECLSccueiiieieeieieiesiesie e seeie st ste e rae e e e seestestesneesae e enaesaessesseanseneensensenes 70
LT S U 7= YRS 71

6.1 Sample Program #5 — Customer Management Business ODJECtS Program..........cccoeoiiririnineneiinesec et 72
B. 1.1 OVBIVIBW ...ttt ettt ettt b ekt b etk h et h b b h e bt e E o4 e e b 4Eeh £ eh 4828 e ek £ 4 h £ eE £ 4 E e e ek e 4h e e e b £ 4R e e e b e eh e A e e b e e b e nEeb e eR e A e eb e eb e et et ekt nb et ebennenea 72
C1aSS MUSELINNETTE BUSTNESSBASEc.veueitieetietirteieete sttt etttk b bbb bbb bbb e b e bbb bbb e bt bt b et e bt bbbt b 72

(08 F Y S] 1o] Ao] =T T o SRS SS 72
C1aSS CISCUSLOMET (BUSINESS ClASS).....cuettteteatiieiiitirteie ettt stttk skt bbbt b s bbbt bbbt bbbt et e bbbt b 72

L0 3o S O] (o =T o] SRS SR 72
INNErits CISBUSINESSCOIIECIONBASEccueitiiiiiieii ettt ettt te et et et e e sbe st e s be e st e s e e e e beseenbesteaneeseeneneennens 72
Class MustInherit BUSINESSCOIECHIONBASE.c.ueiviiierieitieeeiieieeste ettt et st te ettt e e e estestesbesbeabeebeeneetesaesbeseeaseeseeneeneeneeneenns 72
LT o (o] [=T 0 TS r= 1] 117) USSP 73

file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009794
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009795
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009796
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009797
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009804
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009805
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009806
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009807
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009808
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009809

Chapter 5 Business Rules & Validation

5.1 Business Objects Review & Status

5.1.1 Business Objects Requirements Status

O Ok, let’s review where we are as far as Business Objects requirements, and what we have done to implement them.
O The following is a listing of the Business Object’s requirements and the status of what we have accomplished:

Business Object Requirements
Business Object Represents Real-World Business 3
Entities — Business Objects contain the necessary
attributes & methods to behave like their real-world
counterparts.

Status

We added private data & properties
to emulate real word logic to our
objects, for example in the clsPerson
class we added variables such as
Name, Birthday, address, phone etc.
Attributes which makes our person
objects behawve as a person.

In addition we added a Shop()
method that emulated the process of
a person shopping. Also we
implemented clsEmployee Class with
Authentication(u,p) method to
authenticate employees

Comments

DONE

User Interface Support — The Business Objects .
should contain the following logic to support the User
Interface (UI):

- Contain all the features and functionality the Ul-
Developer will need to make communication | =
between the User & the application effective.

- The Business Objects are the core of the
application and must be designed in a way that is
very easy to change the Ul Layer without risking
the business logic stored in the business objects

Begun to design our applications by

using the 5-tier Application
Architecture. Thus separating the
Presentation/User Interface layer

from the business processing.

We have placed all processing code
in the Business Object Layer. In our
examples, all processing code is done
within the classes (clsPerson) &
collection classes
(IsCustomerManager).

DONE

Business Object contain all Business Logic & Rules | =
— contain the necessary Business Logic & Rules to
perform their business process & support the data

Business object has to have the logic
and intelligence required to support
all the methods and data access.

OPEN REQUIREMENT

s COVERED IN THIS

access = We need an object that contains logic COURSE
and automation of functionalities.
More on this later
BO Manage their own data & database access — = These features have not yet been | = OPEN REQUIREMENT

Business Objects should contain logic to handle data
access:

- The Business Object should contain all the code to
manage the data access or interact with the
database. Operations such as searching, inserting,
updating, deleting the database should be done by
the business objects.

- Database access should NOT be performed in the
User Interface Layer. Only from the Business
Object Layer.

implemented in this course.

« COVERED
COURSE

IN THIS

Business Object Requirements
Scalable & Reusable — Business Objects should be
design with the following logic:

- Can evolve & gain new data, properties & methods
to support more functionality

Status

Design application using the 5-tier
Application Architecture.
Created Class Library or DLL to
encapsulate our classes, thus enabling
them to be placed in the 5-tier
Application Architecture Business
Object & Data Access Business
Objects layers.
Discussed & implemented
technologies to implement scalability
such as:

- DLL

Comments

= DONE

- WE PACKAGED OUR
CLASSES INADLL OR
COMPONENT

Validation or Enforcement & Status Tracking —

Business Objects should contain the following logic:

- Business Objects should contain the logic to verify
that the data being set by the user is valid, correct
data type, length etc

- The Business Objects should be able to keep track
of it’s current status

- The Business Objects should be able to keep track
of the business rules that are broken.

- Business Objects should protect itself from
unauthorized or unwanted, harmful access

These feature have not yet been
implemented in this course so far.

= OPEN REQUIREMENT

% LECTURE
AVAILABLE IN THE
NOTES, BUT WILL BE
PARTIALLY
COVERED. NO
TIME!!

Distributed Business Objects — Business Objects
should be design base with the following network
distribution scheme in mind:

- Business Objects should contain the technology to
allow them to be distributed across processes and
application.

- Distributed Objects are about sending the object
(smart data) from one machine to another, rather
than sending raw data and hoping that the business
logic on each machine is being kept in sync.

Discussed technologies to implement
distributed or unanchored objects as
well as non-distributed or anchored
objects.
Implemented distributed or
unanchored objects by using the
<Serializable()> _ attribute
statement in our clsPerson Business
Obiject.
Discussed technologies to implement
business objects, such as:

- DLL

- Serialization

- Remoting

OPEN REQUIREMENT:

- Have not yet implemented
Serialization

- Not yet implemented
Anchored Objects

- Not yet implemented
Remoting

< WILL DISCUSS IN
CLASS AND
PREPARE FOR IT,
BUT NOT
IMPLEMENT OR
COVERED IN THIS
COURSE

5.1.2 Key Technologies to Implement Business Object Review
O We have discussed and address the following key technologies to implement Business Objects:

1. Local objects:
= Default designation of object when created. Can only be accessed by components within its process (In-Process
Communication)
= Local Classes are NOT available to the technology or Remoting, which enables objects to communicate across
networks and processes.
= We have implemented this technology by default since CS608.

2. Anchored objects:
= These objects are stuck on the process or machine in which they were created and are important, because we can

guarantee that they will always run on a specific machine only.

= Communication with these types of objects is via Pass-By-Reference or a pointer is passed to other processes that wish
to communicate with the Anchored Objects.

= Data Access BO Lavyer will be created as Anchored Objects since they need to run on a specific machine with access to
the Database Layer.

= To implement we need to inherit our classes from the MarshalByRefObject class as follows.

Public Class MyClass
Inherits MarshalByRefObject
End Class
= Anchored objects are available to the Remoting subsystem.

3. Unanchored Objects or Distributed Objects:
= Distributed Objects can be passed from one process to another process or from one machine to another, By-Value. By
value means that a copy of the original object is placed on the target machine.
» The Business Objects Layer is a candidate as Distributed or Unanchored Objects.
= To implement, you need to use the <Serializable()> _ attribute statement.
= We begun to implement this feature in our last examples as follows.

<Serializable()> _
Public Class clsPerson

End Class
= Unanchored objects are available to the Remoting subsystem.

4. The Anchored and Unanchored Objects require the following technologies:

= Class Library Project (DLL) — Business Objects need to be packaged as a Class Library or DLL (Dynamic-Link-
Library).

= Remoting — .NET Subsystem that handles communication between objects across a Network. Either Pass-By-
Reference or Pass-By-Value.

5.1.3 Business Objects Requirements Overview & Summary

Q
Q

Q

So far we have made some accomplishments in the pursuit of implementing Business Objects.

In this lecture notes, we will focus on completing the following requirement of adding validation code and making our business
object more intelligent and the object protect itself.

Because this topic is quite involved, we will keep our implementation basic and limited to only a few rules. We don’t have the
time in this course to cover many of the required logic.

5.2 Business Objects — Data Access Requirements

5.2.1 Overview

O The next requirement we must address is Data Access.
O Since Business Objects need to handle their own Data Access, we will now cover the methods required to do so.

Data Access Objectives:
O Our objectives is to implement the following two layers:

Business Logic Objects

Data Access BO (DataPortal)

= The Business Object Layer will contain the business rules
= The Data Access Business Objects will interact with the data base on our behalf. We will start calling this layer the

DataPortal Layer.

Implementing the Data Access Objectives:

O Itis important to decide where to place the Data Access code or SQL Statements that will Load, update, insert and delete the
Obijects to the database.

O These operations are actually performed on the Object's private data. In other words when an Object performs data access, it’s
actually taking it’s private data and saving, updating , inserting or deleting it to the database

Q There are several approaches we can take:

= METHOD 1: Business Objects that perform Data Access (Execute Queries) themselves:
= The Unanchored or Distributed Business Objects save, update insert & delete themselves to the database.

= METHOD 2: Specialized Business Objects whose purpose is to Manage the Data Access (Execute Queries) for other
objects:
= Objects or Business Object rely on another specialize Business Object to manage or save, update insert & delete
their data access.
You will need one Data Access BO for every type business object.
= Can be Anchored objects

= METHOD 3: General Purpose DATAPORTAL Object (Not Business Objects) whose purpose is to Manage the Data
Access (Execute Queries) for the Business Objects:
= Obijects or Business Object rely on a DATAPORTAL Object(s) which perform and manage or save, update insert &
delete.
DATAPORTAL Obiject contains all the SQL statements to manage the data access for all objects.
There may be more than one Dataportal, usually one for every type of database we are going to access, SQL Server,
Oracle etc.

= METHOD 4: Specialized SERVER-SIDE DATAPORTAL Objects (Not Business Objects) whose purpose is to
manage the Business Objects manage and let them do their OWN Data Access:
= Unanchored Business Objects are SENT to the DATAPORTAL Object(s). The DATAPORTAL simply calls the
Business Object’s Data Access methods so the business Objects will save themselves.
DATAPORTAL Object contains NO SQL statements. The SQL Statements are inside the Business Objects.
The Business Objects actually save themselves.
This is a new approach that can be implemented due to VB.NET Remoting and serialization techniques.

Method | — Business Objects Perform Their Own Data Access

O Inthis method it is the Business Objects that handle their own data access
O The Unanchored or Distributed Business Objects save, update insert & delete themselves to the database. They contain the
queries and interact with the database:

Business Object

o
o*g%o
ul N
9 Data Access
Methods

(SQL Statements)
User Interface

\

Data Access
Solution
Advantages/Characteristics Disadvantages
= Simple. BO handle themselves = Not scalable for our multi-tiered Client/Server
= Object is one package with everything we need, architectures.
thus we have full encapsulation.

Method Il — Data Access Business Objects Handle the Data Access

0 Inthis method the Business Object rely on another specialize Business Object to manage or save, update insert & delete their data
access
O These Data Access Business Objects can be Anchored and contain the SQL Statements or queries and interact with the database:

Business Object

Data Access Business Object

o
] Ak
Data Access
Methods <\\

Data Access

User Interface (SQL Statements)

Database
Advantages/Characteristics Disadvantages
= Business Objects are light-weight. Less = Object not one single package but broken up into
complex since Data Access BOs contain queries two separate entities. No more full encapsulation
= Scalable. Fits our client/server architectures = Will need one for every type of business objects
= Business Object rely on Data Access BOs

Method Il — General Purpose DataPortal Layer Handle the Data Access (Common Practice)

O In this method the Business Object rely on a general DATAPORTAL Object or Layer to manage or save, update insert & delete

their data access
O The DATAPORTAL is usually Anchored and contain the SQL Statements or queries and interact with the database:

Business Object DataPortal Object

o
Ul % %
Data Access \
Methods \

User Interface (SQL Statements) Data Access

Database

Advantages/Characteristics Disadvantages
= Business Objects are light-weight. Less = No data access code in Business Objects.
complex since DataPortal contains queries = Business Objects will always rely on DataPortal

= Scalable. Fits our client/server architectures

= Object partially a single package and
encapsulated

= One DataPortal for all BO objects.

= Could have a DataPortal for each type of
Database SQL, Oracle etc.

Method IV — General Purpose Server-Side DataPortal Layer allows Business Objects to Handle the
Data Access (New Method — Preferred Method for this Course)

Q Inthis method the Unanchored or Distributed Business Object perform their OWN data access.
O Butthey rely on a general DATAPORTAL Obiject or Layer to manage the process by CALLING the Business Objects Data

Access Methods on behalf of the Business Objects.

O The key here is that the Business Objects save themselves and contain the SQL Statements or queries and interact with the
database, but is the DATAPORTAL that is telling them when and how to do it.
O The DATAPORTAL is Anchored but the Business Objects must be Unanchored using using .NET technologies such as

Remoting and Serialization etc.

Original Unanchored BO

o
*_%
<o <o
@

ul

Data Access
Methods
(SQL Statements)

User Interface

Note that Unanchored Object is copied to Server

DataPortal Object

Public Methods
(Call Data Access
Methods in BO)

Data Access
Methods
(SQL Statements)

Data Access

Business Object (Copy)

Database

Advantages/Characteristics

Disadvantages

= Business Objects are a complete single package
and contain data access code.

= Scalable. Fits our client/server architectures

= One DataPortal for all BO objects since BO
save themselves

= Could have a DataPortal for each type of
Database SQL, Oracle etc

= Business Object don’t need to always rely on
Dataportal, they can be configured to save
themselves.

= Business Objects will always rely on DataPortal
= May be more difficult to implement

10

5.2.2 Implementation Overview
O Base on our discussion of the four methods, in this course we will use the following options:

= Option I —Business Object will perform their own data access:
- We will use this option for the first semester project and to implement our Single-Tier Client/Server

= Option IV — DATAPORTAL will manage Data Access but Business Object will perform their own data access:
- We will use this option for the to upgrade our semester project and to implement a three-Tier & Web-based
Client/Server

Data Access Methods Details:

O Since Business Objects need to handle their own Data Access, we will now cover the methods required to do so.

O First we break up the data access methods into two sections, PUBLIC DATA ACCESS METHODS AND PROTECTED OR
PRIVATE DATA ACCESS METHODS:

= Public Data Access Methods — These methods are Public and assessable to the User-Interface or clients. These methods
will be declared and implemented in our Business Classes.
- Note that these methods will be implemented in our Business Classes, and will be forced upon the Business Class by
the BusinessBase class. Therefore these methods will appear in the BusinessBase as well as MustOverride.

= Protected, Private Data Access methods — These methods can only be accessed internally within the class and its inherited
children. These methods will actually perform the data access and contain the SQL queries or Stored Procedures. These
methods are called by the Public Data Access Methods.

- Note that these methods will be implemented in our Business Classes, and will be forced upon the Business Class by
the BusinessBase class. Therefore these methods will appear in the BusinessBase as well as MustOverride.

O The idea here is that there will be data access methods available to the outside world or user interface, and internal private
methods that will perform the actual Data Access.

Business Object

0
< <
@
<o

Public Data Access Methods
Create
Load()
Save()

<=

User Interface

Protected Data Access Methods
- Create()

Fetch()
Update()
Insert()

Delete()

Solution

11

5.3 Creating the Business Logic & Rules. Business Classes, & BusinessBase Class
Templates

5.3.1 Overview

Business Rules

O Our focus in this section is to implement all non-data access code required in a Business Object.
O Because of the short time frame for this course, we will only implement a few Business rules.

O In this section we will implement the following business logic:

» Tracking the Status of an object for NEW, OLD or MODIFIED
i. Track whether the object is new or has just been created
ii. Track whether it’s data has been changed

= Validation — Enforcement of business rules, such data being set by the user is valid, correct data type, length etc

Business Class

O Our Business objects will contain all the business logic and data access code.

O The Business Objects are objects created from a Business Class. So our Business Classes are the classes we are going to create
for our customers, employees, autos, videos, checking accounts, etc.

O All our business classes need to have the mechanism to implement the required logic, data access and rules.

BusinessBase Class

O Our Business Classes, require business rules for tracking, validation and data access etc.

O We need these rules in EVERY BUSINESS CLASS, so what we are going to do is create a BASE CLASS that will contain the
mechanism to FORCE our classes to implement the business rules and data access methods. We will call this class
BusinessBase.

0 We will derive our Business Classes from BusinessBase in order to inherit all the business rules, tracking etc.

O First thing we need to do is create the BusinessBase Class.

BusinessBase

Business Logic
Business Rules
MustOverride Methods

BusinessClass

Data

Properties
Methods

Overrides Methods

5.3.2 Implementing BusinessBase Class

a Our first objective is to create a Base Class named BusinessBase. This Base class will contain all the Business Objects tracking,
validation mechanism & logic required. Therefore we can simply derive our classes from this base class and inherit all the
Business rules.

O So the code we will implement will be with Inheritance in mind, therefore we will use inheritance concepts like Overloading,
Overriding, Shadowing will apply here.

Q The first thing we will create is the class header. This class will only be used as a base class so we will use the keyword
Mustlnherit.

O Inaddition the Business Object will be an unanchored object or distributed so, we will use the <Serializable()> _ attribute

12

5.3.3 IMPORT Required Libraries
O Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

= ADO.NET Data Access Libraries

= Serialization Libraries

= Remoting Libraries

= Other necessary libraries, for example, I will include the System.lO for any file access | may need in my projects.

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later
'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.5.4 Convert Class into Distribute Object/Unanchored Class

O Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration.
O The class header will look as follows:

<Serializable()> _
Public MustInherit Class BusinessBasee

End Class

13

5.3.5 Tracking Dirty Object

O We need to keep track if the object has changed. If so, we will designate this object as being DIRTY.
O ADIRTY object has the following definition:

= ADIRTY Object is an Object whose data or private variables have been modified.
- When an object changes it means that any of the data or private variables have been modified thus DIRTY.

= BECAUSE IT HAS BEEN CHANGED, A DIRTY Object does not match the data in the DATABASE.
- Itis important that you understand this concept clearly. When we refer to an object being dirty, we not only mean
that the data has changed, but that it has changed in reference to its copy in the database.
- Think of it this way, when we populate an object with data from the database, once we change the data in the object,
the data no longer is the same as the data in the database. Therefore, the object is dirty and does not represent what
is in the database

= HERE IS THE MAIN POINT, if the object is dirty, then we need to perform some kind of UPDATE or INSERT operation
on the database base on this status. This will also be determined by the NEW Rule which will be explained in the next
section.

Implementing Dirty Object
O To implement dirty objects, declare:

I. Declare the Boolean flag flgDirty, which when TRUE the object is dirty, when FALSE, the object is not dirty. .
= This Boolean flag will be set to TRUE by default. This makes sense since when an object is created it does NOT
match any data in the database therefore it is dirty by our definition

Private mflgIsDirty As Boolean = True
Il. We need to expose the dirty flag to the User-Interface & Business Logic to be able to retrieve this value ONLY. We will

declare a READ-ONLY Property IsDirty(). We will make the property Overridable reason being that derived objects of this
class may want to override this property for special situation (more on this later). Create the property as follows.

Public Overridable ReadOnly Property IsDirty() As Boolean
Get
Return mflgIsDirty
End Get
End Property

I1l. This flag also needs to be set by the Business Object. But the code outside the class should NOT be able to alter this flag.
On the other hand, derived children should be able to set this flag. With this in mind, we will implement a Protected Method
named MarkDirty() as follows:

Protected Sub MarkDirty ()
mflgIsDirty = True
End Sub

% IMPORTANT! — ANY PROPERTY (SET portion only) OR METHOD WHICH MODIFIES DATA MUST CONTAIN A
CALL TO MarkDirty()

IV. Finally we need a way to mark the object as clean when the data is saved or updated to the database. This is done by
implementing a Private Method named MarkClean(). This sub procedure is created private because it will only be called
from within the Base Class, no need for child object to have access to this method. In the mean time, this method is
implemented as follows:

Private Sub MarkClean()

mflgIsDirty = False
End Sub

14

5.3.6 Tracking New Obiject

O The third status-tracking mechanism we will implement is the concept of a NEW object
O Anew object has the following definition:

= A NEW Object is an Object that was just created and in Local MEMORY ONLY.
- Ewvery time we create an object using the basic object creation syntax, the object is NEW
- The following creation of an object signifies that this object is NEW:

Public objCustomer As New clsCustomer
= A NEW Object exists in memory but NOT in DATABASE.

- Objects that are newly created, exists in the memory of the computer, but have not been committed to database.
They DO NOT exist in the database therefore are NEW.

A NEW Obiject is also DIRTY since Data in the Object does not match ANY Data in the DATABASE
- Anew object is marked dirty because it does not match any data in the database, therefore when committing an
object we can determine whether to perform an UPDATE or INSERT operation on the database base on the IRTY
status.
An OLD Object is an object committed to DATABASE and no longer NEW
- Once a NEW object has been SAVED or INSERT to Database it is classified as OLD.

a We now implement a mechanism that will track if the object is NEW (not in database) or OLD (exists in database).

Implementing NEW Objects
O To implement the NEW object feature perform the following:

I. Declare the Boolean flag flglsNew. When TRUE, this flag indicates Object has just been created or does not exist in the
database. A FALSE indicates object already contains a record in the database.
= This Boolean flag is set to TRUE by default. When an object is created it is NEW since NOT EXIST in database.

Private mflgIsNew As Boolean = True

Il. We need to expose the deleted flag to the User-Interface & Business Logic to be able to retrieve this value ONLY. We will
declare a READ-ONLY Property IsNew(). The property is declared as follows:

Public ReadOnly Property IsNew() As Boolean
Get
Return mflgIsNew
End Get
End Property

I1l. This flag also needs to be set by the Business Object logic. In addition, derived children should be able to set this flag. Note
that when we mark an object as NEW, we need to set the IsDirty flag to True by calling the MarkDirty() method, because the
data in a new object does not match any data in the database, therefore it is dirty. With this in mind, we will implement a
Protected Method named MarkNew() as follows:

Protected Sub MarkNew ()
mflgIsNew = True
MarkDirty ()

End Sub

IV. Finally, we need to provide a method that will mark the object as OLD, to indicate the object has been SAVED to
DATABASE. Therefore we implement a MarkOIld() method. We also need to set the dirty flag to True, indicating that the
data in the object matches the data in the database. This is implemented as follows:

Protected Sub MarkO1ld()
mflgIsNew = False
MarkClean ()

End Sub

15

5.3.7 Adding Tracking Mechanism to BusinessBase Class

O So far we have implemented the following basic required tracking mechanism that will add to a Business Base Class:
= Track whether the object is NEW & DIRTY.

O At this point, the BusinessBase Class looks as follows:

<Serializable()> _
Public MustInherit Class BusinessBase

#Region "Business Rules IsNew, IsDirty"

Public ReadOnly Property IsNew() As Boolean
Get
Return mflgIsNew
End Get
End Property

Public Overridable ReadOnly Property IsDirty() As Boolean
Get
Return mflgIsDirty
End Get
End Property

Protected Sub MarkDirty ()
mflgIsDirty = True
End Sub

Private Sub MarkClean()
mflgIsDirty = False
End Sub

Protected Sub MarkNew ()
mflgIsNew = True
MarkDirty ()

End Sub

Protected Sub MarkOld()
mflgIsNew = False
MarkClean ()

End Sub

#End Region
End Class

16

5.3.8 MustOverride Data Access Methods — Declared in BusinessBase

a
a

Now we address the data access code that will perform the actual database retrieval, update, insert or delete.
These methods will be declared in the BusinessBase Class and FORCED upon the Business Class.

BusinesBase & MustOverride

Q

Q

Q

Again we will declare these methods MustOverride in our BusinessBase class, thus forcing the derived classes (Business Class)
to have to implement them.

THESE METHODS ARE NOT IMPLEMENTED IN BUSINESSBASE, BUT ONLY DECLARED MUSTOVERRIDE. THEY
MUST BE IMPLEMENTED IN THE DERIVED CLASSES.

With this in mind, we will ONLY declare these methods in the Base Class as MustOverride methods. If you remember in
inheritance a MustOverride method is declared in the Base class, but MUST be implemented in the derived class. The derived
class MUST implement this method otherwise you cannot compile the application.

Declaring Public & Protected Data Access Methods in BusinessBase

a

To implement these methods we make the following declarations in the BusinessBase Class:

I. Public MustOverride Create(), Load(Key), Save() & DeleteObject — These methods are MustOverride, therefore
CANNOT be implemented in the Base Class, but the derived class will be FORCED to implement tem. Declare methods here
as follows:

'Public Shared Data Access Methods Declarations

''"' Override these Public Methods in SubClass to perform Data Access
'''" These methods are the public interface provided by the class

''' for data access

Public MustOverride Sub Create()

Public MustOverride Sub Load(ByVal Key As Object)

Public MustOverride Sub Save()

Public MustOverride Sub DeleteObject(ByVal Key As Object)

1. Protected MustOverride DataAccess Methods — These methods are MustOverride, therefore CANNOT be implemented in
the Base Class, but the derived class will be FORCED to implement them. Implement this method as follows:

'''" Override these methods in SubClass or Business Classes to

'''" actually perform data access. SQL Queries & Stored Procedures

''' are handled by these methods

Protected MustOverride Sub DataPortal Create()

Protected MustOverride Sub DataPortal Fetch(ByVal Key As Object)
Protected MustOverride Sub DataPortal Update ()

Protected MustOverride Sub DataPortal Insert()

Protected MustOverride Sub DataPortal DeleteObject (ByVal Key As Object)

17

5.3.8 Other Data Access Helper Methods (BusinessBase)

O When performing data access from a database, we need to establish a DATABASE CONNECTION.
O This connection, also know as a CONNECTION STRING.
O There are several options to creating a connection string. | will show three:

= METHOD 1: Create or hard-code Connection String inside class either in BusinessBase or Business Class itself:
Advantage:
= Simple and effective.
=@ Objects don’t need to go anywhere to get the connection string; it is available inside the object.
= Secured. No one can see connection string, since it is compiled within the class

Disadvantage:

= Creating the connection string inside the class is perfectly fine, but what happens if we change database? Now
we need to go inside each class and make the change manually.

= Thus Difficult to maintain and update. Must recompile program.

= METHOD 1I: Create or hard-code Connection String in an external Configuration File — All objects can retrieve the
connection string from one file.

Advantage:

= Easy to create and write

= Central location where string could be found. Can be XML file

= Easy to maintain and change. Change one location, all objects get the change.

Disadvantage:
= Not Secured. Configuration file is a text file and can be seen by anyone with access to server
= You may be able to encrypt the file, but would need encryption/decryption code inside every business object.

= METHOD 1ll: Create or hard-code Connection String in the Computer Registry — All objects can retrieve the
connection string from the registry.
Advantage:
= Central location where string could be found.
= Easy to maintain and change. Change one location, all objects get the change.

Disadvantage:

= Must create code to write to Registry the connection string details.

= Not secured. Not as available as configuration file, but registry can still be read

=@ You can encrypt the entries in registry, but would need encryption/decryption code inside every business object.

o We will implement both Method | & I1.

O We will hard-code the connection string the class for the FIRST DATA ACCESS EXAMPLE, then implement method 11 for the
SECOND DATA ACCESS SAMPLE PROJECT.

O Nevertheless, we will prepare our BusinessBase Class to contain code for implementing METHOD |1 or reading from
configuration file.

O Inthe BusinessBase Class add the following code:

I. Protected Function DBConnectionString() — This is where the code and queries or stored procedures are listed for creating
new objects and populating them with data from database:

'Method will return the Database Connection string from Configuration File
'Assumes the database name is prefixed with "DB"
Protected Function DBConnectionString (ByVal sDatabaseName As String) As String

Return ConfigurationManager .AppSettings ("DB:" & sDatabaseName)
End Function

18

1. Imported Library — In order for this to work, we need to perform the following steps:
1. Add reference to the System.Configuration Library

a. In solution explorer, SELECT the Project, then RIGHT-CLICK, select Add Reference... you will invoke the “Add
Reference” dialog box
b. Select the .NET tab and scroll and select the System Configuration Library, then click OK :

MET |COM I Projecks I Erowse I Recent I

Component Mame = | ersion | Runtime: | Path ;I
stdole 7.0,3300,0 +1.0,3705 C:\Program
stdole 7.0,3300,0 +1.0,3705 C:\Program
sysqlobl 2,0.0.0 w2,0,50727 CHiwWINDOW

Syskern

m, Configuration

System. Configuration. Install 2.0.00 w2, 0.50727 C\WINDOW
System.Data 2000 w2,0.50727 CiWINDOW
System.Data. OracleClient 2.0.00 w2,0.50727 CWINDOW
Syskem,Daka, SglClient 3.0,3600,0 +2.0,50727 C:\Program
System.Data, Sqlxml 2.0.00 w2,0.80727 CiWINDO!
Syskem,Deployment 2.0.0.0 v2,0.50727 CIWINDOW
System.Design 2.0.0.0 w2, 0.50727 CAWINDOW,
Syskem, Directory Services 2.0.0.0 v2,0.50727 CIWINDOW
System, Direckory Services, Prokocaols Z.0.00 wZ2,0.50727 CHWINDOW
Syskern, Drawing 2.0.0.0 v2,0.50727 CWINDOW ¥

«| | 3

oK I Cancel |

2. Import the System.Configuration Library into your code:

Imports System.Configuration 'Configuration File for DB Connection

19

5.4 Business Base Template — Putting the Base Class Together

5.4.1 Implementing Business Base

Q
Q
Q

Q

Now we at will put all the code together to create our BusinessBase Class.

This is the Base Class we will used to derive all our Business Classes from.

Keep in mind that this in ONLY a base class, we still need to create the Business Classes (employees, customers, etc.) that will be
used to create the Business Objects themselves.

So far we have implemented the following basic required tracking mechanism that will add to a BusinessBase Class:

= Track whether the object is new or has just been created or NEW
- Private flglsNew, Property IsNew & MarkNew(), MarkOIld() Methods

= Track whether it’s data has been changed or DIRTY
- Private flglsDirty, Property IsDirty & MarkDirty(), MarkClean() Methods

In addition we need to DECLARE ONLY the MustOverride protected Data Access methods that we are imposing upon our
derived classes or children:

Public MustOverride Create()
Public MustOverride Load()

Public MustOverride Save()

Public MustOverride DeleteObject()

Protected MustOverride DataPorta_Create()
Protected MustOverride DataPorta_Fetch()
Protected MustOverride DataPorta_Update()
Protected MustOverride DataPorta_Insert()
Protected MustOverride DataPorta_DeleteObject()
Protected Function DBConnectionString()

In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the
required libraries for the following:

= ADO.NET Library
I/0 Library for any file access requirements
= Configuration File library to use and manage configuration files storing our connection strings
= Remoting Libraries
= Serialization Library

20

5.4.2 Sample Program #1 — Creating the BusinessBase Class
O We now implement the BusinessBase class that will server as the basis for creating the Bussiness Classes

Example 5.1 — Creating a BusinessBase Class

Problem statement:
O Create the BusinessBase class using all the rules covered in the lecture.

Business Object Layer — Business Class & DLL Requirements

0 Implement the BusinessBase in a DLL project

O We now go through the steps of creating our BusinessBase class.

O The diagram below shows the Regions that make up the BusinessBase Class Format.

‘ Region view of BusinessBase Format

BuﬂnessBasexh*| 4k X
|ﬂ%(ﬁeneraﬂ _:J |ﬂ%(Dedaraﬁuns} _:J
A Imports 3ystem. IO 'File/I0 Z‘
Imports Syvstem.Data 'Data Access (Datal3et)
Imports 3ystem.Data.01lelhb 'OLEDE Frowvider
Imports Svstem.Configuration 'Configuration File for DE Connection
[' Keep commented. will he configure later
'Twports System. Buntime.Serialization.Formatters.Binary 'Serialization Library
'Twports 3yster. Buntime. Remoting ' Femot ing
'Imports 3ystem. FPuntime.Remoting. Channels 'Bemot ing
'Imports System. Buntine.Remoting. Channels.Hotp 'Bemot ing

[<3erializable()> _
Public MustInherit Class BusinessEase

EﬂBusiness Rule=z I=sNew, IsDirtﬂ

EﬂPuhlic MustCrrerride Data Access Methods

EﬂPrDtected Mustilrrerride Data Access Methods

EﬂData Aotcesz Helper HMethods

“End Class

| -

‘ Step 0: Create an Empty Solution and do the following:

1. Create Empty Solution
2. Create a Class Library Project
3. Add a Class, name it BusinessBase

21

Step 1: Imports and Class declarations:

O At this point, the BusinessBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Config File DB Connection

'Keep commented. will be configure later
'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _
Public MustInherit Class BusinessBase

Step 2: Add the Business Rules Data, Property Procedures & Methods:

O Dirty and New mechanism:

#Region "Business Rules IsNew, IsDirty"

Private mflgIsDirty As Boolean = True
Private mflgIsNew As Boolean = True

Public ReadOnly Property IsNew() As Boolean
Get
Return mflgIsNew
End Get
End Property

Public Overridable ReadOnly Property IsDirty () As Boolean
Get
Return mflgIsDirty
End Get
End Property

Protected Sub MarkDirty ()
mflgIsDirty = True
End Sub

Private Sub MarkClean()
mflgIsDirty = False
End Sub

Protected Sub MarkNew()
mflgIsNew = True
MarkDirty ()

End Sub

Protected Sub MarkOld()
mflgIsNew = False
MarkClean ()

End Sub

22

Step 3: Add the Public Data Access MustOverride Method Declarations:
O Protected Data Access declarations:

#Region "Public MustOverride Data Access Methods"
AR S b 2 b b b b b b b b b b b b b SR b b b e Sh dh S S S S S S S S S b b b b b db (b b b b b b b b b Sh e S Sh b S SR Sh S S dh S 2 dh a4

'Public Shared Data Access Methods Declarations
''' Override these Public Methods in SubClass to perform Data Access
''' These methods are the public interface provided by the class

'''" for data access

Public MustOverride Sub Create()

Public MustOverride Sub Load (ByVal Key As Object)

Public MustOverride Sub Save ()

Public MustOverride Sub DeleteObject(ByVal Key As Object)

EFnA Ramrinn

Step 4: Add the Protected Data Access MustOverride Method Declarations:
O Protected Data Access declarations:

#Region "Protected MustOverride Data Access Methods"

''' Override these methods in SubClass or Business Classes to

''' actually perform data access. SQL Queries & Stored Procedures

'''" are handled by these methods

Protected MustOverride Sub DataPortal Create ()

Protected MustOverride Sub DataPortal Fetch(ByVal Key As Object)

Protected MustOverride Sub DataPortal Update ()

Protected MustOverride Sub DataPortal Insert()

Protected MustOverride Sub DataPortal DeleteObject (ByVal Key As Object)
#End Region

Step 5: Add the Data Access Helper Methods Declarations:

O Helper method to allow CONNECTION STRING IN CONFIGURATION FILE.

o IMPORTANT! DON’T FORGET TO ADD A REFERENCED TO THE System.Configuration LIBRARY as follows:
a. In Solution Explorer SELECT & RIGHT-CLICK PROJECT, in drop-down menu, select Add Reference.
b. Inthe reference DIALOG BOX, select .NET TAB,
c. Scroll and select System.Configuration library, the click OK.

#Region "Data Access Helper Methods"

'Method will return the Database Connection string from Configuration File
'Assumes the database name is prefixed with "DB"

Protected Function DBConnectionString (ByVal sDatabaseName As String) As String
Return ConfigurationManager .AppSettings ("DB:" & sDatabaseName)
End Function

#End Region

23

5.5 Creating our Business Classes — Business Class Template

5.5.1 Implementing Business Class

Q

Q

Q

Now we focus on our Business Class. REMEMBER THIS IS THE CLASS IN WHICH WE WILL BUILD OUR OBJECTS
FROM (clsCustomer, clsEmployee etc.)

DO NOT CONFUSE THE BUSINESS CLASS WITH BUSINESS OBJECTS, BUSINESS OBJECTS ARE INSTANCE OF A
BUSINESS CLASS!

OBJECT-ORIENTED RULES REVISED:

l. CREATE BUSINESS CLASS
1. CREATE BUSINESS OBJECT
1. USE BUSINESS OBJECT

We will now CREATE A BUSINESS CLASS TEMPLATE, that we can use to guide us in creating or modifying our classes.
This class will be inherited from BusinessBase thus FORCING the business rules and data access methods upon the BUSINESS
CLASS

5.5.2 IMPORT Required Libraries

a

Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

ADO.NET Data Access Libraries

Serialization Libraries

Remoting Libraries

Other necessary libraries, for example, | will include the System.lO for any file access | may need in my projects.

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later
'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from BusinessBase
Class

a

Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration:

<Serializable()> _
Public Class BusinessClassTemplate

Then we inherit this class from BUSINESSBASE class, we can INHERIT THE BUSINESS RULES and METHOD forced upon
the BUSINESS CLASS by BUSINESS BASE.

<Serializable()> _

Public Class BusinessClassTemplate
Inherits BusinessBase 'Inherits from BusinessBase.

24

5.5.4 Implementing Data, Properties, Methods and Events

0 Nothing new here. These are the components every class should have, private data, public properties, public methods etc.
O Inaddition, we have the default and parameterized constructors.

5.5.5 Public Data Access Methods — Forced Upon by BusinessBase
o We will look at the four Public Data Access Methods created in the Business Classes to be called by the User-Interface:

Public Data Access Methods Implementation Details

0 We will implement these Public Data Access Methods in our Business Classes. Our Business Classes are the Business Objects
themselves such as customers, videos, cars, employees etc.

0 To implement we must use the keyword Overrides since they are FORCED by BusinessBase

O Inour Business Classes, we will use ADO.NET to implement our data access. In order to user ADO.NET we need to add the
namespace libraries as follows:

Imports System.Data
Imports System.Data.OleDb 'Data Access Library OLEDB Provider

Implementing Create(), Load(key) and Save()

o NOTE THA THE IMPLEMENTATIONS SHOWN HERE ARE EXAMPLES ONLY. THERE ARE MANY WAYS TO DO
THIS. YOU ARE WELCOME TO READ OTHER MATERIAL AND LEARN HOW IS DONE BY OTHER DEVELOPERS
AND AUTHORS. To implement these methods we make the following declarations in the Business Class:

. Public Sub Create()
e Declared Override since it is forced by Base Class
e This method is OPTIONAL and we may not implement, but we will have it for future use. Most times, objects need to
be created with default data from the DATABASE. If this is the case, the Business Object needs to be created by the
DATAPORTAL Server and populated with data from the database and returned to the client for use. This method calls
the Protected DataPortal_Create() method that will contain the necessary code to create the object and populated with
defaults from the database

'Public interface to Create objects from database
Public Overrides Sub Create()

DataPortal Create()
End Sub

1. Public Sub Load(key) — Implement this method as follows:
o This method is labeled as Overrides, since we are forced to override the base class
e Calls the Protected DataPortal_Fetch(ByVal Key As Object) method to LOAD data from database
e The argument to this method Load(Key As Object) represents the database key and it is of type Object, which means
that we can pass any object type as argument, string, customers, cars, videos etc

Public Overrides Sub Load(ByVal Key As Object)
'Calls Local DatPortal Fetch(Key) To do the work
DataPortal Fetch (Key)

End Sub
I11. Public Shared Sub Delete() — Implement this method as follows:

Public Overrides Sub DeleteObject(ByVal Key As Object)
'Calls Local DatPortal DeleteObject() To do the work
DataPortal DeleteObject (Key)

End Sub

e This method is labeled as Overrides, since we are forced to override the base class

e Calls the Protected DataPortal_DeleteObject(ByVal Key As Object) method to DELETE object from database

e The argument to this method Load(Key As Object) represents the database key and it is of type Object, which means
that we can pass any object type as argument, string, customers, cars, videos etc

25

IV. Public Function Save() — Implement this method as follows:
e This method is labeled as Overrides, since we are forced to override the base class
¢ Note that the decision to perform and update or insert is based on the status of the DIRTY & NEW flags
e Calls the Protected DataPortal_Insert() or Protected DataPortal_Insert() methods based on the status of the Dirty and

New flags

26

5.5.6 Protected Data Access Methods — Implemented in Business Class

a
a

Q

Now we look at the implementation of the protected DATA ACCESS METHODS in the Business Classes.

Since we declared these methods in the BusinessBase Class as MustOverride methods, we are forced to implement them here
otherwise we cannot compile our class. To implement we must use the keyword Overrides.

There are two requirements for implementing the Data Access Methods:

1. Implement the ADO.NET Code to perform the Data Access

= SINCE WE ARE NOT COVERING DATA ACCESS USING ADO.NET AT THIS TIME. I WILL NOT SHOW THE
ACTUAL CODE HERE

= THIS WILL BE DONE IN THE NEXT LECTURE NOTES

2. Incorporate the DIRTY & NEW mechanism in the Data Access Methods for database operations such as loading records
(SELECT), inserting record (INSERT), updating records (UPDATE), deleting records (DELETE) and finally in some
circumstances we create an object with default data from database (CREATE).

= The logic is as follows:

- CREATE:
o MARKS OBJECT AS NEW, WHEN CREATING A NEW OBJECT WITH DEFAULT DATA FROM DB

- SELECT:
o MARKS OBJECT AS OLD, AFTER RETRIEVING RECORDS FROM DB

- INSERT:
o ONLY PERFORMED WHEN OBJECT IS DIRTY & NEW.
o MARKS OBJECT AS OLD AFTER INSERT

- UPDATE:
o ONLY PERFORMED WHEN OBJECT IS DIRTY & OLD.
o MARKS OBJECT AS OLD AFTER UPDATE

- DELETE:
o MARKS OBJECT AS NEW, AFTER DELETE SINCE OBJECT DOES NOT EXIST IN DB.

To implement these methods we make the following declarations in the Business Class:

I. Protected Overrides DataPortal_Create() — This is where the code and queries or stored procedures are listed for creating
new objects and populating them with data from database:
e Anbusiness rule is applied that set the object as a NEW object since it was just created.

'Data Access Code for Creating a New Business Object

Protected Overrides Sub DataPortal Create ()
'Create object and assign default values from database etc.
'ADD DATA ACCESS CODE HERE USING ADO.NET
'At the end, set New flag to True a new object is created

MyBase .MarkNew ()
End Sub

27

1. Protected Overrides DataPortal_Fetch(key As Object) — This is where the queries or stored procedures are listed for
fetching an object from database base on the parameter key:
e Anhbusiness rule is applied that set the object as a OLD object since it was just retrieved from database, thus it exists and
is old.

'Data Access Code to fetch an object from Database
Protected Overrides Sub DataPortal Fetch(ByVal Key As Object)
'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'At the end, set New flag to False. NOT Dirty since found in database
MyBase .MarkO1ld()
End Sub

I1l. Protected Overrides DataPortal Update() — This is where the queries or stored procedures are listed for updating an
object’s data to database:
e Ahusiness rule is applied that set the object as a OLD object since it was just updated to database, thus it exists and is
old.

'Data Access Code to Update an Objects data to database
Protected Overrides Sub DataPortal Update ()
'"ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'Set New flag to False since exist in database/and is Not dirty any longer
MyBase .MarkO1ld()
End Sub

IV. Protected Overrides DataPortal Insert() — This is where the queries or stored procedures are listed for inserting new
objects to database:
e Anbusiness rule is applied that set the object as a OLD object since it was just INSERTED into the database, thus it exists
and is old.

'Data Access Code to insert a new object to database
Protected Overrides Sub DataPortal Insert()
'"ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'Set New flag to False since exist in database/and is Not dirty any longer
MyBase .MarkO1ld()
End Sub

V. Protected Overrides DataPortal_DeleteObject() — This is where the queries or stored procedures are listed for deleting
objects from database:
e Anhbusiness rule is applied that set the object as a NEW object since it was just DELETED from database, thus it DOES
NOT EXIT in database thus NEW.

'Data Access Code to immediatly delete an object from database.
Protected Overrides Sub DataPortal DeleteObject (ByVal Key As Object)
'"ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET
'Object no longer in database, therefore reset our status to be a new object

MyBase .MarkNew ()
End Sub

28

5.5.7 Implementing Business Class Template

Q

a
a
a

Now we focus on the Business Class. This is the class we will create our business objects from.

We need to derive this class from BusinessBase which imposes MustOverride methods on the Business Class.

We are going to create a template of what a Business Class requires.

NOTE, THIS IS NOT A BASE CLASS BUT A TEMPLATE TO GUIDE YOU AS TO WHAT THE CLASSES REQUIRES.

Components of Business Class

Q
Q
Q

So far we have implemented the following basic requirements for the Business Class.

First we need to inherit from BUSINESSBASE

We will look at the four MustOverride Public Data Access Methods imposed on us by the BusinessBase class and to be called by
the User-Interface:

» Public Overrides Sub Create()

= Public Overrides Sub Load(ByVal Key As Object)

= Public Overrides Sub DeleteObject (ByVal Key As Object)
= Public Overrides Sub Save()

In addition we need to CREATE the MustOverride protected Data Access methods imposed on us by the BusinessBase class:

Protected Overrides DataPortal_Create()
Protected Overrides DataPortal_Fetch()
Protected Overrides DataPortal_Update()
Protected Overrides DataPortal_Insert()
Protected Overrides DataPortal_DeleteObject()

In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the
required libraries for the following:

ADO.NET Library

I/0 Library for any file access requirements

Configuration File library to use and manage configuration files storing our connection strings
Remoting Libraries

Serialization Library

Finally we will add to our template regions for our standard class declarations such as:

Private Data

Public Event Declarations

Public Properties

Constructor Methods

Regular Business Methods

Helper Methods — These are other methods needed by the data access or any other methods to handle some maintenance or
any required process that is not business related.

29

5.4.8 Sample Program #2 — Creating the Business Class Template
O We now implement a template or Business Class that will server as our templates for the Bussiness Objects

Example 5.2 — Creating a Business Class

Problem statement:
O Create the Business Class Template class that we can use as a template to create our classes.

Business Object Layer — Business Class & DLL Requirements
O Add to the BusinessObjects DLL project

O The diagram below shows a Regions that make up the Business Class Template Format.

‘ Region view of BusinessBase Format

/ﬁusiness[lassTemplate.vh]

1
=

Id:;(ﬁeneral) j Ii:; {Declarations)

L

ption Explicit On
Option 3trict On

Imports System. IO 'File/ IO

Imports 3ystemw.lata 'D'ata Acocess (Datalet)

Imports System.Data.0lelb 'OLEDE Provider

Imports 3ystem.Configuration 'Configuration File for DE Connection

E ' Eeep commented. will be configure later
'Imports Systew.Puntime.ferialization.Formatters.Binary 'Serialization Likrary

'Iwports Systew. Buntime . Remoting ' Eemot it
'Tmports System. Buntime.Remoting., Channels ' Eemot ing
S Imports Systetw. Funtiwe. Fewmoting. Channels.Hetp ' Eemot it

E <derializable () > _
FPublic Class BusinessClassTemplate

Inherits BusinessBase 'Inherits from BusinessBase. Must implement MustInherits methods

[+

HFrivate Daté

[ﬂEvents Declaratinnﬁ

[ﬂPerertv Procedureﬁ

[ﬂCDnstructnr Hethndﬁ

[ﬂBusiness & Regular Hethodﬁ

[ﬂPublic Data Loocess Hethodﬁ

[ﬂPrDtected Data Locess Hethodﬁ

H|Helper Methods

“End Class

4

Step 0: Create an Empty Solution and do the following:

1. To the existing DLL project containing our BusinessBase, add a Class, name it Business Class

30

Step 1: Imports and Class declarations:

O At this point, the BusinessBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Config File DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

Public Class BusinessClass
Inherits BusinessBase 'Must implement MustInherits methods

Step 2: Add The Common Class Components Regions:

O Add Private Data, Event declarations, Property, Constructors:

#Region "Events Declarations"
Thkhkkhkkhkkhkkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkk

'Event Declarations
#End Region

#Region "Property Procedures"
Thkhkkhkkhkkhkhkkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkkhkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhhkk

'Class Properties declarations

#End Region

#Region "Constructor Methods"
Thkhkkhkkkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkkkhkhkkhkkkk

'Class Constructor declarations

#End Region

#Region "Business & Regular Methods"
Thhkkhkkhkhkkkhkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkkhkkkhkhkkhkdxx

'Methods declarations

#End Region

31

Step 3: Add the Public Data Access Method Declarations:
O Public Shared Data Access declarations:

#Region "Public Shared Data Access Methods"
AR S b 2 b b b b b b b b b b b b b SR b b b e Sh dh S S S S S S S S S b b b b b db (b b b b b b b b b Sh e S Sh b S SR Sh S S dh S 2 dh a4

'"Public Shared Data Access Methods Declarations

U S R S R I I S I S e S I I e I I I I I I IR I b b b I b S S e I S I S b b b S I b b b b

'"Public interface to Create objects from database
Public Overrides Sub Create()

DataPortal Create()
End Sub

Public Overrides Sub Load(ByVal Key As Object)
'Calls Local DatPortal Fetch(Key) To do the work
DataPortal Fetch (Key)

End Sub

Public Overrides Sub Save ()
'Only save if dirty, otherwise do nothing in this method
If Me.IsDirty Then
If Me.IsNew Then
'We are new and being inserted
'Calls Local DataPortal Insert()
DataPortal Insert()

Else
'We are OLD so we are being updated

'Calls Local DataPortal Update()
DataPortal Update ()
End If
End If

End Sub

Public Overrides Sub DeleteObject(ByVal Key As Object)
'Calls Local DatPortal DeleteObject() To do the work
DataPortal DeleteObject (Key)

End Sub

#End Region

32

Step 4: Add the Protected Data Access Method Declarations:
O Protected Data Access Methods that contain the SQL Queries:

#Region "Protected Data Access Methods"

U S I I B i I b b i I b I I b b b b I S e I e b S b b b b b b b b b b b b IR b b b b I b b e Ih b S 2 b b S S ah S 2 b b a4

'Protected Data Access Methods declarations

'Data Access Code for Creating a New Business Object
Protected Overrides Sub DataPortal Create ()
'Create object and assign default values from database etc.

'ADD DATA ACCESS CODE HERE USING ADO.NET

'At the end, set New flag to True a new object is created
MyBase .MarkNew ()
End Sub

'Data Access Code to fetch an object from Database
Protected Overrides Sub DataPortal Fetch (ByVal Key As Object)
'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'At the end, set New flag to False. NOT Dirty since found in database
MyBase .MarkO1ld()
End Sub

'Data Access Code to Update an Objects data to database
Protected Overrides Sub DataPortal Update ()
'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'Set New flag to False since exist in database/and is Not dirty any longer
MyBase .MarkO1ld()
End Sub

'Data Access Code to insert a new object to database
Protected Overrides Sub DataPortal Insert()
'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET
'Set New flag to False since exist in database/and is Not dirty any longer
MyBase .MarkO1ld()

End Sub

'Data Access Code to immediatly delete an object from database.

Protected Overrides Sub DataPortal DeleteObject (ByVal Key As Object)
'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures
'ADD DATA ACCESS CODE HERE USING ADO.NET
'Object no longer in database, therefore reset our status to be a new object
MyBase .MarkNew ()

End Sub

#End Region

33

Step 6: Helper Methods:

Q Other non-business related methods:

#Region "Helper Methods"

TAAAAAKRKA AR A AR A AR A AR A Ak Ak Ak hkkhkkk

'Methods used to assist other methods or maintenance

#End Region

End Class

5.4.9 CONCLUSION

o WE NOW HAVE A TEMPLATE BUSINESS CLASS FROM WHICH WE CAN CREATE
ALL OUR BUSINESS CLASSES!!!

34

5.5 BusinessCollectionBase class

5.5.1 Overview

Q
Q
Q

OK, in the previous section we created the BusinessBase & Business Class or template for our Business Objects.

We also need to support for Collections of Business Objects, in other words Collection Classes.

We will now implement the BusinessCollectionBase Class that will serve as the base class for our Collection Classes. In
addition we will create a template for our BusinessCollection Classes themselves.

The BusinessCollectionBase class needs to support many of the functionality as BusinessBase. They include the following only:

= Track whether it’s data has been changed or DIRTY. Note that in this case a dirty collection means that a child object or an
object stored in the list has been changed.

In addition we need to support Data Access for our Collection Classes.
Finally we need to import the Collections Namespace into this class:

Imports System.Collections 'Collections Namespace

5.5.2 IMPORT Required Libraries

a

Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

= ADO.NET Data Access Libraries

= Serialization Libraries

= Remoting Libraries

= Other necessary libraries, for example, | will include the System.lO for any file access | may need in my projects.
= Finally the Collection Library

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File Access
Imports System.Collections 'Collection Library

'Configuration File for DB Connection
'Keep commented. will be configure later
'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from DictionaryBase

Q

Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration:

<Serializable()> _
Public MustInherit Class BusinessCollectionBase

Then we inherit this class from DICTIONARYBASE class since we are using the DICTIONARY LIBRARY.
<Serializable()> _

Public MustInherit Class BusinessCollectionBase
Inherits DictionaryBase

35

5.5.4 Tracking Dirty Objects

O We need to keep track if the Collection has been modified or is DIRTY.
0 ADIRTY Collection Object means that one of the CHILD objects stored in the collection has been modified, as shown in the

diagram below:

Collection Business Object

Private Data

Public Properties
Public Methods

O If any of the Child Object in the collection is modified, the Collection Object is DIRTY.

O So tracking simply means the following:
1. lterate through the Collection and ask each CHILD object if it’s Dirty
2. IF ANY OBJECT IS DIRTY, THE COLLECTION IS ADIRTY COLLECTION!

Implementing Dirty Collection Object
O To implement dirty objects, declare:

Iterate through the Collection and test if any of the Objects are DIRTY. As with the BusinessBase Class, the User-Interface
& Business Logic needs to be able to determine if an object is DIRTY. Therefore, we will declare the READ-ONLY

Property IsDirty(). Create the property as follows.

Public ReadOnly Property IsDirty() As Boolean

Get
'Any Dirty Object make the entire collection dirty

Dim objDEntry As DictionaryEntry
Dim objChild As BusinessBase

For Each objDEntry In MyBase.Dictionary
objChild = CType (objDEntry.Value, BusinessBase)

If objChild.IsDirty Then Return True
Next
Return False
End Get
End Property

36

5.5.5 Declared Data Access Methods

Q

Q

Q

Q

As with BusinessBase & Business Class, the BusinessCollectionBase and BusinessCollection Class we also contain data access
methods.

As with the regular Business Objects, we will break up the data access methods into two sections, THOSE IN THAT ARE
PUBLIC TO THE WORLD AND THOSE THAT ARE PROTECTED

= Public Data Access Methods — These methods are Public and assessable to the User-Interface or clients.

= Protected Data Access methods — These methods will actually perform the data access and contain the SQL queries or
Stored Procedures. These classes are called by the Public Data Access Methods.

Again, the idea here is that there will be data access methods available to the outside world or user interface, and internal private
methods that will perform the actual Data Access.
These methods are MUSTOVERRIDE and only declared in the BusinessBase Class but implemented in the Business Class.

MustOverride PUBLIC DATA ACCESS METHODS

a

a

a

Again we will declare these methods MustOverride in our BusinessCollectionBase class, thus forcing the derived classes
(BusinessCollection Class) to have to implement them.

THESE METHODS ARE NOT IMPLEMENTED IN BUSINESSCOLLECTIONBASE, BUT ONLY DECLARED
MUSTOVERRIDE. THEY MUST BE IMPLEMENTED IN THE DERIVED BUSINESSCOLLECTION CLASSES.

In BusinessCollection Base, we will declare the following MustOverride methods:

Declaring Public & Protected Data Access Methods in BusinessBase

Q

To implement these methods we make the following declarations in the BusinessBase Class:

I. Public MustOverride Create(), Load(), Save() & DeleteObject() — These methods are MustOverride, therefore CANNOT
be implemented in the Base Class, but the derived class will be FORCED to implement tem. Declare methods here as
follows:

'Public Shared Data Access Methods Declarations

''' Override these Public Methods in SubClass to perform Data Access
Public MustOverride Sub Create()

Public MustOverride Sub Load()

Public MustOverride Sub Save ()

Public MustOverride Sub DeleteObject(ByVal Key As Object)

1. Protected MustOverride Data Access Methods — These methods are MustOverride, therefore CANNOT be implemented
in the Base Class, but the derived class will be FORCED to implement them. Implement this method as follows:

''"'" Override this method in SubClass to create new Collection Object
Protected MustOverride Sub DataPortal Create()

Protected MustOverride Sub DataPortal Fetch ()

Protected MustOverride Sub DataPortal_ Save()

Protected MustOverride Sub DataPortal DeleteObject (ByVal Key As Object)

37

5.5.6 Other Data Access Helper Methods (BusinessCollection Base)

O As with BusinessBase, we will implement in our Collection Base Class the ability to retrieve the DATABASE CONNECTION
string from a configuration file:

O Inthe BusinessCollectionBase Class add the following code:
I11. Protected Function DBConnectionString() — This is where the code and queries or stored procedures are listed for creating
new objects and populating them with data from database:
'Method will return the Database Connection string from Configuration File
'Assumes the database name is prefixed with "DB"
Protected Function DBConnectionString (ByVal sDatabaseName As String) As String
Return ConfigurationManager .AppSettings ("DB:" & sDatabaseName)
End Function
V.

Imported Library — In order for this to work, we need to import the following library:

Imports System.Configuration 'Configuration File for DB Connection

38

5.6 BusinessCollection Base Implementation

5.6.1 Implementing BusinessCollection Base

0 Now we at will put all the code together to create our BusinessCollectionBase and BusinessCollection Class Classes.
First we focus on BusinessCollectionBase
The only required tracking mechanism is to determine if an object is dirty in the Collection:

Q
Q

Track whether it’s data has been changed or DIRTY
- Iterate through collection and ask each Business Child Object if it’s dirty

In addition we need to DECLARE ONLY the MustOverride protected Data Access methods that we are imposing upon our
derived classes or children:

Public MustOverride Create()

Public MustOverride Load()

Public MustOverride Save()

Public MustOverride DeleteObject(Key)

Protected MustOverride DataPorta_Create()
Protected MustOverride DataPorta_Fetch()
Protected MustOverride DataPorta_Save()
Protected MustOverride DataPorta_DeleteObject()
Protected Function DB ConnectionString()

In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the
required libraries for the following:

ADO.NET Library

I/0 Library for any file access requirements

Configuration File library to use and manage configuration files storing our connection strings
Remoting Libraries

Serialization Library

39

5.6.2 Sample Program #3 — Creating the BusinessCollectionBase Class
O We now implement the BusinessCollectionBase class that will server as the basis for creating the Business Collection Classes

Example 5.3 — Creating a BusinessCollectionBase Class

Problem statement:
O Create the BusinessCollectionBase class using all the rules covered in the lecture.

Business Object Layer — Business Class & DLL Requirements
0 Implement the BusinessCollectionBase in a DLL project. Reuse the Solution/DLL project from example 5.1

Code to Implement BusinessCollectionBase Class

0 Now we show all the code to implement the BusinessCollectionBase Class. Diagram below shows the view of the format for this
class

‘ Region view of BusinessCollectionBase Format |

BusinessCollectionBase.vb* | BusinessClass.vb | clsCustomerlist, wb q F X

|<il; BusinessCollectionBase j |IN, {Declarations) ﬂ

Option Explicitc On —
Option 3trict On —

Imports Svystem. IO 'File/I0

Imports Zystem.Data I 'DIata Aocess (Datalet)

Imports 3ystem.Data.0lelh 'OLEDE Prowvider

Imports Svstem.Configuration '"Configuration File for DE Connection
E 'Eeep commented. will be configure later

' Tmports 3ystem.Buntime.3erialization.Formatcters.Binary 'Seriali=ation Library

'Imports Svsten. Puntiwe . Remoting 'Remwot ing

'Imports 3ysteln. Buntiwe . Remoting. Chanhels 'Remot ing

'Tmports 3ystem.Buntime.Remoting. Channels.Hotp 'Bemot ing

Imports Iystem.Collections
Fl<3erializable()> _
Public MustInherit Class BusinessCollectionBase
Inherit=s DictionaryEBEase

E3|Dirty Chiject Business Logic

EJPuhlic Mustlrrerride Data hocess Hethodﬂ

EﬂPrDtected MustCrrerride Data Access Hethods| o

EﬂHelper Dats ALocess Methods

Step 0: Create an Empty Solution and do the following: |
1. Create a Class Library Project
2. Add a Class, hame it BusinessCollectionBase

40

Step 1: Imports and Class declarations:

O At this point, the BusinessCollectionBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB Connection
Imports System.Collections 'Collection Library

'Configuration File for DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _
Public MustInherit Class BusinessCollectionBase
Inherits DictionaryBase

Step 2: Add the Business Rules:

O Determine if Collection is Dirty:

#Region " Dirty Object Business Logic "
'Search and Find the first Dirty Child Object
Public ReadOnly Property IsDirty() As Boolean
Get
'Any Dirty Object make the entire collection dirty
Dim objDEntry As DictionaryEntry
Dim objChild As BusinessBase
For Each objDEntry In MyBase.Dictionary
objChild = CType (objDEntry.Value, BusinessBase)
If objChild.IsDirty Then Return True
Next
Return False
End Get
End Property
#End Region

Step 3: Add the Public Data Access MustOverride Method Declarations:

Q Public Data Access declarations:

#Region "Public MustOverride Data Access Methods"
Thhkkhkkkhkkkhkkkhkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkhkhkhkhkhkkkhkkkhkkkhkkkhkkkhkhkhkhkhkhkkhkhkkhkkkhkkkkkkkxk
'Public Shared Data Access Methods Declarations
''"' Override these Public Methods in SubClass to perform Data Access
Public MustOverride Sub Create()

Public MustOverride Sub Load()
Public MustOverride Sub Save()
Public MustOverride Sub DeleteObject(ByVal Key As Object)

#End Region

Step 4: Add the Protected Data Access MustOverride Method Declarations:
O Protected Data Access declarations:

#Region "Protected MustOverride Data Access Methods"

''"'" Override this method in SubClass to create new Collection Object
Protected MustOverride Sub DataPortal Create ()

Protected MustOverride Sub DataPortal Fetch ()

Protected MustOverride Sub DataPortal Save()

Protected MustOverride Sub DataPortal DeleteObject (ByVal Key As Object)

#End Region

Step 5: Add the Helper Data Access Method Declarations:
O Helper methods:

#Region "Helper Data Access Methods"

'Method will return the Database Connection string from Configuration File

'Assumes the database name is prefixed with "DB"

Protected Function DBConnectionString (ByVal sDatabaseName As String) As String
Return ConfigurationManager .AppSettings ("DB:" & sDatabaseName)

End Function

#End Region

End Class

5.6.3 CONCLUSION

a WE NOW HAVE A BASE CLASS TO ENFORCE BUSINESS RULES ON OUR
COLLECTIONS CLASSES!!!

42

5.7 BusinessCollection Class Details

5.7.1 Overview

o We will now implement the BusinessCollectionClass Class that will serve as a template or model for us to create our Collection
Classes.

O These are the actual collection classes that will do the work, such as CustomerList, EmployeeList etc. and will be derived from
the base class BusinessCollectionBase

O Our Collection Classes are imposed the MustOverride Data Access methods by the BusinessCollectionBase Class..

5.7.2 Business Class Requirements

0 REMEMBER THIS IS THE CLASS IN WHICH WE WILL BUILD OUR COLLECTION CLASSES FROM (clsCustomerList,
clsEmployeeList etc.)

0 DO NOT CONFUSE THE BUSINESS COLLECTION CLASS WITH BUSINESS COLLECTION OBJECTS, BUSINESS
COLLECTION OBJECTS ARE INSTANCE OF A BUSINESS CLASS!

0 OBJECT-ORIENTED RULES REVISED:

l. CREATE BUSINESS COLLECTION CLASS
1. CREATE BUSINESS COLLECTION OBJECT
1. USE BUSINESS COLLECTION OBJECT

o We will now CREATE ABUSINESS COLLECTION CLASS TEMPLATE, that we can use to guide us in creating or modifying
our COLLECTION CLASSES.

Q This class will be inherited from BusinessCollectionBase thus FORCING the business rules and data access methods

5.7.3 IMPORT Required Libraries
Q Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

ADO.NET Data Access Libraries

Serialization Libraries

Remoting Libraries

Other necessary libraries, for example, | will include the System.1O for any file access | may need in my projects.

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB Connection

'Keep commented. will be configure later
'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.7.4 Convert Class into Distribute Object/Unanchored Class & Inherit from
BusinessCollectionBase Class

0 Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration:

<Serializable()> _
Public Class BusinessCollectionClass
Inherits BusinessCollectionBase

43

5.7.5 Implementing Data, Properties, Methods and Events

0 Nothing new here. These are the components every COLLECTION CLASS HAS, such as public properties (Count, Item), public
Worapper methods (Add, Remove, Clear()), Regular methods (Edit, Print, PrintAll, Authenticate etc.)

5.7.6 Public Data Access Methods Forced upon us by BusinessCollectionBase

o We will look at the four Public Data Access Methods created in the BusinessCollection Classes to be called by the User-
Interface

O These are similar to the ones used in the Business Classes, except that we are now using a Collection.

Public Data Access Methods Implementation Details
O Inour Business Classes, we will use ADO.NET to implement our data access. In order to user ADO.NET we need to add the
namespace libraries as follows:

Imports System.Data
Imports System.Data.OleDb 'Data Access Library OLEDB Provider

Implementing Create(), Load(key), DeleteObject(Key) and Save()

o NOTE THA THE IMPLEMENTATIONS SHOWN HERE ARE EXAMPLES ONLY. THERE ARE MANY WAYS TO DO
THIS. YOU ARE WELCOME TO READ OTHER MATERIAL AND LEARN HOW IS DONE BY OTHER DEVELOPERS
AND AUTHORS. To implement these methods we make the following declarations in the BusinessCollection Class:

I. Public Overrides Sub Create() - CREATES A NEW COLLECTION OBJECT. Implement this method as follows:
Public Overrides Sub Create()
'Calls Local DatPortal Create() To do the work
DataPortal Create()
End Sub
1. Public Overrides Sub Load() - LOADS COLLECTION WITH OBJECTS. Implement this method as follows:
Public Overrides Sub Load()
'Calls Local DatPortal Fetch() To do the work
DataPortal Fetch ()
End Sub
I11. Public Overrides Sub DeleteObject() - DELETES A CHILD OBJECT. Implement this method as follows:
Public Overrides Sub DeleteObject (ByVal Key As Object)
'Calls Local DatPortal DeleteObject() To do the work

DataPortal DeleteObject (Key)
End Sub

44

IV. Public Overrides Sub Save() - SAVES COLLECTION TO DATABASE. Implement this method as follows:
- Note that the decision to perform and update or insert is based on the status of the DIRTY flags. No need to iterate
through the collection and save every object if none of the objects are DIRTY!

Public Overrides Sub Save ()
'Verify there are dirty objects in Collection
'Only modify if dirty, otherwise do nothing in this method
If IsDirty Then
'Dirty Collection, go ahead and update
DataPortal Save ()
End If

End Sub

5.7.7 BusinessCollection Class — Protected Data Access Methods

Q
Q
Q

We now focus on the Protected Data Access Methods imposed on us (MustOverride) by the BusinessCollectionBase Classe.
These methods can only be called from within the BusinessCollection Class and it’s children

Since we declared these methods in the BusinessCollectionBase Class as MustOverride methods, we are forced to implement
them here otherwise we cannot compile our class.

To implement these methods we make the following declarations in the BusinessCollection Class:

. Protected Overrides DataPortal_Create() — This is where the code and queries or stored procedures are listed for creating
new objects and populating them with data from database:

'Data Access or other Code for Creating a New Business COLLECTION Object
Protected Overrides Sub DataPortal Create ()

'Create object and assign default values from database etc.
End Sub

1. Protected Overrides DataPortal_Fetch() — This method iterates through the collection and add the populated objects to
collection. ADO.NET code and query or stored procedure will be required:

Protected Overrides Sub DataPortal Fetch()
'Iterates through Collection, Calling Each CHILD object.Load() method
'CHILD Objects load themselves. ADO.NET Queries may be required
'for obtaininig key of every object for every object to load themselves

'THIS CODE WILL BE IMPLEMENTED WHEN DURING THE ADO.NET LECTURES
End Sub

45

I1l. Protected Overrides DataPortal_Save() — Sawe is done by iterating through Collection and asking every object to save
themselves:

= NOTE THAT IN YOUR PROJECT, YOU NEED TO REPLACE THE NAME BusinessClass WITH THE CLASS
TYPE OF THE CHILD OBJECTS YOU ARE STORING AND SAVING IN THE COLLECTION, For example,
clsEmployee, clsCustomer, etc.

46

IV. Protected Overrides DataPortal_DeleteObject() — Iterates through collection, finds target object and tells object to delete
itself. Optional, you can also delete the object from the collection or leave it to the Ul programmer to do so.

= AGAIN, HERE YOU NEED TO REPLACE THE NAME BusinessClass WITH THE CLASS TYPE OF THE CHILD
OBJECTS YOU ARE STORING AND SAVING IN THE COLLECTION, For example, clsEmployee, clsCustomer,
etc.

47

5.8 Creating the BusinessCollectionClass Template

5.8.1 Implementing BusinessCollection Class Template

Now we focus on the BusinessCollection Class. This is the class we will create our business COLLECTION objects from.
We need to derive this class from BusinessCollectionBase which imposes MustOverride methods.

We are going to create a template of what a Business Class requires.

NOTE, THIS IS NOT A BASE CLASS BUT A TEMPLATE TO GUIDE YOU AS TO WHAT THE CLASSES REQUIRES.

Ooo0oDo

Components of BusinessCollection Class
O First we need to inherit from BUSINESSCOLLECTIONBASE
O We will implement the four Public Data Access Methods created to be called by the User-Interface:

= Public Overrides Sub Create() — Creates objects with default values from DB. Class the Protected DataPortal_Create()
method to do the work, the queries etc.

= Public Overrides Sub Load() — Fetches data from database all objects and populates COLLECTION. Calls the Protected
DataPortal_Fetch() method to do the work.

= Public Overrides Sub DeleteObject (ByVal Key As Object) — Iterates through COLLECTION and Deletes object from
database. Calls Protected DataPortal_DeleteObject(ByVal Key As Object) methods to do the work.

= Public Overrides Sub Save() — Iterates through collection and saves each object. Calls Protected DataPortal_Save() to do
the work.

O Inaddition we need to CREATE the MustOverride protected Data Access methods imposed on us by the BusinessBase class:

Protected Overrides DataPorta_Create()
Protected Overrides DataPorta_Fetch()
Protected Overrides DataPorta_Save()
Protected Overrides DataPorta_DeleteObject()

O Inaddition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the
required libraries for the following:

ADO.NET Library

I/0 Library for any file access requirements

Configuration File library to use and manage configuration files storing our connection strings
Remoting Libraries

Serialization Library

O Finally we will add to our template regions for our standard COLLECTION CLASS declarations such as:

Public Properties (Count, Item, etc.)

Wrapper Methods

Regular Methods

Helper Methods — These are other methods needed by the data access or any other methods to handle some maintenance or
any required process that is not business related.

48

5.8.2 Sample Program #4 — Creating the BusinessCollection Class Template

O We now implement a template or BusinessCollection Class template that will server as our templates for the COLLECTION

Obijects

Example 5.4 — Creating a BusinessCollection Class Template
Problem statement:

O Create the BusinessCollection Class Template class that we can use as a template to create our classes.

Business Object Layer — Business Class & DLL Requirements
0 Implement the BusinessCollection Class in a DLL project
O The diagram below shows the Regions that make up the Business Class Template Format.

‘ Region view of BusinessCollection Class Format

ﬁusinessl:ollec...asl‘@emplate.vh]

If;’;(ﬁeneral)

j Ii:; (Declarations)

Imports
Imports
Imports
Imports

' Trnports
' Tmports
' Trnports
L Imports

System.

pption Explicit On
Option Strict On

Io

System.Data
System.Data.0leDb
System.Configuration

B 'Eeep commented.

System
Systetn
System
Systetn

.Runtime
. RBuntime
.Runtime
. RBuntime

Fl<3erializable()> _
Public Class BusinessCollectionClassTemplate
Inherits BusinessCollectionbase

will ke configure later

.Serialization.Formatters.Binary
. Remoting

.Remoting.Channels

Remoting. Channels.Hotp

'File/ IO

'Diata Looess (DatafSet)

'OLEDE Provider

'Configuration File for DE Connection

'Serialization Likbrary
' RBewot ing
'Remwoting
' RBewot ing

[N S

[ﬂPublic FProperties Declarationﬁ

[ﬂPublic Wrapper Methods Declarationﬁ

[ﬂPublic Regular Methods Declarationﬁ

[ﬂPublic Data Access Methodﬁ

[ﬂPrDtected Data Access Methodﬁ

H[Helper HMethods

“End Class

4

Step 0: Create an Empty Solution and do the following:

1. To the existing DLL project containing our BusinessBase, BusinessClass, & BusinessCollectionBase add a Class

2. Name the class BusinessCollectionTemplate Class

49

Step 1: Imports and Class declarations:

O At this point, the BusinessBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()>
Public Class BusinessCollectionClassTemplate
Inherits BusinessCollectionBase

Step 2: Add The Common COLLECTION Class Properties Region:

O Add Properties, Wrapper Methods etc:

#Region "Public Properties Declarations"
IR I e b b S b b S Ih g b g b i b b db b S db g b b b b S b b db b g b g b b b b S b S db S b b 2 b S b b db Ih g S g b b db b S db g b b g b 4

'Class Properties declarations, Example Count, Item etc.
Vhhkhhhkhhhhkhkhkhkhhhk A hkhk A hkhhhAhkhhAhhkhhhdhhhhhhhhhhkhkhrhhkhhkhkhkhkhkhkhkkhkhhkkhkhkhhkhkhhhkkhkhhkhkhhhkhx
'Name : Count Property &
'Purpose: Returns the number of item in collection s
V***************************e***
Public Shadows ReadOnly Property Count () As Integer

Get

Return MyBase.Dictionary.Count

End Get

End Property

LR e i i b b S b b b b i b i b b i b I b S b b b b B b b b 4 b S b I b b b b b b b i b g b i b i b b b b b b b b b b b b i b b i b b
'Name : Item (Key) Property &
'Purpose: Sets or get the object specified by key o

'***************************e***

Public Property Item(ByVal key As Object) As BusinessClassTemplate
Get

'Step 1- Return POINTER of Object of associated key

'Convert returned POINTER

Return CType (MyBase.Dictionary.Item(key), BusinessClassTemplate)
End Get
Set (ByVal value As BusinessClassTemplate)

'Step 1-Verify if key exists

If MyBase.Dictionary.Contains (key) Then
'Step 2-Set or overwrite object in collection
MyBase.Dictionary.Item(key) = value

Else
'Step 3-Else throws an Argument Exeption to indicate not found.
Throw New System.ArgumentException ("Key Not found")

End If

End Set
End Property

Step 3: Add The Common COLLECTION Class Wrapper Region:

O Add Wrapper Methods etc:

#Region "Public Wrapper Methods Declarations"

Thhkkhkhkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkkkkkx
' <summary>
Name: Add(Key, Object)Method
Purpose: Adds new object to the Collection.
Includes support for duplicate key
</summary>
<param name="key'"></param>
<param name="objItem"></param>
<remarks></remarks>
Public Sub Add(ByVal key As Object, ByVal objItem As BusinessClassTemplate)
'Step A- Begin Error trapping
Try
'Step 1-Calls Collection.Add(Key,Object) Method to Add object
MyBase .Dictionary.Add (key, objItem)

'Step B-Traps argumentNullException when key is Nothing or null
Catch objX As ArgumentNullException
'Step C-ReThrow ArgumentNullException
Throw New System.ArgumentNullException ("Invalid Key: " & objX.Message)
'Step D-Traps for ArgumentExecption when KEY is duplicate.
Catch objY As ArgumentException
'Step E-ReThrow an ArgumentExecption to calling programs
Throw New System.ArgumentException("Duplicate Key: " & objY.Message)
'Step F-Traps for general exceptions.
Catch objE As Exception
'Step G-ReThrow an general exceptions
Throw New System.Exception ("Add Method Error: " & objE.Message)
End Try
End Sub

51

O Continue Wrapper Methods etc:

LIRS b I 2 I I b I A b B A b IR b I b b b I b I b S S b i S b i S b S b e S b e b b b b S I b e S b S b S S I e S I S S I S I I S S S Y

' <summary>
Name: Function Remove (Key)Sub Method
Purpose: Remove object from collection based on key.
</summary>
<param name="key"></param>
<returns></returns>
''' <remarks></remarks>
Public Function Remove (ByVal key As Object) As Boolean
'Step A- Begin Error trapping
Try

'Step 1-Verify object exists

If MyBase.Dictionary.Contains (key) Then
'Step 2-Calls CollectionObject.Remove (Key) Method
MyBase.Dictionary.Remove (key)
'Step 3-Return True since found and removed
Return True

Else
'Step 4-Return False since not found
Return False

End If

'Step B-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step C-Throw Collection ArgumentNullException
Throw New System.ArgumentNullException("Invalid Key: " & objX.Message)
'Step D-Traps for general exceptions.
Catch objE As Exception
'Step E-Throw an general exceptions
Throw New System.Exception ("Remove Error: " & objE.Message)
End Try
End Function

O Continue Wrapper Methods etc:

Thhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkkhkkhkkkhkkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkhkhkhkhkhkhkkkhkkkhkkkhkkhkkkxk
' <summary>
Name: Clear()Method
Purpose: Remove all objects from collection
</summary>
<remarks></remarks>
Public Shadows Sub Clear()
'Step A- Begin Error trapping
Try
'Step 1-Calls Collection.Clear () Method
MyBase .Dictionary.Clear ()

'Step B-Traps for General exceptions
Catch objex As Exception
'Step C-Throw an General Execption to calling programs.

Throw New System.Exception ("Unexpected error clear(). " & objex.Message)
End Try

End Sub

Thkhkhkhkkhkkhkhkkhkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkk
'Name : Contains ()Method

*
' Purpose: Verify if object is in Collection *

Thkhkkhkkkhkkkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkkkhkkkhkkkhkkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkkkhkkkhkhkhkkkkkk
Public Shadows Function Contains (ByVal Key As Object) As Boolean
'Step A- Begin Error trapping
Try
If MyBase.Dictionary.Contains (Key) Then
Return True
Else

Return False
End If

'Step B-Traps for General exceptions
Catch objex As Exception

'Step C-Throw an General Execption

Throw New System.Exception (objex.Message)
End Try

End Function

Thhkkkhkkkhkkkhkkkhkkkhkkkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhhkhkhhkhkhkhkhkkk
'Add other Overloaded Wrappers here as well, such as Add(x,y,z..)

#End Region

Step 5: Add Regular Method Declarations:
O Public Regular Methods or non Wrapper methods, such as Edit, Print, etc.:

#Region "Public Regular Methods Declarations"
TAAAKAAKAA AR AR AR AR A AR AR ARk ARk Ak Ak hkhkhkhkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhhkhhk

'Class Regular Methods. Ex: EditItem(k,0), EditItem(x,y,z..), Print(X), etc.

#End Region

Step 6: Add the Public Shared Data Access Method Declarations:

Q Public Shared Data Access declarations:

#Region "Public Data Access Methods"
Thhkkhkkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkkhkkhkhkhkhkhkhkhkhkkhkhkkhkkkhkkkkkkkxk

' <summary>
' [Optional] Calls Data Portal Create to create a Collection Object. This
Method is not used in this class, but can be used in the
future to create objects that need data from database upon Creation
</summary>
<remarks></remarks>
Public Overrides Sub Create()
'Calls Local DatPortal Create() To do the work
DataPortal Create()

End Sub

Thhkkhhkhkhkhkhkhkkhkhkhkhkhkhhkhhhkhkhkhkhkhkhkhkhhhhhkhhkhkhhkhkhkhkhhkhhhhkhkhhkkhkhhhkhhkhkhhkhkhkhkhkhhhkhkhkhhkhhkx

''"' <summary>
Calls Data_Portal Fetch to load all objects from database
</summary>
<remarks></remarks>
Public Overrides Sub Load()
'Calls Local DatPortal Fetch() To do the work
DataPortal Fetch ()

End Sub

TR AKRRAKRARAKRKAR AR AR AR A AR A AR A kR Ak Ak kA hkhhkhkhkhkkhkhkkhkhkkhkkkhkkkkk
''' <summary>
Calls DataPortal Save() to save all objects in collection to Database
</summary>
<remarks></remarks>
Public Overrides Sub Save ()
'Verify there are dirty objects in Collection
'Only modify if dirty, otherwise do nothing in this method
If IsDirty Then
'Dirty Collection, go ahead and update
DataPortal Save ()
End If

End Sub

Thhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhkhkhkkhkhkhkkhkhkkhkkkkk

' <summary>
Calls DataPortal DeleteObject to delete an object residing

In the collection from the database
</summary>
<param name="Key'"></param>
<remarks></remarks>
Public Overrides Sub DeleteObject(ByVal Key As Object)
'Calls Local DatPortal DeleteObject() To do the work
DataPortal DeleteObject (Key)
End Sub

#End Region

54

Step 7: Add the Protected Data Access Method Declarations:
O Protected Data Access Methods that contain the SQL Queries etc.:

#Region "Protected Data Access Methods"
ThAAAAKAKAAAA AR A AR A Ak hkhAhkhhkhkhhkkhkk

'Protected Data Access Methods declarations

Thhkkhkkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkhhkx
<summary>
Data Access or other Code for Creating a New Business COLLECTION Object
Used when object requires data from db upon creation
</summary>
<remarks></remarks>

Protected Overrides Sub DataPortal Create()
'Create object and assign default values from database etc.

End Sub

Thhkhkhkhkhkhkkhkhkhkhkhhkhhkhkhkhkkhkhkhhkhhkhhkhkhkhkhkhkhkhhkhhkhkhhkhhkhkhkhkhkhkhkhhkhhkhhhkhkhkhkhkhkhhkhkhkkhkkhkkkhkk

<summary>
Loads all objects from database by Iterating through Collection, and

calling Each ITEM object LOAD() method so each Item loads itself
</summary>
<remarks></remarks>

Protected Overrides Sub DataPortal Fetch ()
'Iterates through Collection, Calling Each CHILD object.Load() method
'CHILD Objects load themselves. ADO.NET Queries may be required
'for obtaininig key of every object for every object to load themselves

'THIS CODE WILL BE IMPLEMENTED WHEN DURING THE ADO.NET LECTURES

End Sub

55

Q Continue Protected Data Access Methods:

ThAkAkAAkAkAAAAAAkAkhAkhkhAkhkhkkhkhkhkhkhkhkhhkhkhhkhkhhkkhkhkhkkhkkkhkhkkkkk

'''" <summary>
SAVES all objects from database by Iterating through Collection, and

calling Each ITEM object SAVE() method so each Item saves itself
</summary>
<remarks></remarks>

Protected Overrides Sub DataPortal_ Save()
'Tterates through Collection, Calling Each CHILD object.Save() method
'CHILD Objects save themselves
'Step A- Begin Error trapping

Try
'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

Dim objDictionaryEntry As DictionaryEntry
Dim objChild As BusinessClassTemplate

'Step 2-Use For..Each loop to iterate through Collection

For Each objDictionaryEntry In MyBase.Dictionary
'Step 3-Convert DictionaryEntry pointer returned to Type Person
objChild = CType (objDictionaryEntry.Value, BusinessClassTemplate)

'Step 4-Call Child to Save itself
objChild.Save ()

Next
'Step B-Traps for general exceptions.
Catch objE As Exception
'Step C-Throw an general exceptions
Throw New System.Exception("Save Error! " & objE.Message)

End Try
End Sub

IMPORTANT! YOU NEED TO REPLACE BusinessClassTemplate STATEMENT BY THE CLASS OF THE ITEMS
BEING STORED IN THE COLLECTION, FOR EXAMPLE, clsCustomer, clsEmployee etc.

56

Q Continue Protected Data Access Methods:

Q

Q

Thkhkkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhhkhhkkhkhkhkhkhkhkhkhhkhhkhkhkhkkhkhkhkkhhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkkx

''' <summary>

''' DELETES AN OBJECT BY ID from database by Iterating through Collection

''"'" and calling Each ITEM object DELETE (ID) method so each Item delete itself
</summary>
<param name="Key'"></param>
<remarks></remarks>

Protected Overrides Sub DataPortal DeleteObject (ByVal Key As Object)
'Tterates through Collection, Calling Each CHILD object.Delete() method
'CHILD Objects Delete themselves

'Step A- Begin Error trapping

Try
'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS
Dim objDictionaryEntry As DictionaryEntry
Dim objItem As BusinessClassTemplate

'Step 2-Use For..Each loop to iterate through Collection

For Each objDictionaryEntry In MyBase.Dictionary
'Step 3-Convert DictionaryEntry pointer returned to Type Person
objItem = CType(objDictionaryEntry.Value, BusinessClassTemplate)

'Step 4-Find target object based on key
'YOU WILL NEED TO SELECT THE CORRECT PROPERTY
'"FOR objItem.Property, ALSO YOU NEED TO CONVERT THE
'KEY PARAMETER USING CSTR OR CINT ETC. DEPENDING
'ON THE DATATYPE OF THE objItem.Property
If objItem.Property = CStr (Key) Then
'Step 5-Object deletes itself
objItem.DeleteObject (Key)

''Step 6-[OPTIONAL] Remove Object From Collection
''since no longer in DB
'MyBase .Dictionary.Remove (Key)
End If
Next
'Step B-Traps for general exceptions.
Catch objE As Exception
'Step C-Throw an general exceptions
Throw New System.Exception("Save Error! " & objE.Message)
End Try

End Sub

IMPORTANT! Note that in the following code, Property represents the ID number, SS number or whatever is the ID property of
the Item Object. YOU NEED TO MODIFY THIS CODE, REPLACE THE PROPERTY BY THE CORRECT PROPERTY OF
THE OBJECT. ALSO YOU NEED TO USE THE CORRECT DATA TYPE CONVERSION FUNCTION INSTEAD OF CStr()

If objItem.Property = CStr (Key) Then
'Step 5-Object deletes itself
objItem.DeleteObject (Key)

ALSO, YOU NEED TO REPLACE TO REPLACE BusinessClassTemplate STATEMENT BY THE CLASS OF THE
ITEMS BEING STORED IN THE COLLECTION, FOR EXAMPLE, clsCustomer, clsEmployee etc

57

Step 7: Helper Methods:

Q Other non-business related methods:

#Region "Helper Methods"

TAAAAAKRKA AR A AR A AR A AR A Ak Ak Ak hkkhkkk

'Methods used to assist other methods or maintenance

#End Region

End Class

5.8.3 CONCLUSION

o WE NOW HAVE A TEMPLATE BUSINESS COLLECTION CLASS FROM WHICH WE
CAN CREATE ALL OUR COLLECTION CLASSES!!

58

5.9 Business Rules and Validation (Business Object Requirements)

0 Now we address how to use some of the business rules we’ve implemented so far.
O Inaddition we implement another requirement for our Business Objects, and that is that they must validate themselves.

5.9.1 Implementing Dirty & NEW Business Rule In Properties & Methods

0 We implemented several Business Rules and logic into our templates, such as NEW & DIRTY Objects.
O We now look at how to implement these rules.

Implementing Dirty Objects in Property Methods

O Everytime an object is SET with data via properties, the object is DIRTY!.
O Therefore we need to MARK EVERY SET portion of a property by calling the Business Rule MARKDIRTY () method
O For example, lets look at the following Name Property:

Public Property Name () As String
Get
Return m Name
End Get
Set (ByVal value As String)

m Name = value

'Mark Ojbect as dirty it has been modified
MyBase .MarkDirty ()

End Set
End Property

O Another example:
Public Property IDNumber () As Integer
Get
Return m IDNumber
End Get
Set (ByVal value As Integer)
m_IDNumber = value

MyBase .MarkDirty () 'Now DIRTY! Must be in Every Set Property

End Set
End Property

0 IMPORTANT! EVERY PROPERTY SET MUST HAVE THE CALL TO MARKDIRTY/()

59

Implementing Dirty Objects in Regular Methods

O Asusual, you need to add you’re the regular methods that make the object behave like its real world counterpart.

O Nevertheless, if a Method makes any modification to the data, then we need to mark the object as DIRTY once the method
executes.

O For example, in the following Shop() method, modifies the private data Therefore it must be marked DIRTY

'Methods modifies data, object must be marked as Dirty
Public Sub Shop(ByVal intItems As Integer)
'Data is modified
intTotalItemsPurchased = intTotallItemsPurchased + intItems

MyBase .MarkDirty () 'Must Mark Dirty since private data is being modified

'Raise or trigger event & send information with the event
RaiseEvent OnShopping (intTotalItemsPurchased)

End Sub

O Note that if a method makes no kind of modification to the data, then we DO NOT need to mark it as dirty
O ONLY METHODS THAT MODIFY DATA MUST CALL THE MARKDIRTY() METHOD!

Dirty Objects & Public Data Access Methods

Q Our BusinessClasses & BusinessCollectionClasses contain Public Data Access Methods.
O These include:

Public Create()

Public Load()

Public Save()

Public DeleteObject (Key)

O These Public methods don’t require that we mark them DIRTY since these methods simply call the Protected DataPortal XXX
classes to do the work. It is inside the Protected Classes were changes are made and we need to apply these rules

60

Implementing Dirty Objects in Protected Data Access Methods

O Because these are the classes that actually perform the Data Access and modify the object, we need to implement our DIRTY
AND NEW LOGIC.

O This applies only to the BusinessClass and NOT the COLLECTION BusinessCollectionClass.

O The COLLECTION CLASSES, don’t really modify the CHILD Business Objects, they rely on these object to do their own
DIRTY WORK, therefore collection classes don’t require that we add DIRTY or NEW logic to the Data Access Methods.

O With that said lets focus on the BusinessClass Protected Data Access Methods

O The protected methods include:

Protected Overrides DataPorta_Create()
Protected Overrides DataPorta_Fetch()
Protected Overrides DataPorta_Update()
Protected Overrides DataPorta_Insert()
Protected Overrides DataPorta_DeleteObject()

Business Rules & DataPortal _Create() method

O This method loads creates new object and populates them with default values from database etc.
0 IMPORTANT! - Business Rules dictate that newly create objects are NEW. With this in mind, we need to call the MarkNew()
method at the end of the method as follows:

'Data Access Code for Creating a New Business Object
Protected Overrides Sub DataPortal Create ()
'Create object and assign default values from database etc.

'At the end, set New flag to True a new object is created
MarkNew ()
End Sub

Business Rules & DataPortal_Fetch(Key) method

O This method loads the object with data from the database based on the key. Using ADO.NET.
o IMPORTANT! - Business Rules dictate that an object loaded from database is marked OLD since it does exist in the database.
With this in mind, we need to call the MarkOld() method at the end of the method as follows:

'Data Access Code to fetch an object from Database

Protected Overrides Sub DataPortal Fetch(ByVal Key As Object)
'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures
'Data Access Code Here!
'At the end, set New flag to False. NOT Dirty since found in database

MarkO1ld ()
End Sub

61

Business Rules & DataPortal_Update() method

O This method UPDATES the object in the database using ADO.NET.

0 IMPORTANT! — After updating, since this object exists in the database, we need to mark it OLD. Remember that marking and
object OLD also marks it CLEAN. Call the MarkOld() method at the end of the method.

O Implementation is as follows:

'Data Access Code to Update an Objects data to database
Protected Overrides Sub DataPortal Update ()
'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

'Data Access Code Here!

'Set New flag to False since exist in database/and is Not dirty any longer
MarkO1ld ()
End Sub

Business Rules & DataPortal_Insert() method

Q This method INSERTS a new record to the database using ADO.NET.

O IMPORTANT! - Since this object was just inserted and NOW exists in the database, we need to mark it OLD. Call the
MarkOld() method at the end of the method.

O Implementation is as follows:

'Data Access Code to insert a new object to database
Protected Overrides Sub DataPortal Insert()
'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

'Data Access Code Here!

'Set New flag to False since exist in database/and is Not dirty any longer
MarkO1ld ()
End Sub

Business Rules & DataPortal_DeleteObject() method

Q This method DELETES a record from the database using ADO.NET.

o IMPORTANT! - Deleting an object from the database, means that the Object is new NEW, since it does not exist in the
database any more, we need to mark it NEW. Call the MarkNew() method at the end of the method.

O Implementation is as follows:

'Data Access Code to immediatly delete an object from database.
Protected Overrides Sub DataPortal DeleteObject (ByVal Key As Object)
'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

'Data Access Code Here!

'Object no longer in database, therefore reset our status to be a new object
MarkNew ()
End Sub

62

5.9.2 Implementing Validation Business Rule

In this section we implement the validation rules.

Validation is performed in the PROPERTY methods of the object.

The validation process usually occurs in the SET portion of a property where modification takes place.

Validation involves using program code to verify that the value passed into a Property SET is within the expected data type,
length, size, not empty etc.

Validation usually involves the following:

000D

O

= Use If/Else and other VB.NET statements to accomplish the test and perform and action based on the results
= The action usually involves Throwing and Exception.

O Examples of validation business rules are:

= BLANK Property — A property is left blank or empty. For example, in a School Management Program, the student’s SS
Number can never be blank, therefore we need to validate for this rule.

= MAXIMUN-LENTH Property — Some properties may require that the string be kept within a certain length.

= EXACT-LENTH Property — Property where the length must be exact. Example SSNUmber etc.

= WRITE-ONCE Property — Some properties require that the value can only be set once and can never change. Example,
SSNumber, LicencelD etc.

O Again, the idea is that when any of these rules are broken, we need to do handle this and let the User-interface that a rule was
broken.

O Due to time constraints, we will NOT be implementing a more sophisticated mechanism, so we will simply raise exceptions.

O We will show the code required for the Class Developer as well as what the User-Interface Developer needs to do.

Maximum-Length String Business Rule

0 Maximum-Length String Properties refers to a property that cannot exceed the length of a particular value. For example if the
maximum value we want the Name property to contain under 50 characters, then we need to test for this length. If the length is
exceeded, then we Throw a NotSupportedException.

Implementing Max-Length inside Class Property:
O Example of this code is as follows:

Public Property Name () As String

Get
Return strName

End Get

Set (ByVal Value As String)
'Maximum-lengh property
If Len(Value) > 50 Then

Throw New NotSupportedException ("Name too long")

End If
strName = Value

MyBase .MarkDirty() 'Mark Ojbect as dirty
End Set
End Property

Handling Max-Length in User-Interface or Client:

0 Now we need to know how to code the MAX-LENGTH rule in the User Interface (Forms, Clients etc).

O Since what the rule does is throw a NotSupportedException, we need to trap for this exception in the client program and display
the error message returned from the Business Object.

O Example of this is as follows:

Try
'Step x-Traps for Business Rule violations & Display Error Message
Catch objNSE As NotSupportedException

MessageBox.Show ("Business Rule violation! " & objNSE.Message)

End Try

Implementing Write-Once Properties
O Write -Once Properties refers to a property that is only written once and cannot be changed once is written.

X3

S

This is an excellent technique to use for unique key values that identify an object and once entered can no longer be changed.
For example a CustomerID value or SSN number, LicenseNum, etc.

X3

%

O Write -Once Properties are implemented by testing the new flag = flglsNew, if this flag is TRUE, then we can allow the Set
portion of the property to execute, otherwise we cannot allow this property to run if this object is NOT NEW, which means the
value has been already set.

0 IF APROPERTY IS GIVEN A WRITE-ONCE RULE, IN YOUR CODE, YOU CANNOT ATTEMPT TO SET THAT
PROPERTY ANYWHERE IN YOUR CODE WHERE THE OBJECT IS OLD. FOR EXAMPLE THE Edit() method.

Implementing Write-Once inside Class:
O Write-Once Properties are implemented as follows:

I. Inthe Property Set portion of a Property statement, we test the status of the IsNew flag to implement this logic :

'Write-Once Property
Public Property IDNumber () As Integer
Get
Return intIDNumber
End Get
Set (ByVal intTheID As Integer)
If Not Me.IsNew Then
Throw New NotSupportedException ("Write-Once Property already set")
Else
intIDNumber = intThelD

MyBase.MarkDirty() 'Must be in Every Set Property
End If
End Set
End Property

Handling WRITE-ONCE in User-Interface or Client:

O We need to know how to handle this Business Rule in the UL.

a Since the rule throw a NotSupportedException, we need to trap for this exception in the client program and display the error
message returned from the Business Object.

O Again, is the same code as before:

Try

'Step x-Traps for Business Rule violations & Display Error Message
Catch objNSE As NotSupportedException

MessageBox.Show ("Business Rule violation! " & objNSE.Message)
End Try

64

Implementing NO BLANK/EMPTY String Rule

0 No Blank/Empty Properties refers to a property that cannot be left blank or 0 in an Object.

7

« Examples of this rule such as the SSN or CustomerID which cannot be left blank, they must be populated since they usually
represent a Primary Key in the database.

Implementing NO BLANK inside Class:
0 No Blank or Empty Properties are implemented by verifying if the length of the string is empty:

I. Inthe Property Set portion of a Property statement, enter code to verify the length = 0:

Public Property Address () As String
Get
Return strAddress
End Get
Set (ByVal Value As String)

If Len (Trim(Value)) = 0 Then
Throw New NotSupportedException ("Value is empty")
End If
strAddress = Value
MarkDirty () 'Must be in Every Set Property

End Set
End Property

Handling NO-BLANK/EMPTY Rule in User-Interface or Client:
O Again, we need to trap for a NotSupportedException, and display the error message:

Try

'Step x-Traps for Business Rule violations & Display Error Message
Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)

End Try

65

Implementing EXACT-LENGTH Rule

Implementing the EXACT-LENGTH Rule
O Exact-Length Properties refers to a property that length of the string must be of an exact size.

« Examples of this rule such as the SSN which the size must be exactly 11 characters (including — character) or a Phone number
which must be say 14 characters: (718)-260-5000.

Implementing EXACT-LENGTH inside Class:
0 Exact-Length Properties are implemented by comparing the length is within a range
O This mechanismis implemented as follows.

Public Property Phone() As String

Get
Return strPhone

End Get

Set (ByVal Value As String)
'Enforce exact-lenght: (212)-555-1212
If (Len(Trim(Value)) <> 14) Then

Throw New NotSupportedException ("Value not exact Lenght")

End If

strPhone = Value
MarkDirty () 'Must be in Every Set Property
End Set
End Property

Implementing EXACT-LENGTH Rule in User-Interface or Client:
O Again, we need to trap for a NotSupportedException, and display the error message:

Try

'Step x-Traps for Business Rule violations & Display Error Message
Catch objNSE As NotSupportedException

MessageBox.Show ("Business Rule violation! " & objNSE.Message)

End Try

66

5.9.3 Constructor Methods & Business Rules

O As we know, when we create an object, constructors execute, such as default and parameterized constructors.
O These constructors modify data! They either set the data to default values or assign data to the parameters
O We have to options:

= Modify via the Private Data — Modifies private data directly, but we have no way of knowing or checking if the data
modified satisfy our validations rules. This is more of a concern when this data is being passed as parameters to the
parameterized constructor.

» Modify via Public Properties — Using Public Properties guarantees that the property validation mechanism catches any issues.

O With this said, we will do the following:

1. Assign the Default constructor to Private Data directly — We don’t have to concern ourselves with the default since we
control it from within the class.

2. Assign the Parameterized Constructor to the PROPERTY PROCEDURES. We don’t have control of what the Ul
developer will pass as arguments to objects so we need to make sure they are within our validation rules.

Implementing the Default Constructor method
O No changes required here, if you are using the Private Data to initialize the default constructor.

Public Sub New ()
'Note that private data members are being initialized
strName = ""
intIDNumber = 0
dBirthDate = #1/1/1900#
strAddress = ""
strPhone = " (000)-000-0000"
intTotalItemsPurchased = 0

End Sub

0 Note that if you decide to use the Properties instead of the private data directly, the default data that you enter, must satisfy the
Business Rules dictated by the property otherwise you will yield errors.

Implementing the Parameterized Constructor method

Q Inthis case we will assign the argument parameters to the Properties instead of the private data.

O By doing this we make sure that when an object is created and data is passed to the object upon creation, that data must satisfy the
Business rules.

O Implementation is as follows:

Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date,

ByVal strAdr As String, ByVal strPh As String)
'Note that we are NOT using the private data but the Property Procedures instead
Me.Name = strN
Me.IDNumber = intIDNum
Me.BirthDate = bBDate
Me.Address = strAdr
Me.Phone = strPh
Me.TotalItemsPurchased = 0

End Sub

67

5.9.4 Listing of all Base Classes & Templates (Summary)

Q So this is what we have so far:
BusinessBase — Base Class for our Business Classes. BusinessCollectionBase — Base Class for Business Collection Classes:

Imports
<Serializable()> _
Class MustlInherit clsBusinessBase

Imports

Class MustlInherit clsBusinessCollectionBase
Inherits DictionaryBase

Private Business Rules data:
mflglsDirty, mflglsNew

Public Business Rules Properties:
IsNew, IsDirty

Public MustOverride Data Access Methods:
Create()

Load(Key)

DeleteObject(Key)

Save()

DataPortal_Create()
DataPortal_Fetch(Key)
DataPortal_Update()
DataPortal_Insert()
DataPortal_DeleteObject(Key)

Public Helper Data Access Methods:
DBConnectionString(DBName)

Protected MustOverride Data Access Methods:

Public Business Rule Properties:
IsDirty

Public MustOverride Data Access Methods:
Create()

Load()

DeleteObject(Key)

Save()

Protected MustOverride Methods:
DataPortal_Create()
DataPortal_Fetch()
DataPortal_Save()
DataPortal_DeleteObject(Key)

Public Helper Data Access Methods:
DBConnectionString(DBName)

BusinessClass Template & BusinessCollectionClass Template — INHERITED from BUSINESSBASE for creating our

REGULAR CLASSES & BUSINESSCOLLECTIONBASE for our COLLECTION CLASSES.

Imports
<Serializable()> _
Class clsBusinessClass
Inherits clsBusinessBase

Imports

<Serializable()> _

Class clsBusinessCollectionClass
Inherits clsBusinessCollectionBase

Private data:

Public Event Declarations:

Public Properties:

Public Constructors:

Public Methods:

Public Shared Data Access Methods:
Create()

Load(Key)

DeleteObject(Key)

Save()

Protected Override Data Access Methods:
DataPortal_Create()
DataPortal_Fetch(Key)
DataPortal_Update()
DataPortal_Insert()
DataPortal_DeleteObject(Key)

Public Helper Methods:

Public Properties:

Public Wrapper Methods:

Public Regular Methods:

Public Shared Data Access Methods:
Create()

Load()

DeleteObject(Key)

Save()

Protected Override Data Access Methods:
DataPortal_Create()

DataPortal_Fetch()

DataPortal_Save()
DataPortal_DeleteObject(Key)

Public Helper Methods:

68

O At this point, we implemented a DLL component Project that contains our Base Classes & Templates, for us to use in our
programs:

#9 BusinessObjectsTemplatesDLL - Microsofi Visual Basic .NET [design]

File Edit Wiew Project Buld Debug Tools ‘Window Help

B SH@| R0 @B) o - # strServiceName - REIRF-.
% n lar e A B 4
=

o Solution 'BusinessTemplates' (1 project)
éj - BusinessObjectsTemplatesDLL
=]

I

- [+3] References

- ¥] assemblyInfo.vb

: E BusinessBase, vb

: @ BusinessClass vb

e E BusinessCollectionBase, vb
" ["®] BusinessCallectionClass. vb

4| i}] >
E Solution Explorer E Class Yiew |
|Pr0perties a X |

IBusinessl]hjectsTemplatesDLL j

z=[4i][=]

Project File BusinessObjectsTemp
Project Folder | C:\Documents and 55

| output 7 x|
|

Project File

The name of the file containing build,
configuration, and the infarmation ...

Task List Bl output | Froperties | @ Dvnamic Help |
| Ready

0 Going forward, when we create applications, we can use these base classes and templates for our Business Objects projects:

69

5.9 User-Interface Support for Business Objects

5.9.1 Overview

O Ok, now that we have gone thought the Business object Layer. We need to address the User-Interface Laver.
O What we need to know is what needs to be done in our Forms or Ul to support the Business Objects.
O What does our User-Interface Developer needs to know so they can use our Business Objects.

5.9.2 Programming the Ul to use the Business Objects
O For starters we know the following:

1.

2.

Ul will create Business Objects and use them.

Ul will call Regular Public Methods & Properties to make the object behave as its real-world counterpart. Some of these
methods modify data.

Ul will also call Business Rules Public Properties to track the STATUS of the Business Object, such as IsDirty & IsNew

Ul will also call Business Rules Public Data Access Methods: Create(), Load(), Save() & DeleteObject()

Q Sonow let’s address each one of these tasks at a time, see what needs to be done:

1.

2.

Ul will create Business Objects and use them.

How is done: Create Object using default or Parameterized values

How Business Object React:
= BO will throw a NotSupportedException if the values passed to the parameterized
constructor are in violation of Validation Business Rules: NO-BLANK, MAXIMUM-
LENGTH, and WRITE-ONCE etc.

How User-Interface Should React:
= Trap for a NotSupportedException.

Ul will call Regular Public Methods & Properties to make the object behave as its real-world counterpart.

How is done: Call Properties or Methods using normal syntax: Object.Property or Object. Method()

How Business Object React:
= If the Property or Method creates temporary BO’s and uses them, BO will throw a
NotSupportedException if the values assigned to the temporary objects are in violation of
Validation Business Rules: NO-BLANK, MAXIMUM-LENGTH, and WRITE-ONCE etc.

= Ifthe Property or Method MODIFIES the OBJECT, BO’s will mark the Object as Dirty.

How User-Interface Should React:
= Trap for a NotSupportedException.

70

3. Ul will call Business Rules Public Properties to track the STATUS of the Business Object, such as IsDirty & IsNew.

How is done: Call Properties using normal syntax: Object.Property

How Business Object React:
= Returns a TRUE or FALSE depending on the Status of the Object.

How User-Interface Should React:
= Take any necessary action based on these the True/False results.

4. Ul will also call Business Rules Public Data Access Methods: Load(), Save() & DeleteObject()

How is done: Call Methods using normal syntax: Object.Method()

How Business Object React:
= Perform the data access
= Marks the Object as Dirty, New etc based on the data access method called.

How User-Interface Should React:
= Nothing or may need to trap for Exceptions generated by ADO.NET code.

Final Summary

O From our analysis of how the Ul performs the operations listed and how the Business Object reacts we can conclude the
following:

= Ul uses the object (Properties & method calls) and let’s the object perform the requested operation
= Ul needs to trap for the NotSupportedException in case the Ul violates the rules.
= Ul can use a Try-catch Block to trap for this exception and Handle the exception as required.

O So the Ul developer needs to be aware of the exception and use a Try-Catch Block to trap and handle appropriately.

71

6.1 Sample Program #5 — Customer Management Business Objects Program

6.1.1 Overview

O We will now upgrade the Customer Management Application from previous lecture, which resembles the class project. We will
inherit from BusinessBase, BussinessCollectionBase and implement our Business Classes following the rules and format of the
BusinessClass, BussinessCollectionClass templates.

0 Insummary we will add the following new functionality:

1. Inheritance & Business Object requirements using BusinessBase, BussinessCollectionBase, and BusinessClass,

BussinessCollectionClass templates:

Class Mustlnherit

The clsPerson Class will now inherit from BusinessBase class.

Continue to Inherit the clsCustomer from clsPerson class.

Modify clsCustomer to adhere to the BusinessClass template

The clsCustomerList will now Inherit from BussinessCollectionBase.

Modify clsCustomerListManager to adhere to the BusinessCollectionClass template
Maintain all Business Template logic within this new inheritance scheme.

The new object model should look as follows for the Business Classes:

BusinessBase

Class Mustlnherit
clsPerson

Business Rules \

. Class clsCustomer
Private data members:

MustOverride Data Access
Methods

Business Class
strName, strSSNum, dBirthDate ()

sAddress, sPhone, Private data members:

Er%ﬁ).erlt\l/‘lesth d \ strCustomerID,
ublic viethods m_TotalltemsPurchased

Necessary Business Rules -
y Properties

Public Methods
Public Data Access Methods
Protected Data Access

Methods

= The Collection Class hierarchy looks as follows:

Class MustlInherit BusinessCollectionBase

Class clsCustomerList
Inherits clsBusinessCollectionBase

Business Rules
MustOverride Data Access Methods

\ Public Properties & Wrapper Methods
Public Regular Methods

Public Data Access Methods

Protected Data Access Methods
Business Methods

72

1. We will enforced Dirty Objects to ALL OUR PROPERTY SET:

= Customer Name: Call MARK-DIRTY()
= Social Security & Customer ID Number — Call MARK-DIRTY/()
= Address, & Phone — Call MARK-DIRTY ().

2. We will enforced the following Field-Level Validation to our Properties:

= Customer Name — NO-BLANK & MAX-LENGTH.
= Social Security & Customer ID Number — WRITE-ONCE, EXACT LENGTH & NO-BLANK/EMPTY
= Address, & Phone — NO-BLANK/EMPTY.

3. In addition we will CUT/PASTE FILE ACCESS CODE from the current load() & save() to the clsCustomerList DATA
ACCESS METHODS, DataPortal_Fetch() & DataPortal_Save() in order to permanently store our data and simulate the
database partially:

= In the CustomerList Collection we include File Access code to Load & Save the Customer Child Objects with data
from a comma-delimited file.

= Afile named Customers.txt is used to store the data.

= NOTE! We will keep all Business Object structure as is. The Business Methods and properties should not be
modified in any way.

6.1.2 Problem Statement
O The requirements for Sample program #5. are as follows:

Example #5 — Business Object Customer Management Application (Version 2)

Problem statement:
O Upgrade the Customer Management application as described in previous Overview section.

Business Object Layer — Business Class & DLL Requirements

O Implement the following classes:
= clsPerson Class — MustInherit Class that inherits from BusinessBase. Details in code to follow
= clsCustomer Class — Inherit from clsPerson. Details in code to follow
= clsCustomerList Collection Class — Inherits from BusinessCollectionBase:

- Derive this class from BusinessCollectionBase.

- Inthe DataPortal_Fetch() Add File Access Code to load data from the Customer.txt file and populate the collection
with data read from file.

- Inthe DataPortal_Save(), add File Access Code from current Load() & Save() method to the new DataPortal_Fetch()
& DataPortal_Save() in order to permanently store the data to Customer-.txt file.

Presentation/Ul Layer — Client Process requirements:
= Same as previous Customer Manager Example

73

HOW IT'S DONE:

| The Component or DLL

Part | — View The Class Library Project:

Step 1: Open the Customer Management Application from Previous DLL Example

O In the previous example in Lecture 2B Sample Program #23 on page 29, we converted the CUSTOMER RETAIL
MANAGEMENT APPLICATION TO USE A DLL COMPONENT.
O The high-level steps are as follows:

1. Created a Blank Solution & added a NEW DLL Project

2. Copied the CUSTOMER RETAIL APPLICATION or Client Project FOLDER from previous application into this Blank
Solution FOLDER STRUCTURE.

We then ADDED CUSTOMER MANAGEMENT client into the Solution.

We renamed the solution to WinAppClient

Made the WinAppClient the STARTUP OBJECT, since it is an executable, it will now control the application

We MOVED ALL CLASSES TO THE DLL PROJECT

Set REFERENCE on the WinAppClient to POINT TO THE DLL COMPONENT

Modified all code in the application were the CLASSES were being used to take into account that the classes NOW RESIDE
INSIDE THE DLL using the syntax: DLL.CLASS, example: BusinessObjects.clsCustomer

NGO~ W

O If you have not done so, follow the steps to convert the Customer Management application to use a Class Library from our
previous example and notes Lecture 2B Sample Program # 2 on page 29.

Step 1: View of Solution at this point:
Q The entire solution looks as follows:

20 SmallBusinessApp - Microsoft Yisual Studio .- 5[
File Edt View Project Buld Debug Data Tools Window Communty Help

-E- S| % Bl E-E b Dby - Any CPU - | [#% Help Desk. [EE@mREO

- o e NV WALIERET Y —" 9]

Solution
DLL Project

usinessObijects
(=4 My Project
- {2] BusinessBase.vh
- {2] BusinessCallectionBase. vb
- {&] dsCustomer vb
- {&] dsCustomerList vb
- 2] dsPerson.vb

- |ZE WinAppClient
. . - [My Project
Cllent PI’OjeCt - [=] frmCustomerManagement «b
- FrmRetalManagement.vh

- [=] FriMain.vb
- {2] modMaintodule «b

x0g|ao] Q{_ Jadodg JGAJGSE

> 1 X

SmallBusinessApp Solution Properties

B[l =

(Name) SmallBusinessipp

Active config Debug | Any CPU

Descripkion

Path C:\Documents and Settings',rodriq
Skartup project WinAppClient

Show autpu From; ML - EYE]

{Name)
The name of the solution Fil,

74

Ready

Q The file structure looks as follows:

& SmallBusinessApp

File Edit ‘iew Favorites

Tools Help

@Back - o - l.ﬁ

p Search H__" Folders

I3 3 X 9@

fAddress I@ 55 DbjecksiBusiness Objects InnplementationtBusinessapplicationExanplesiUsing File .ﬂccess\,SmaIIBusinessAppj Go

|\)BusinessObjectsDLL
) WinappClisnt
amallBusinessapp.sin
= smallBusinessApp.sua

|4 objects

45,3 KB

| j My Computer

75

| Business Obje ayer (Business Classes)

Overview

O We need to add the BusinessBase & BusinessCollectionBase Classes so our Business Classes (clsPerson, clsCustomer &
clsCustomerList) can inherit all the Business Rules.

O We also need the methods that we need to implement in our classes and are contained in the BusinessClass & BusinessCollection

Class templates. Since we are NOT starting from scratch we don’t want to use these Business Class Templates as a starting point.

So what we are going to do is simply copy what we need from them into our existing classes to turn them into Business Classes
and save us some typing.

O | provided business class & business collection class templates for your use.

0 Open these templates using Visual Studio and keep them handy so you can copy what you need from them as you modify your

project.

Step 2: Add Business Base & Business Collection Base Classes to Project.

O Steps are as follows:

‘ Step 1: Open CUSTOMER RETAIL MANAGEMENT SOLUTION (SHOULD ALREADY BE OPEN):

O At this point, you should have the Customer Retail Management solution DLL project from STEP 1 above running.

Step 2: Open THE BUSINESS OBJECTS TEMPLATES available on the WEB SITE

O At this point, ALSO OPEN THE BUSINESS OBJECTS TEMPLATE DLL Project I available on the COURSE WEB SITE.

O This DLL project contains all the Business Class TEMPLATES, AS WELL AS BASE CLASSES FOR ALL OUR BUSINESS

CLASSES AND BUSINESS COLLECTION CLASSES

@9 BusinessObjectsTemplates - Microsoft Yisual Studio

Ele Edt View FProject Buld Debug Dats

Tools Window Community Help

- S E | % R R Y- E-E| b Db - Any CFU - | [# Help Desk

i

Show output from:

s s e S P AR = Y e [
|

SEIEEYETE]

S| SE B

=18l x|

- 1 x

[saltion ‘BusinessObjectsTemplates' (1 project)
E (5] BusinessObjectsTemplates
- [My Praject
- Y2] BusinessBase.vb
18] BusinessClassTemplate, vb
- Ye] BusinessCollectionBiase. vb
- Y2] BusinessCollectionClassTemplate. vb

Properties

A=

~ X

Ready

76

Step 3: COPY BASE CLASSES FILES FROM TEMPLATE DLL PROJECT TO CUSTOMER MANAGEMENT
PROJECT:

0 Now we need to navigate to the folder containing the BusinessBase & BusinessCollectionBase classes and copy/paste into our
project.
O Steps are as follows:

1. Using Widows Explore or My Computer, navigate to the BUSINESS OBJECTS DLL TEMPLATE PROJECT FOLDER
where the BusinessBase & BusinessCollectionBase classes are located:

& BusinessObjectsTemplates i =] 5]
File Edit ‘iew Favorites Tools Help | ':!'

)
7 Search i Folders

eBack'e'l_ﬁ; | (¥ Xz)|'

Address I@ CiiDocuments and Settingsirodriq_aiMy Documents'l,NYCTC'l,CS?DS'l,DownIoads'l,Projects_Code'l,BusinessObjectsTemplatesj Go

SiNEsso Templates
BusinessObjectsTemplates.sin
BusinessObjectsTemplates,suo

|1 objects selected | | d My Computer 4
& BusinessObjectsTemplates =]
File Edit Miew Favorites Tools Help | -:,’

eBack - d - l.l: /JSearch i Foldets ‘ |'$ Ljf- x n ‘ v

Address I@ Cii\Documents and Settingsirodrig_alMy Documents'l,N\"CTC'l,CS?DB'!,DownIoads'l,Projects_Code'l,BusinessObjectsTempIatesﬂ a0

bin . BusinessBase.vb -‘_EBusinessObjectsTempIates ~wbproj
My Project E] BusinessClassTemplate.vb

obyj . BusinessCollectionBase, vb

QLD "lﬂ BusinessCallectionClassTemplate, vb

|2 ohjects selected |5.64 KB | d My Camputer 4

n

Right-Click & COPY the two base classes: BusinessBase & BusinessCollectionBase
3. Now navigate to the TARGET LOCATION IN YOU’RE THE CUSTOMER MANAGEMENT SOLUTION
BUSINESSOBJECTS DLL COMPONENT & PASTE the two base classes: BusinessBase & BusinessCollectionBase:

& SmallBusinessApp o [=1 =]
File Edit iew Favorites Tools Help | ':!'

eBack - \) - l.ﬁ: /__j Search I~ Folders |||_§' k3 x n ‘ v

Address Ib Ct\Documents and Settingsirodriq_siiy DocumentsiNYCTCVWCS708) Code\Business ObjectsiBusiness Objects Implementa\j GO

|5) BusinessObjectsDLL
|5) winappClient
_:%Sma\lBusinessApp.sln
SmallBusinessApp. suo

|4 objects |65.B KE | d MMy Camputer v
& BusinessObjectsDLL o]
File Edit Wiew Favorites Tools Help | -;,’

@Back - -Q - l.@ /:__\J Search i Folders ‘ |'$ Ljf- x n ‘ -

Address I[El Ci\Documents and Settingsirodriq_atMy DocumentsiNYCTCVWCS708, Codel Business ObjectsiBusiness Objects Implementalj Go

| bin @Businessobjects.vbproj
|)My Project E;J,Businessobjects.vhproj.user
| jobj 'lﬂ clsCustomer, vb

E‘I clsCustomerList, wh
E‘I clsPerson.whb

|2 ohjects selected

5.64 KB

| d My Computer

7

Step 4: ADD BusinessBase & BusinessCollectionBase to the CUSTOMER MANAGEMENTSOLUTION:

0 Now we ADD the TWO BASE CLASSES (BusinessBase & BusinessCollectionBase) to the Solution.
O Steps are as follows:

Go or open the Customer Management Solution, if you have not done so

In the Solution Explore window, RIGHT-CLICK the BusinessObjects DLL COMPONENT PROJECT
In the drop-down menu, select ADD|EXISTING ITEM...

Navigate to the Client or WinAppClient project and select and add the two base classes (BusinessBase &
BusinessCollectionBase) just copied to that folder:

HPowppE

[Add Evisting Item - Busine: jects x|

Flenane: | = e

Fies of type: [up Code Fles (*.vb; ™ resi ™ settings; " ssd;* med) x| Cancel

Step 5: CUSTOMER MANAGEMENT APPLICATION NOW HAS THE TWO BASE CLASSES AS PART OF THE DLL
COMPONENT:

O The BusinessObjects DLL COMPONENT now contains the BusinessBase & BusinessCollectionBase to serve as the base
classes for ALL OUR CLASSES & COLLECTION CLASSES:

#% SmallBusinessApp - Microsoft Yisual Studio — =) x|
Fle Edit Yew Project Buld Debug Data Tooks Window Community Help
HA- - H 0| % R0~ E-B | b Debug - Ay CPU - | % HelpDesk =0 Fe P
s sujAgS-ESIS T e B
ﬂ E i 'Smal essApp (2., » B X
g |E &
i [Solution 'SmallBusinessipp' (2 projects)
g =] (%] BusinessObjerts
2 i e [My Project
%* 2]
g o ‘
8
= 2] clstCustomerList.vb
B =] clsPerson.vb
B (32 WinAppClient
- [=d] My Project
FrmCustamerManagerment. vb
FrmRetailManagement. vb
- [E] friMain.vb
- 18] modMainMadule. vb
Properties EEES
Show output from: - Debug A=Y= g%l =
\ The program '[2072] WinkppClient wshost exe: Managed' has exited with code 0 (0x0). :| loOubootDicackor: bo nol,
Ready

78

Step 3: Modify the clsPerson TO USE THE BUSINESSBASE CLASS

O We need to modify the clsPerson Class to contain the required Business rules based on the BusinessClassTemplate as follows:

1. The clsPerson Class HAS TO BE a MustInherit Class, otherwise, we will be FORCED to implement the
MUSTOVERRIDE Data Access Methods of the BusinessBase Class (Load(), Save(), DeleteObject() etc.) here in
clsPerson.
= We DON’T want to implement the MustOverride Business methods of the BusinessBase here because Person is not a
complete Customer. Only the Customer class contains all the data necessary for the application, therefore it is in
CUSTOMER that we will implement all the MustOverrided Business methods.

= Since clsPerson is a MustInherit Class, we cascade all the FORCED MustOverride Business methods from
BusinessBase to the inherited Customer class.

2. Nevertheless, clsPerson contains private data and properties which need to adhere to our business rules, such as
MarkDirty() and validation rules, etc.

3. We also need to copy all the Inports and Serialization tag to make this class an UnAnchored Class.

4. THE CLSPERSON CLASS DOES NOT REQUIR DATA ACCESS METHOD. IT IS AMUST INHERIT BASE CLASS
FOR IT’S CHILDREN clsCustomer & clsEmployee.

5. Atthe end of this section, the structure of the clsPerson class should look like our BusinessClass Template.

O Perform the following steps:

Step 1: AT THIS POINT, MAKE SURE BOTH YOUR CUSTOMER RETAIL SOLUTION AND BUSINESS OBJECTS
DLL TEMPLATE SOLUTION ARE BOTH OPEN:
a Verify both Solutions are running:

‘ Step 2: Copy from BusinessClass Template the Imports and Serializable Tag & other IMPORT statements:

1. IN THE TEMPLATE DLL PROJECT, Open the BusinessClassTemplate class

2. In the header section of this class, SELECT/COPY all the Imports, declarations & the SERIALIZABLE TAG information

3. IN THE CUSTOMER RETAIL SOLUTION, OPEN THE CLSPERSON CLASS, in the top declaration section click
PASTE

4. Make sure THERE ARE NO SPACES BETWEEN THE <Serializable()> _ TAG AND THE clPerson CLASS
DECLARATION

5. The DECLARATION portion of the clsPerson class now looks as follows:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _
Public MustInherit Class clsPerson

79

Step 3: INHERIT FROM BUSINESS BASE:

NOW we need to Inherit from BusinessBase Class

IN THE TEMPLATE DLL PROJECT, Open the BusinessClassTemplate class

SELECT/COPY THE STATEMENT TO INHERIT FROM BUSINESSBASE

IN THE CUSTOMER RETAIL SOLUTION, BELOW THE DECLARATION OF THE CLSPERSON CLASS, click

PASTE

5. THE INHERIT FROM BUSINESS BASE STATEMENT IS NOW LOCATED BELOW THE CLASS DECLARATION
AS EXPECTED:

i N

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _
Public MustInherit Class clsPerson
Inherits BusinessBase 'Inherits from BusinessBase.

Step 4: General Class Private data:

= No changes required for Private Data.

#Region "Private Data"

Thhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhkhhhkhhkhkhkhhhkhhkhhhkhkhkhkhkhkhhkhhkhkhkkhkhkkhkhkhhkhkhkhkxk

'Class Data or Variable declarations
Private m Name As String

Private m SSNumber As String
Private m BirthDate As Date
Private m Address As String
Private m Phone As String

#End Region

80

Step 5: Add DIRTY OBJECT Mechanism (MANDATORY!) & [OPTIONAL] add any FIELD-LEVEL VALIDATION rules

To Properties:
IMPORTANT & MANDATORY'! Add code for implementing DIRTY OBJECTS. EVERY PROPERTY SET MUST

INCLUDE THE MARKDIRTY() CALL AFTER THE DATA IS SET.
= [OPTIONAL] if required add any Field-Level Validation Business Rules:

#Region "Property Procedures"
Thhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkhhkhkhhkhkhkhkhkhkhkhkhhkkhkkk

'Enforcing NO-BLANK, MAX-LENGTH & MARK DIRTY for Name

Public Property Name () As String

Get
Return m_Name

End Get
Set (ByVal Value As String)

'"NO-BLANK validation

If Len (Trim(Value)) = 0 Then
Throw New NotSupportedException ("Business Rule: Name cannot be blank")

End If

'MAX-LENTHG VALIDATION

If Len(Value) > 25 Then
Throw New NotSupportedException ("Business Rule: Name is too long")

End If

m Name = Value

MyBase .MarkDirty () 'Mark Ojbect as dirty it has been modified

End Set
End Property

Thhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkhkkhkkk

'Enforcing NO-BLANK, WRITE-ONCE, EXACT-LENGTH & MARK DIRTY for Address
Public Property SocialSecurity() As String

Get
Return m_SSNumber

End Get
Set (ByVal Value As String)

'"NO-BLANK validation

If Len(Trim(Value)) = 0 Then
Throw New NotSupportedException ("Business Rule: SSNum cannot be blank")

End If

'WRITE-ONCE validation

If Not Me.IsNew Then
Throw New NotSupportedException("Business Rule: SSNum is Write-once")

End If

'EXACT-LENTH validation

If (Len(Trim(Value)) <> 11) Then
Throw New NotSupportedException ("Value not exact Lenght")

End If

m_SSNumber = Value

MyBase .MarkDirty () 'Mark Ojbect as dirty it has been modified

End Set
End Property

TR A A A KE A A A AR A A AR A A AR AR AR A AR ARk Ak Ak Ak hkhkhkhkhkkkhkkhkhkkhkhkkhkhkkhkhhkhkhkhkhkhhhhk
'Enforcing MARK DIRTY for Birthday

Public Property BirthDate() As Date
Get

Return m_BirthDate
End Get

Set (ByVal Value As Date)
m_BirthDate = Value

MyBase .MarkDirty ()
End Set

'Mark Ojbect as dirty it has been modified
End Property

Thhkkkhkkhkkhkkkhkkkhkkkhkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkhkhkhkhkhhkhkhk
'Enforcing NO-BLANK & MARK DIRTY for Address

Public Property Address() As String
Get

Return m_Address
End Get

Set (ByVal Value As String)

'NO-BLANK validation

= 0 Then

Throw New NotSupportedException ("Business Rule: Address cannot be blank")
End If

If Len(Trim(Value))

m_Address = Value

MyBase .MarkDirty ()
End Set

'Mark Ojbect as dirty it has been modified
End Property

Thkddkkkkdkdkhkhkdkdkhkdkkdkkhkdkdkdkdkkdkkdkkdkk ko kkkhkhkkkkhkhkrkdkkdkdkkdkhkkk
'Enforcing NO-BLANK & MARK DIRTY for Phone

Public Property Phone() As String
Get

Return m_Phone
End Get

Set (ByVal Value As String)

'NO-BLANK validation
If Len(Trim(Value)) = 0 Then

Throw New NotSupportedException ("Business Rule: Address cannot be blank")
End If
m_Phone = Value

MyBase .MarkDirty ()
End Set

'Mark Ojbect as dirty it has been modified
End Property

#End Region

82

Step 6: MAKE sure the PAREMETERIZED Constructors are using the class PROPERTIES AND NOT PRIVATE DATA:

= No changes required for the constructors.

#Region "Constructor Methods"
TAAAKAA KA A A AR A AR AR A AR A AR ARk ARk Ak Ak hkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhhk

'Class Constructor Methods

'Default Constructor
Public Sub New ()
'Note that private data members are being initialized
m_Name = nn
m_SSNumber = ""
m BirthDate = #1/1/1900#
m _Address = ""
m_Phone = " (000)-000-0000"
End Sub

'Parameterized Constructor
Public Sub New(ByVal N As String, ByVal SSNum As String, ByVal BDate As Date, _
ByVal Adr As String, ByVal Ph As String)

'Note that Property Procedures are used when setting the data

Me.Name = N
Me.SocialSecurity = SSNum
Me.BirthDate = BDate
Me.Address = Adr

Me.Phone = Ph

End Sub

#End Region

Step 7: Print Class requires NO change since it DOES NOT MODIFY DATA. NO MARKDIRTY () REQUIRED:
= No changes required to this method since no modification to data is made.

#Region "Regular Class Methods"

TEAAA A A A A A A AR A AR A AR A AR A AR ARk Ak Ak hkhkhkhkhkkkhkkhkhkhkhkhkkhkhhkhkhhkhkhkhkhkhhhkhk
Thkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkk

'Class Methods
Thkkhkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkk

'Author of base class allows sub classes to overide Print()
'If they want to, it is not mandatory
Public Overridable Sub Print()
'Create StreamWriter Object for append to file listed
Dim objPrinter As New StreamWriter ("PersonPrinter.txt", True)

'Call StreamWriter Object WritelLine method to write the string to file
objPrinter .WriteLine(m Name & ", " & m SSNumber & ", " &
m BirthDate & ", " & m Address & ", " & m_Phone)

'Close StreamWriter Object
objPrinter.Close ()

End Sub
#End Region

End Class

Step 4: Modify the clsCustomer class

0 Now we focus on clsCustomer. This is another Business Class where we implement all the Business Rules passed down from
clsPerson from BusinessBase

a All the MustOverride methods enforced by the BusinessBase will be implemented here since we passed them down from
clsPerson. Once again, realize that this is ONLY possible because we made clsPerson a MustInherit Class.

0 NOTE THAT YOU MAY SEE A SYNTAX ERROR INDICATION DURING THE STEPS BELOW, IGNORE THEM UNTIL
ALL STEPS HAVE BEEN COMPLETED

O Currently the clsCustomer class has the following structure:

Cption Explicit On I—|
Inports System. IO 'File/ IO —

E Public Class glsCustomer
Inherits clsPerson

pFrEvace oacs

o [Everts Declaraviond
(o Propercy Provedured
plEonstrustor Hethodd

(3] |Regular Class I{ethodsl

“End Class

=
‘ | 3

Step 1: Copy from BusinessClass Template the Imports and Serializable Tag & other IMPORT statements & PASTE TO
clsCustomer:

1. Open the BusinessClass Template and copy/paste all the Imports & Serialization declarations.

2. PASTE the imports into the clsCustomer class

3. CONTINUE TO INHERIT FROM CLSPERSON

4. Make sure THERE ARE NO SPACES BETWEEN THE <Serializable()> TAG AND THE clCustomer CLASS

DECLARATION
5. NOTE THAT YOU MAY SEE A SYNTAX ERROR INDICATOR IN THE CLASS, IGNORE THIS FOR NOW!
6. At the end of this section, the structure of the clsCustomer class should look as follows:

Option Explicit On
Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _
Public Class clsCustomer
Inherits clsPerson

84

Step 2: COPY/PASTE from BusinessClass Template the DATA ACCESS METHODS to the clsCustomer Class:

1.

Open the BusinessClass Template and COPY the Public & Protected Data Access Methods REGION:

usinesstlassTempIate.vh]

1
X

IV‘Eg BusinessClassTemplate

j IE(Detlaratinns)

4

Option Explicit On

Option Strict On

Imports System. IO

Imports 3ystem.Data

Imports Systew.Data.0lelb

Imports System.Configuration
['Eeep commented.
' Imports
' Imports
'Imports System. Buntime.
' Imports SvStem.Runtime
E <Serializable()>
Publiz Class BusinessClassTemplate

will be configure later
System.Runtime.Serialization. Formatters. Binary
System. Bunt ime . Remoting

Femoting.Channels

.Remoting.Channels.Hotp

Inherits BusinessBase 'Inherits from BusinessEase.

'File/I0O

'Data Aocess (Datadet)

'OLEDE Prowvider

'Configuration File for DE Connection

'Serialization Library
'Bemoting
'Remot ing
' Remoting

Must implement MustInherits methods

3]

H[Frivate Datﬁ

m[Events peclarasiong
m[Propercy Procedured
thfConstractor Tethond

H|Eusiness £ Begular Methadﬁ

P ublic

EjHe lper
“End Class

4

2. PASTE into the clsCustomer class the DATA ACCESS CODE REGIONS, the class should look as follows when

completed:

~ clsCustomer.yb*

1
X

IE(General)

j E(Declaratinns)

4

Option Explicit On
Option Strict On

Imports
Imports
Imports
Imports
['Eeep commented.
' Imports
'Imports
'Imports
- !'Imports

Swystem. IO

Swatem.Data

System.Data.0lelb

System. Configuration

will he configure later
System.Runtime.3erialization.Formatters.Binary
System. Bunt ime . Femot ing

Svyatem. Buntime . Bemoting. Channe ls
Svstem.Runtime. Remoting. Channels.Hotp

[<Zerializakhle () >
Fublic Class
Inherits

clsCustomer
clsPerson

'File/IO

'Data Locess (Datafet)

'OLEDE Prowvider

'Configuration File for DE Connection

'Serimligation Library
' Remot ing
' Bemot ing
' Remoting

I*]

¢ e g

e
e
oo e

e |Regular Class I‘Iethodj

[ﬂPubllc Data Locess Method#

[ﬂPrDtEctEd Data Lococess Methodﬂ

H[Helper Methods

“End Clas=s)

85

Step 3: NO CHANGES REQUIRED IN Private data & Event Regions:

= The private data & Event declarations stay the same as before

#Region "Private Data"
ThhkhkhkhkkhkhkkhkhkkhkhAkhkhkkhkhhkhhkhkhhkhkhkhkhkhhkhkhhkkhkhkhkkhkk

'Class Data or Variable declarations
Private m CustomerID As String
Private m TotalItemsPurchased As Integer

#End Region

#Region "Events Declaration"
Thhkkkhkkhkkkhkkhkkkhkkhkhkkhkkhkkhkkhkhkkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkk

'Event Declarations
Public Event OnShopping (ByVal intTotalltems As Integer)

#End Region

Step 4: Add MANDATORY DIRTY Object and [OPTIONAL] Validation Rules to the Properties:

= ADD THE MANDATORY DIRTY OBJECT STATEMENT
= ADD ANY REQUIRED VALIDATION CODE

#Region "Property Procedures"
Thhkkhkkkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhhkhkhhkhkhkhkkkhkkkhkkkhkkkhkhkhkhkhkhkhkhkhkkhkhkkhkkkhkkkkkkkxk

'Enforcing NO-BLANK, WRITE-ONCE, EXACT-LENGTH & MARK DIRTY for Address
Public Property CustomerID() As String

Get
Return m CustomerID

End Get
Set (ByVal Value As String)

'"NO-BLANK validation

If Len (Trim(Value)) = 0 Then
Throw New NotSupportedException ("Business Rule: ID cannot be blank")

End If

'"'WRITE-ONCE validation

If Not Me.IsNew Then
Throw New NotSupportedException ("Business Rule: ID is Write-once only")

End If

'EXACT-LENTH validation
If (Len(Trim(Value)) <> 3) Then
Throw New NotSupportedException ("ID Value not exact Lenght")

End If

m_CustomerID = Value

MyBase .MarkDirty() 'Mark Ojbect as dirty it has been modified
End Set
End Property

86

Continue with PROPERTIES modifications.

Thhkkhkkhkkhkkkhkkkhkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkhkkkhkkkhkkkhkhkhkhkhkkhhkkx

Public Property TotalItemsPurchased() As Integer

Get
Return m TotalItemsPurchased

End Get
Set (ByVal Value As Integer)

m_TotalItemsPurchased = Value
'Mark Ojbect as dirty it has been modified

MyBase .MarkDirty ()

End Set
End Property

#End Region

Step 5: NO CHANGES IN CONSTRUCTORS:
No change required to constructor methods.

#Region "Constructor Methods"
Thhkkhkkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhkkhkkkhkkkhkkhkhkhkhkhkhkhkhkkhkhkkhkkkhkkhkkkxk

'Default Constructor

Public Sub New ()
'Call Base Class Constructor

MyBase .New ()
'data member is initialized
m CustomerID = ""

End Sub

'Parameterized Constructor
Public Sub New (ByVal strNane As String, ByVal strSSNum As String,

ByVal bBDate As Date, ByVal strAddress As String,
ByVal strPhone As String, ByVal strCustomerID As String)

'Call Base Class Paremeterized Constructor
MyBase.New (strNane, strSSNum, bBDate, strAddress, strPhone)

'Property Member Initialize data
Me.CustomerID = strCustomerID

End Sub

#End Region

87

Step 6: Regular Methods: Print() method stay the same, SHOP() method needs to be MARKED DIRTY

= Regular methods require Business Rules only when you are modifying or making the object dirty, in this case the SHOP()
METHOD REQUIRES.

#Region "Regular Class Methods"
Thhkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhhkhkhkhkkkhkkhkkkhkkkhhkhkhkhkhkhkhkhkkhkhkkhkkkhkkkkkkkxk

'Regular Class Methods

'This implementation does not call the base class Print to do the work
'but instead calls each property individually. This is done because if
'we call the base class Print() first, then we require two output in the
'file which contain the record for each object. We only want one print
'file with all the customer data in one line.
Public Overrides Sub Print()

'Create StreamWriter Object for append to file listed

Dim objPrinter As New StreamWriter ("CustomerPrinter.txt", True)

'Call StreamWriter Object WriteLine method to write the string to file
objPrinter .WriteLine (MyBase.Name & "," & MyBase.SocialSecurity & "," & _
MyBase.BirthDate & "," & MyBase.Address & "," & _

MyBase.Phone & "," & Me.CustomerID & "," & Me.TotalItemsPurchased)

'Close StreamWriter Object
objPrinter.Close()

End Sub

Thkhkhkkkk ko kkkhkhhkkhhkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
''"!" <summary>
Shops by addign items to be purchased to running total items.
Triggers On Shopping Event & MARK DIRY since we are modifying
</summary>
<param name="intItems"></param>
<remarks></remarks>
Public Sub Shop(ByVal intItems As Integer)
m TotalItemsPurchased = m TotalItemsPurchased + intItems

MyBase .MarkDirty () 'Mark Ojbect as dirty it has been modified

'Raise or trigger event & send information with the event
RaiseEvent OnShopping(m _TotalItemsPurchased)

End Sub

#End Region

88

Step 7: VIEW Public Data Access Method from BusinessClass Template

= NO MODIFICATION NEEDED to the Public Shared Data Access Methods we copied from the BusinessClass template and
FORCED upon us by BusinessBase.

#Region "Public Data Access Methods"
'Public interface to Create objects from database
Thhkkhkkkhkkhkkhkkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkkhkhkhkhkhkhkkhkhkkhkhkkhkkkhkkkkkkkxk
''' <summary>
[OPTIONAL] Method to create object if default values
from database are required
</summary>
<remarks></remarks>
Public Overrides Sub Create()
DataPortal Create()
End Sub
Thhkkkhkkhkkkhkkhkhkkhkkhkkhkkhkhkkhkkhkhkkkhkhkkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhkk
''"' <summary>
Method to LOAD() OBJECT from DATABASE
</summary>
<param name="Key'"></param>
<remarks></remarks>
Public Overrides Sub Load(ByVal Key As Object)
'Calls Local DatPortal Fetch(Key) To do the work
DataPortal Fetch (Key)

End Sub
Thhkkkhkkhkkkhkkhkkkkhkkkkhkkkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkkhkkx
' <summary>
Method to SAVE() OBJECT to DATABASE. Decision to insert or update
is done via DIRTY and NEW Mechanism
</summary>
<remarks></remarks>
Public Overrides Sub Save ()
'Only save if dirty, otherwise do nothing in this method
If Me.IsDirty Then
If Me.IsNew Then
'We are new and being inserted
'Calls Local DataPortal Insert()
DataPortal Insert()
Else
'We are OLD so we are being updated
'Calls Local DataPortal Update()
DataPortal Update ()
End If
End If

End Sub
Thhkkhkkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkkhkkhkkkhkkkhkkhkhkhkhkkhkhkkhkhkkhkkkhkkkkkkkxk
''' <summary>
Method to delete an object record's from database via ID or key
</summary>
<param name="Key'"></param>
<remarks></remarks>
Public Overrides Sub DeleteObject(ByVal Key As Object)
'Calls Local DatPortal DeleteObject() To do the work
DataPortal DeleteObject (Key)
End Sub
#End Region

Step 8: VIEW Protected Data Access Methods from Business Class Template

= No Modification is needed in the protected from the BusinessClass template
= |Implementation of these methods will take place when we learn ADO.NET

#Region "Protected Data Access Methods"
Thhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhhkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkkhkkkkhkkkx

'Protected Data Access Methods declarations

'Data Access Code for Creating a New Business Object
Protected Overrides Sub DataPortal Create()
'Create object and assign default values from database etc.

'ADD DATA ACCESS CODE HERE USING ADO.NET

'At the end, set New flag to True a new object is created
MyBase .MarkNew ()
End Sub

'Data Access Code to fetch an object from Database
Protected Overrides Sub DataPortal Fetch(ByVal Key As Object)
'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'At the end, set New flag to False. NOT Dirty since found in database
MyBase .MarkO1ld()
End Sub

'Data Access Code to Update an Objects data to database
Protected Overrides Sub DataPortal Update ()
'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET

'Set New flag to False since exist in database/and is Not dirty any longer
MyBase .MarkO1ld ()
End Sub

'Data Access Code to insert a new object to database
Protected Overrides Sub DataPortal Insert ()
'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

'ADD DATA ACCESS CODE HERE USING ADO.NET
'Set New flag to False since exist in database/and is Not dirty any longer
MyBase .MarkO1ld()

End Sub

'Data Access Code to immediatly delete an object from database.

Protected Overrides Sub DataPortal DeleteObject (ByVal Key As Object)
'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures
'ADD DATA ACCESS CODE HERE USING ADO.NET
'Object no longer in database, therefore reset our status to be a new object
MyBase .MarkNew ()

End Sub

#End Region

Step 9: VIEW Helper Methods:

= Currently there are no non-business related methods in this class.

#Region "Helper Methods"

LI e i e b e b i b I b I b I I S b I R I R I S SR S R S b b I b i S I S S e b b b b b b b 2 O 4

'Methods used to assist other methods or maintenance

#End Region

Step 5: The clsCustomerList Collection Class

0 Now we turn our attention to the Collection Classes. We need to implement the rules and logic from the BusinessCollectionBase
and the BusinessCollectionClass template.

O Inaddition, we need to add File Access Code to load and save the Business Objects in the collection temporarily to a file.

O We will implement these File Access code in the Protected Data Access Methods DataPortal_Fetch & DataPortal_Save().

Q The current structure of the clsCustomeListManager class currently looks as follows:

clsCustomerList.¥b | 4k X
|I]\ {General) ﬂ |I]\ {Declarations} ﬂ
IDpt,iDn Explicit On I =

Option Strict On

'Import Likraries
Imports System.Collections
Imports System. IO

-] Pukhlic Class clsCustomerList
Inherits DictionaryBase

[Public Properties Declarations]

|Pu.blic Wrapper Methods Declarations|
|Pu.blic Fegular Methods Declarations|
End Class

=
1 | o[

Step 1: COPY/PASTE import & Serializable statements and Data Access Methods from BusinessCollectionClass Template
AND PASTE TO clsCustomerL.ist Class:

Option Explicit On
Option Strict On

Imports System.IO 'File/IO
Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting
<Serializable()> _

Public Class clsCustomerlist

91

Step 2: COPY/PASTE the INHERIT from BusinessCollectionClass Template:

Lo

Open the BusinessCollectionClass Template and copy the INHERIT BUSINESSCOLLECTIONBASE statement
PASTE into the clsCustomer Class UNDER THE CLASS DECLARATION
3. The declaration looks as follows:

N

Option Explicit On
Option Strict On

Imports System.IO 'File/IO
Imports System.Data 'Data Access (DataSet)
Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB
Connection

'Keep commented. will be configure later
'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library
'Imports System.Runtime.Remoting 'Remoting
'Imports System.Runtime.Remoting.Channels 'Remoting
'Imports System.Runtime.Remoting.Channels.Http 'Remoting
<Serializable()> _
Public Class clsCustomerlist
Inherits BusinessCollectionBase

Step 3: COPY/PASTE Data Access Methods from BusinessCollectionClass Template:

1. Open the BusinessCollectionClass Template from TEMPLATE DLL PROJECT and COPY all Public & Protected Data
Access Methods REGIONS:

8] BusinessCollectionBase.vb

Imports System.lats.0lelh 'OLEDE Prowvider "] BusinessCollectionClassTemplate.vb

Imports System.Configuration ‘Configuration Fils for DB Connsction

#0BusinessbjectsTemplates - Microsoft Visual Studic - 151 x|
fle Edt Wiew Project Buld Debug Data Tooks window Community Help
A-iE-EE P ¥ BB 98- b Dsbg ~ Amy CPU - | [# Help Desk v@ﬁﬁ;@gv‘_‘
=== T =
[—] e W TV AT N T Y T VY .
E BusinessCollec...assTemplate.vb |
[BusinessCollectionClassTemplate =] [edarations) = HE|IE A
2
@ Option Explicit Om || [Solution 'BusinessObjectsTemplates' (1 project)
o =l 2] -
£ option Strict onm = 1= ;@Bus;.e:sqh{ettsremplales
2 =4 My Proje
= Imports System. IO 'File/I0 -) eudnesshase.sh
>f v b : ~ 18] BusinessClassTemplate.vb
o Inports System.Data 'Data iccess (DataSet)
g
g
)

'Eeep commented. will be configure later
‘Inports System.Runtime.Serislization.Formatters.Binary ' Serialization Library

! Imports System.Runtime. Remoting ' Remoting
*Imports System.Buntime.Remoting.Channels 'Remoting
L Imports System.Runtime.Rewoting, Channels.Hrtp ' Remoting

<Serializshle()> _
Public Class BusinessCollectionClassTemplate
Inherics BusinessCollectionBase

[Punlic Propercies beclaraciong

[Puwslic Wrapper Methods Declarationd

[fublic Regular Methods Declacationg

Properties

BusinessCollectionClassTemplate Attributes -

=
=[]
COM Class False
[Helper Methods) COM visible True
Serialzatle True
LEnd Class
;l_l
Output
Show output from; R AR | x|=
COM Class
Expose Class to COM,
Ready

col1s chiz NS

2. At the end of this step, the structure of the clsCustomerList class should look as follows when completed

/clsCustomerList.vh -

x
|<>[g clsCustomerList j I@(Declarations) -
Imports 3ystem.Data 'Data Acoess (Datadet) "
Imports 3ystem.Data.Olelb '"OLEDE Provider
Imports Systew.Configuration 'Configuration File for DE Connection

['Eeep conmtented. will be configqure later
'Twports Systewm. Funtime.Serialization.Formatters.Binary 'Serialization Library

'Tmports Systewm. Puntime . Retwoting ' Betnot ing
'Tmports Systewm. Funtime . Fewoting. Channels ' Betnot ing
L' Imports System. Buntime . Remoting. Channels. Hoep 'Remot ing

[Public Class clsCustomerlistc
Inherits BusinessCollectionBase

] |Publ ic Properties Declarat iDnE4

[]IPublic Wrapper Methods Declarationﬁ

[]|Public Fegular Methods Declarationﬂ

[]|Public Iata Lccess Methodﬂ

[]|Pr0tected Data Loocess Methodﬂ

M[Helper Methods

“End Class

93

Properties
0 NO CHANGES REQUIRED.

‘ Step 4: Property Declaration stays the same:

#Region "Public Properties Declarations"
Thhkhkkhkhkkkhkkkhkhkkhkhkkhkhkkhkhkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkkhkhkkhkkhkkhkkkhkkhkkkhkkhkkkhkkhkhkkhkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkkhkkkkkkkk
' <summary>
Name: Count() Property
Purpose: Return number of objects in collection
</summary>
<value></value>
<returns></returns>
''' <remarks></remarks>
Public Shadows ReadOnly Property Count() As Integer
Get
Return MyBase.Dictionary.Count
End Get
End Property

Thhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhkhkhkhkhkhkhhkhhhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhkhkhkhkhkhkhkhkkhkkhkkhkhkhkhhkhkkx

' <summary>
''"'" Name: Item(Key) Property
Purpose: GET or SET the object at the specified key in the Collection
</summary>
<param name="key'"></param>
<value></value>
<returns></returns>
<remarks></remarks>
Public Property Item(ByVal key As Object) As clsCustomer
Get
'Step 1- Return POINTER of Object of associated key
'Convert returned POINTER
Return CType (MyBase.Dictionary.Item(key), clsCustomer)

End Get
Set (ByVal value As clsCustomer)

'Step 1-Verify if key exists
If MyBase.Dictionary.Contains (key) Then
'Step 2-Set or overwrite object in collection
MyBase.Dictionary.Item(key) = value
Else
'Step 3-Else throws an Argument Exeption to indicate not found.
Throw New System.ArgumentException ("ID Not found")
End If
End Set
End Property

#End Region

94

Wrapper Methods
O Only wrapper methods that create and modify Business Object need to trap for NotSupportedException.

‘ Step 5: ADD Wrapper Method

= Inthis case the ADD WRAPPER METHOD needs NO MODIFICATION SINCE NO BUSINESS OBJECTS ARE
CREATED OR MANIPULATED

#Region "Public Wrapper Methods Declarations"

VAR A AR A AR A AR A AR A AR AR A R AR A AR A AR A AT A I A I I A I AR AR A I A A A I I AR I AR A A A AR A AR A AR ALK A A KK

<summary>

Name: Add(Key, Object)Method

Purpose: Adds new object to the Collection.

Includes support for duplicate key

</summary>

<param name="key"></param>

<param name="objCustomer"></param>

<remarks></remarks>

Public Sub Add(ByVal key As Object, ByVal objCustomer As clsCustomer)

'Step A- Begin Error trapping

Try
'Step 1-Calls Collection.Add(Key,Object) Method to Add object
MyBase.Dictionary.Add (key, objCustomer)

'Step B-Traps argumentNullException when key is Nothing or null

Catch objX As ArgumentNullException
'Step C-ReThrow ArgumentNullException

Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)
'Step D-Traps for ArgumentExecption when KEY is duplicate.

Catch objY As ArgumentException
'Step E-ReThrow an ArgumentExecption to calling programs

Throw New System.ArgumentException("Duplicate Key Error: " & objY.Message)
'Step F-Traps for general exceptions.

Catch objE As Exception
'Step G-ReThrow an general exceptions
Throw New System.Exception ("Add Method Error: " & objE.Message)

End Try

End Sub

95

Step 6: OVERLOADED ADD Wrapper Method

= The OVERLOADED ADD WRAPPER METHOD CREATES & MANIPULATES a BUSINESS OBJECT, therefore it
requires the NotSupportedException EXCEPTION to be added to the TRY/CATCH

KRR R AR A AR A A A A AR A A A A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A A A A A A AR A A A AR hA A Ak kA kK

' <summary>

Name: Overloaded Add(valuel, value2..)Method
Purpose: Add object to collection by passing individual values
instead of an object. Object is created and populated with parameter wvalues
Ideal for passing values directly from a user interface textbox control.
</summary>
<param name="strCustomerID"></param>
<param name="strName"></param>
<param name="strSSNum"></param>
<param name="dBDate"></param>
<param name="strAddress"></param>
<param name="strPhone"></param>
<remarks></remarks>
Public Sub Add(ByVal strCustomerID As String, ByVal strName As String, _
ByVal strSSNum As String, ByVal dBDate As Date, ByVal strAddress As String,
ByVal strPhone As String)
'Step A- Begin Error trapping
Try
'Step 1-Creates NEW Temp Object
Dim objItem As New clsCustomer

'Step 2-Populates object it with data passed as argument
With objItem

.Name = strName

.SocialSecurity = strSSNum

.BirthDate = dBDate

.Address = strAddress

.Phone = strPhone

.CustomerID = strCustomerID
End With

'Step 3-Use Collection.Add(Key, Object)to add object. Object ID used as Key
MyBase.Dictionary.Add (objItem.CustomerID, objItem)

'Step B-Traps for Business Rule violations since object is modified

Catch objNSE As NotSupportedException
Throw New System.NotSupportedException (objNSE.Message)
'Step C-Traps argumentNullException when key is Nothing or null

Catch objX As ArgumentNullException
'Step D-ReThrow ArgumentNullException

Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)
'Step E-Traps for ArgumentExecption when KEY is duplicate.

Catch objY As ArgumentException
'Step F-ReThrow an ArgumentExecption to calling programs

Throw New System.ArgumentException ("Duplicate Key Error: " & objY.Message)

'Step G-Traps for general exceptions.

Catch objE As Exception
'Step H-ReThrow an general exceptions
Throw New System.Exception("Add Method Error: " & objE.Message)

End Try

End Sub

96

Step 7. REMOVE Wrapper Method

= The Remove Wrapper method requires NO modification since there are no Business Objects Created or Modified.

Thhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkhkhkkhkkhkkkkkkx
<summary>
Name: Function Remove (Key)Sub Method
Purpose: Remove object from collection based on key.
</summary>
<param name="key"></param>
<returns></returns>
<remarks></remarks>

Public Function Remove (ByVal key As Object) As Boolean

'Step A- Begin Error trapping
Try

'Step 1-Verify object exists

If MyBase.Dictionary.Contains (key) Then
'Step 2-Calls CollectionObject.Remove (Key) Method
MyBase.Dictionary.Remove (key)
'Step 3-Return True since found and removed
Return True

Else
'Step 4-Return False since not found
Return False

End If

'Step B-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step C-Throw Collection ArgumentNullException
Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)
'Step D-Traps for general exceptions.
Catch objE As Exception
'Step E-Throw an general exceptions
Throw New System.Exception ("Remove Error: " & objE.Message)
End Try
End Function

97

Regular Methods
Q Again, only regular methods that create and modify Business Object need to trap for NotSupportedException.

‘ Step 6: EDIT Methods

= The regular Editltem method performs on manipulation of Business Objects therefore work is needed here.

Thhkhkhkkhkhkkhkhkhkkhkhkhkhkhkhkkkhkkkhkkkhhkhkhhkhkhkhkhkkhkhkkhkhkkhkhhkhkhhkhkhkhkkkhkkkhkkhkkhkhkhkhkhkkkhkkkhkkkhkkkhkkkxk
' <summary>
'''" Name: Function Edit (Key, object)Method
Purpose: Replaces object located at specified key in the Collection
</summary>
<param name="key"></param>
<param name="objItem"></param>
<returns></returns>
""" <remarks></remarks>
Public Function Edit (ByVal key As Object, ByVal objItem As clsCustomer) As
Boolean
'Step A- Begin Error trapping
Try
'Step 1-Verify object exist
If MyBase.Dictionary.Contains (key) Then
'Step 2-Sets CollectionObject.Item(Key) = object
MyBase.Dictionary.Item(key) = objItem
'Step 3-Return confirmation
Return True
Else
'Step 4-Return object not found
Return False
End If

'Step B-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step C-Throw Collection ArgumentNullException
Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)
'Step D-Traps for general exceptions.
Catch objE As Exception
'Step E-Throw an general exceptions
Throw New System.Exception("EditItem Error: " & objE.Message)
End Try
End Function

98

Step 9: OVERLOADED EDIT Methods

= The Overloaded Editltems(x, y, z...) CREATES & MODIFIES a Business Object, trapping for NotSupportedException
required.

= IMPORTANT! NOTE THAT ID NUMBER & SOCIAL SECURITY ARE NOT BEING EDITED! THEY ARE WRITE-
ONCE PROPERTY AND CANNOT BE MODIFIED DURING AND UPDATE OR WHEN OBJECT IS OLD!

Thhkkkhkhkkkhkhkkkkhkhkkhkhkkkhkhkkkhkhkkhkhkkhkhkkhkhhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkkhkkhkhkkkhkhkkkhkhkhkkhkkhkhkkkhkhkkkhkhkkkhkkhkkkkkkkx
''"!" <summary>

Name: Function OVERLOADED Edit (valuel, value2,etc.)

Purpose: Sets or MODIFIES object located at specified key in the Collection

</summary>

Public Function Edit(ByVal strCustomerID As String, ByVal strName As String, _

ByVal strSSNum As String, ByVal dBDate As Date, ByVal strAddress As String, _
ByVal strPhone As String) As Boolean

'Step A- Begin Error trapping

Try
'Step 1-Create temporary POINTER
Dim objItem As clsCustomer

'Step 2-Get a Reference of pointer to the actual object inside the collection.
'Use CType() function to convert object retrieved from list to clsCustomer

objItem = CType (MyBase.Dictionary.Item(strCustomerID), clsCustomer)

'Step 3-Verify object exists
If objItem Is Nothing Then
'Step 4-Return False since not found
Return False
Else
'Step 5-Sets individual properties of actual object inside the collection.
'ANY PROPERTY THAT IS WRITE-ONCE CANNOT BE MODIFIED.
'NOTE THAT THE ID NUMBER & SOCIAL SECURITY ARE NOT PART OF THE PROPERTY SET
'CODE BECAUSE THEY ARE BOTH WRITE-ONCE PROPERTY AND CANNOT BE MODIFIED

'"WHEN AN OBJECT IS NOT NEW (OLD)/LOADED FROM DATABASE AND MARKED FOR UPDATE!
With objItem

.Name = strName

.BirthDate = dBDate

.Address = strAddress

.Phone = strPhone
End With

'Step 6-Return True since found and modified
Return True
End If

'Step B-Traps for Business Rule violations since object is modified
Catch objNSE As NotSupportedException

Throw New System.NotSupportedException (objNSE.Message)

'Step C-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException

'Step D-Throw Collection ArgumentNullException
Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

'Step E-Traps for general exceptions.
Catch objE As Exception

'Step F-Throw an general exceptions

Throw New System.Exception("EditItem Error: " & objE.Message)
End Try

End Function

99

Step 10: PRINT Methods

= No modification is required for the Print and PrintAll methods since no Business Objects are being modified

TR AR A AR A AR A AR A AR A AR A AR AR A AR A AR A Ak Ak kA hkhk Ak hkhkhkhkhkhkhhkhhkhhk

""" <summary>
Name: Print(Key)Sub Method
Purpose: Prints object from collection to Printer File
</summary>
<param name="key'"></param>
<returns></returns>
<remarks></remarks>
Public Function Print (ByVal key As Object) As Boolean
'Step A- Begin Error trapping
Try

'Step 1-Step 1-Create Temporary object POINTER
Dim objItem As clsCustomer

'Step 2-Get a Reference of pointer to the actual object inside the collection
'Use CType() function to convert object retrieved from list to clsCustomer
objItem = CType (MyBase.Dictionary.Item(key), clsCustomer)

'Step 3-Verify object exists
If objItem Is Nothing Then
'Step 4-Return False since not found
Return False
Else
'Step 5-Calls Temp Object.Print Method to print the object to file
objItem.Print ()

'Step 6-Return True since found
Return True
End If

'Step B-Traps for Business Rule violations since object is modified
Catch objNSE As NotSupportedException

Throw New System.NotSupportedException (ocbjNSE.Message)

'Step C-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException

'Step D-Throw Collection ArgumentNullException
Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

'Step E-Traps for general exceptions.
Catch objE As Exception

'Step F-Throw an general exceptions

Throw New System.Exception ("PrintCustomer Error: " & objE.Message)

End Try

End Function

100

Step 11: PRINTALL Methods

= No modification is required for the Print and PrintAll methods since no Business Objects are being modified

TR AR A AR A AR A AR A AR A AR A AR AR A AR A AR A Ak Ak kA hkhk Ak hkhkhkhkhkhkhhkhhkhhk

""" <summary>
Name: PrintAllCustomers () Sub Method
Purpose: Use For..Each loop to Prints all objects in collection to File
</summary>
<remarks></remarks>
Public Sub PrintAll ()
'Step A- Begin Error trapping
Try

'Step 1-Step 1-Create Temporary customer and Dictionary object POINTERS
Dim objDictionaryEntry As DictionaryEntry
Dim objItem As clsCustomer

'Step 2-Use For..Each loop to iterate through Dictionary

'Pointer points to each object during every iteration.

For Each objDictionaryEntry In MyBase.Dictionary
'Step 3-Convert DictionaryEntry pointer returned to Type Person
objItem = CType (objDictionaryEntry.Value, clsCustomer)

'Step 4-Calls Temp Object.Print Method to print the object to file
objItem.Print ()
Next

'Step B-Traps for general exceptions.
Catch objE As Exception
'Step C-Throw an general exceptions
Throw New System.Exception ("PrintAll Method Error: " & objE.Message)
End Try
End Sub

#End Region

101

Public Data Access Methods

O Now we need to look at the Public Data Access Methods we copied from the BusinessCollectionClass template.
0 NO MODIFICATION IS REQUIRED, SINCE THESE METHODS SIMPLY CALL THE PROTECTED DATA ACCESS
METHOD TO DO THE WORK.

Step 12: Public Shared Data Access Method

= NO MODIFICATION REQUIRED.

#Region "Public Data Access Methods"
Thhkkhkhkkhkkhkkkhkhkkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhbkhkkhkhbkhkhkhbkhkhkhkhkhbkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkkhkhkkhkhkkk
''' <summary>

[Optional] Calls Data Portal Create to create a Collection Object. This
Method is not used in this class, but can be used in the
future to create objects that need data from database upon Creation
</summary>
<remarks></remarks>
Public Overrides Sub Create()
'Calls Local DatPortal Create() To do the work
DataPortal Create()

End Sub
TR AKRKRAKRA AR AR AR AR A AR A AR A AR Ak Ak Ak kA hkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhkhhkkhkhkhkhkhkkhkkkkk
' <summary>
''' Calls Data Portal Fetch to load all objects from database
"' </summary> -
''' <remarks></remarks>
Public Overrides Sub Load()
'Calls Local DatPortal Fetch() To do the work
DataPortal Fetch ()

End Sub
Thhkkkhkkhkkkhkkhkhkkhkkhkhkkhkkhkhkkkhkhkkkhhkkhhkkhkhkhkkhkhhkhkhhkhkhhkhkhhkhkhkhhkhkhhkhkhkkhkhkhkkkhkhkkkhkhkhkkhkhkhkkhkhkkkhkkkkkkx
' <summary>
'''" Calls DataPortal Save() to save all objects in collection to Database
"' </summary>
' <remarks></remarks>
Public Overrides Sub Save ()
'Verify there are dirty objects in Collection
'Only modify if dirty, otherwise do nothing in this method
If IsDirty Then
'Dirty Collection, go ahead and update
DataPortal Save ()
End If

End Sub
Thhkkhkkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhhkhkhkkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkhkhkkkkkx
''' <summary>
' Calls DataPortal DeleteObject to delete an object residing
' In the collection from the database
' </summary>
' <param name="Key'"></param>
' <remarks></remarks>
Public Overrides Sub DeleteObject(ByVal Key As Object)
'Calls Local DatPortal DeleteObject() To do the work
DataPortal DeleteObject (Key)
End Sub

#End Region

Protected Data Access Methods

O Now we need to modify the PROTECTED SHARED Data Access Methods we copied from the BusinessCollectionClass
template.

o THESE ARE THE METHODS THAT PERFORM THE ACTUAL DATA ACCESS, THERE ARE TWO TYPES OF
MODIFICATIONS REQUIRED FOR THE PROTECTED DATA ACCESS METHOD:

1. The modification is simply to replace the BusinessCollectionClass statements in the code with clsCustomerList

2. ADD the DATA ACCESS CODE USING ADO.NET. WE WILL NOT DO THIS STEP IN THIS EXAMPLE.

3. TEMPORARY!!II CUT/PASTE THE FILE ACCESS CODE from the PREVIOUS LOAD() & SAVE() Method TO
MAKE THIS PROJECT WORK USING THE FILE ACCESS. THIS IS ONLY TEMPORARY SINCE THE NEXT STEP IS
TO PUT REAL ADO.NET DATA ACCESS CODE

Step 13: CREATE PROTECTED DataPortal_Create Data Access Method

= THIS IS AN OPTIONAL METHOD. Only required when we need CREATE A COLLECTION that requires DEFAULT
DATA FROM THE DATABASE.
= NO MODIFICATION REQUIRED AT THIS TIME.

#Region "Protected Data Access Methods"
Thhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkk
'Protected Data Access Methods declarations
Thhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkkhkhkkhkkhkkhkkhkkhkkhkhbkhkhkhkkhkkhkhkkhkhkhkkkhkkhkhkkhkkhkkkhkkkhkkkhkkhkkhkkhkhkhkkkhkhkkkhkkhkkhkhkkkkxkx

LI B

<summary>
'''" Data Access or other Code for Creating a New Business COLLECTION Object
''' Used when object requires data from db upon creation

""" </summary>
''' <remarks></remarks>
Protected Overrides Sub DataPortal Create ()
'Create object and assign default values from database etc.
End Sub

103

Step 14:*****SPECIAL TEMPORARY FILE ACCESS CODE DataPortal_Fetch and File

= |nthe DataPortal_Fetch() method is where we will place our temporary FILE ACCES CODE to the Fetch data from the

Customer.txt file.
= Future implementation will use ADO.NET, but for now we will use a file.

ThAAAAAKAAAA AR A AR Ak Ak Ak Ak Ak hhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhkhkkhkhkhkkhkhkkkkk
Protected Overrides Sub DataPortal Fetch()
' %% % %% % **TEMPORARY FILE ACCESS CODE FOR LODADING DATA™*** %%k k% %k kkkkkkx
'Step A- Begin Error trapping
Try
'Step 1-Declare Customer POINTER
Dim objCustomer As clsCustomer

'Step 2-Use File class Shared method to test if File exists
If Not File.Exists("CustomerData.txt") Then
'Create the file since it does not exist
Dim objFile As New StreamWriter ("CustomerData.txt")
'Close the file for writing
objFile.Close ()
End If

'Step 3-Open file for reading
Dim objDataFile As New StreamReader ("CustomerData.txt")

'Step 4-Loop through file
Do While objDataFile.Peek <> -1

'Step 5-Read a line from file & assign to variable
Dim strLine As String = objDataFile.ReadLine

'Step 6-Parse the line using VB Split() & assign to array
Dim tempArray() As String = Split(strLine, ",")

'Step 7-Create NEW Object
objCustomer = New clsCustomer ()

'Step 7-Populates object it with data from file
With objCustomer

.CustomerID = tempArray (0)

.Name = tempArray(1l)

.SocialSecurity = tempArray (2)

.BirthDate = CDate (tempArray (3))

.Address = tempArray (4)

.Phone = tempArray (5)

.TotalItemsPurchased = CInt (tempArray (6))
End With

'Step 7-Call add to add object to Collection
Add (objCustomer.CustomerID, objCustomer)
Loop

'Step 8-Close File
objDataFile.Close ()

'Step B-Traps for general exceptions.
Catch objE As Exception
'Step C-Throw an general exceptions
Throw New System.Exception("Load Error: " & objE.Message)
End Try
'**k**k**** END OF TEMPORARY FILE ACCESS CODE
'THE CORRECT CODE WILL BE IMPLEMENTED WHEN DURING THE ADO.NET LECTURES
End Sub

Step 15: *****SPECIAL TEMPORARY CHANGES to DataPortal_Save()

= Now we need to add File Access code to DataPortal_Save(). Nevertheless, the job of this method is to iterate through the
collection and call each CHILD Object’s Save() method to do the work. The code to do this is ALREADY IN THE
TEMPLATE.

= We need to modify this code AS FOLLOWS:

Replace the CHILD OBJECT BusinessClass declarations in the code with clsCustomer

LEAVE THE CODE PROVIDED BY THE TEMPLATE ALONE.

ADD THE FILE ACCESS CODE.

IN THE FUTURE - IMPORTANT!! WHEN WE USE ADO.NET, YOU NEED TO UNCOMMENT THE CODE
AND REMOVE THE FILE ACCESS CODE.

N

= Comment existing Business Object code and add File Access code

Thhkhkhkhkhkhkkhkhkhkhkhkhhkhhkhhkhkhkhkhkhkhhhkhhhhkhkhhkhkhkhhhkhhhhhkhkhkhkhkhkhhkhhhhhkhkhkhkhkhkhhhkhhrhhkkhkhxk

' <summary>
SAVES all objects from database by Iterating through Collection, and
calling Each ITEM object SAVE() method so each Item saves itself
</summary>
<remarks></remarks>

Protected Overrides Sub DataPortal Save()

'Iterates through Collection, Calling Each CHILD object.Save() method
'CHILD Objects save themselves
'Step A- Begin Error trapping
Try
'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS
Dim objDictionaryEntry As DictionaryEntry
Dim objChild As clsCustomer

'Step 2-Use For..Each loop to iterate through Collection

For Each objDictionaryEntry In MyBase.Dictionary
'Step 3-Convert DictionaryEntry pointer returned to Type Person
objChild = CType (objDictionaryEntry.Value, clsCustomer)

'Step 4-Call Child to Save itself
objChild.Save ()

Next

'Step B-Traps for general exceptions.
Catch objE As Exception

'Step C-Throw an general exceptions

Throw New System.Exception("Save Error! " & objE.Message)
End Try

105

Continue DataPortal_Save().
Add File Access Code

'**x*x%x*%***TEMPORARY FILE ACCESS CODE FOR LODADING DATA** %%k kkkkkkkkkkkx
'Step A- Begin Error trapping
Try

'Step 1-Open file for writing with options to Overwrites the existing file
Dim objWrite As New StreamWriter ("CustomerData.txt", False)

'Step 2-Create Temporary DictionaryEntry and Customer POINTERS
Dim objDictionaryEntry As DictionaryEntry
Dim objItem As clsCustomer

'Step 3-Use For..Each loop to iterate through SortedList

'Pointer points to each object during every iteration.

For Each objDictionaryEntry In MyBase.Dictionary
'Step 4-Convert DictionaryEntry pointer returned to Type Person
objItem = CType (objDictionaryEntry.Value, clsCustomer)

'Step 5-Write Object's content as a COMMA-DELIMITED line to the file
objWrite.Writeline (objItem.CustomerID & "," &
objItem.Name & "," &

objItem.SocialSecurity & "," &

objItem.BirthDate & "," &

objItem.Address & "," &

objItem.Phone & "," & _

objItem.TotalItemsPurchased)
Next

'Step 6-Close file
objWrite.Close ()

'Step B-Traps for general exceptions.
Catch objE As Exception

'Step C-Throw an general exceptions

Throw New System.Exception("Save Error: " & objE.Message)
End Try

"k*kkk****END OF TEMPORARY FILE ACCESS CODE FOR LODADING DATA™* %% %k kkkk ko kkokkkk

End Sub

106

Step 16: CHANGES to DataPortal_DeleteObject(Key)

= Now we need to make some small changes to DataPortal _DeleteObject(). We need to the following:

1. Replace the CHILD OBJECT BusinessClass declarations in the code with clsCustomer
2. Select the Correct Property for the CHILD OBJECT which represents the KEY

Thkhkkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhhkhkhkhkkkhkkkhkkkhkkhkhkhkhkhkhkhkhkhkkhkhkkhhhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkkkxk
' <summary>
DELETES AN OBJECT BY ID from database by Iterating through Collection
and calling Each ITEM object DELETE (ID) method so each Item delete itself
</summary>
<param name="Key'"></param>
<remarks></remarks>
Protected Overrides Sub DataPortal DeleteObject (ByVal Key As Object)
'Tterates through Collection, Calling Each CHILD object.Delete() method
'CHILD Objects Delete themselves

'Step A- Begin Error trapping

Try
'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS
Dim objDictionaryEntry As DictionaryEntry
Dim objItem As clsCustomer

'Step 2-Use For..Each loop to iterate through Collection

For Each objDictionaryEntry In MyBase.Dictionary
'Step 3-Convert DictionaryEntry pointer returned to Type Person
objItem = CType (objDictionaryEntry.Value, clsCustomer)

'Step 4-Find target object based on key
'YOU WILL NEED TO SELECT THE CORRECT PROPERTY
'FOR objItem.Property, ALSO YOU NEED TO CONVERT THE
'KEY PARAMETER USING CSTR OR CINT ETC. DEPENDING
'ON THE DATATYPE OF THE objItem.Property
If objItem.CustomerID = CStr (Key) Then
'Step 5-Object deletes itself
objItem.DeleteObject (Key)

''Step 6-[OPTIONAL] Remove Object From Collection
''since no longer in DB
'MyBase .Dictionary.Remove (Key)
End If
Next
'Step B-Traps for general exceptions.
Catch objE As Exception
'Step C-Throw an general exceptions

Throw New System.Exception("Delete Error! " & objE.Message)
End Try

End Sub

HENnA RariAn

107

Step 17: Helper Methods:

= Now we need to modify or add any Helper Methods. Currently there are no non-business related methods in this class.

#Region "Helper Methods"
Thkhkkhkkhkkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhhkhkhkhkhkhkhkkhkhkkk

'Methods used to assist other methods or maintenance

#End Region

End Class

108

| Presentation/User-Interface Layer

Module code:
Now we need to make required changes to the Module. We need to the following:

1. ADD REFERENCE TO DLL where required
2. ADD any required Error handling when CREATING AND MODIFYING BUSINESS OBJECTS, by trapping for

NotSupportedException Exception

Step 3: Modify the Code in the Module

Q Inthe Module, we are force to make some changes.

* REFERENCE DLL WHEN CREATING COLLECTION CLASS OBJECT

Step 1: Sub Main() Stays the same
0 No changes needed in Sub Main()

Option Explicit On
Option Strict On

Module modMainModule

'Declare Public Array of Person Objects
Public objCustomerList As New BusinessObjectsDLL.clsCustomerList

Dim objMainForm As frnMain = New frnMain

Public Sub Main()

'Perfom initialization
InitializelList()

'Display Customer Form
objMainForm. ShowDialog ()

End Sub

109

Step 2: IntializeList Method:
Q Inthis implementation, | will NOT create default OBJECTS HERE OR ANY INITIALIZATION

Thhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkkhhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhhhkhhkkhkhkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkxkk

'''" <summary>
Name: InitializeList() Method
Purpose: Nothing is required for this example
</summary>
<remarks></remarks>
Public Sub InitializeList()
'No objects are added to Customer Collection from intialize
'Since we are storing our Customers in a File, we don't really
'want to add Customer object from here! If we do

'these objects will be stored in the file via Save() and then
'we will have duplicate objects during the load(), and since we cannot have
'two objects with the same key we will raise and Exception.

End Sub

End Module

110

Step 1: Modify the Presentation/User Interface Layer

Customer Management Form
= Now we need to make some small changes to the Customer Management Form. We need to the following:

1. ADD REFERENCE TO DLL where required
2. ADD any required Error handling when CREATING AND MODIFYING BUSINESS OBJECTS, by trapping for
NotSupportedException Exception

O The Customer Management Form looks as follows:

=1k

Customers Managemet Form

Frint All Customers Ligt |

Exit

— Customer Information Gt Customer | lstCuistomers
ID Number I
Name l— Add Mew |
55 Mumby I |
UMt Edit Customer
Birth D ate I
Delete |
Address I
Phaone I— Pint |

O Inaddition we will automatically LOAD all customer data from file during Form_Load event and SAVE all customer data to file
when the Exit button is clicked.

Step 1: Modity the Form Level Object to Use the DLL. Also we show the Form Load() event
0 Modify OBJECT DECLARATION TO USE CLASS in DLL:

Option Explicit On
Option Strict On

Public Class frmCustomerManagement

'Declare Form Level POINTER
Private objCustomer As BusinessObjectsDLL.clsCustomer

111

Step 2: The FORM_LOAD() event-handler
O WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

Thhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkkhkkkkkk

' <summary>
'''"Name: Event-Handler Form Load
''"'"Purpose: Calls Collection.Load() to populate collection with objects from file

Private Sub frmCustomerForm Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

'Step A-Begins Exeception handling.

Try

'Step 1-Load objects from file to collection
objCustomerList.Load()

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.

Catch objE As Exception
'Step D-Inform User
MessageBox.Show (objE .Message)

End Try

End Sub

Step 3: The FORM_CLOSE() event-handler
0 WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

Thhkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhhkhkhhkhhkhkhkhkhkkhkhkhkhhkhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhhkkkhkhkkhkhhkhk

' <summary>
''"'Name: Event-Handler Form Close()
"' 'Purpose:Destroys Form-level object pointer when form closes
'''Saves Collection objects to file and clears the collection
Private Sub frmCustomerManagement FormClosed(ByVal sender As Object, ByVal e As
System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed
'Step A-Begins Exeception handling.
Try
'Step 1l-Destroy Form-Level Objects
objCustomer = Nothing

'Step 2-Save objects from Collection to file
objCustomerList.Save ()

'Step 3-Clear the Collection
objCustomerList.Clear ()

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.

Catch objE As Exception
'Step D-Inform User
MessageBox. Show (objE.Message)

End Try

End Sub

Step 4: The btnExit_Click() event-handler

O NO MODIFICATION REQUIRED SINCE NO BUSINESS OBJECTS ARE CREATED OR MODIFIED:

Thhkhhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkhkhkkhkkhkkkhkkkkkkkkkkkkkkkkkkkxk

' <summary>
''Name: Event-Handler for for Exit button
' 'Purpose:Closes the Form
'' </summary>
'' <param name="sender"></param>
''" <param name="e'"></param>
'''" <remarks></remarks>

Private Sub btnExit Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnExit.Click

'Step 1-Close the file
Me.Close()

End Sub

113

Step 5: GetCustomer_Click() event-handler — We Catch a NotSupportedException for Our Business Object Validation Rules

O TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

Thhkhhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhkhkkhkhkhkhhkhhkkhkhkhkkhkhkhkhhkkhkhkhkkhkhkhkhkhkhkhkhx

''"!" <summary>

Name: Event-Handler for btnGetCustomer button

Purpose: To retrieve an POINTER TO object from the collection base on ID

</summary>

<param name="sender"></param>

<param name="e"></param>

<remarks></remarks>
Private Sub btnGetCustomer_ Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnGetCustomer.Click

'Step A-Begins Exeception handling.

Try

'Step 1-Call Calls Item() Property to return pointer to objecT in Collection
objCustomer = objCustomerList.Item(txtIDNumber.Text.Trim)

'Step 2-If result of search is Nothing, then display customer is not found
If objCustomer Is Nothing Then
MessageBox . Show ("Customer Not Found")

'Step 3-Clear all controls
txtName.Text = ""
txtIDNumber.Text = ""
txtBirthDate.Text = ""
txtAddress.Text = ""
txtPhone.Text = ""

Else

'Step 4-Then Data is extracted from customer object & placed on textboxes

With objCustomer
txtIDNumber.Text = .CustomerID
txtName.Text = .Name
txtSSNum.Text = .SocialSecurity
txtBirthDate.Text = CStr (.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone

End With

End If

'Step B-Traps for Business Rule violations
Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step D-Inform User
MessageBox. Show (objX.Message)
'Step E-Traps for general exceptions.
Catch objE As Exception
'Step F-Inform User
MessageBox.Show (objE.Message)
End Try
End Sub

114

Step 6: Add_Click() event-handler — Trap for NotSupportedException

O TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

Thhkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhhkhhhkhkhkhkhkkhkhkhhkhkhhkhhkkhkhkhkhkhkhkhkhkhkkhhkhkkhkhkkhhkhkxx

<summary>
Name: Event-Handler for btnAdd button
Purpose:To add new object to the collection
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>
Private Sub btnAdd Click (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnAdd.Click
'Step A- Begin Error trapping
Try

'Step 1-Calls Collection Add(Valuel,Value2,.) pass text control arguments
objCustomerList.Add (txtIDNumber.Text.Trim, txtName.Text.Trim, _
txtSSNum.Text.Trim, CDate(txtBirthDate.Text), txtAddress.Text.Trim, _
txtPhone.Text.Trim)

'Step B-Traps for Business Rule violations
Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step D-Inform User
MessageBox. Show (objX.Message)
'Step E-Traps for ArgumentExecption when KEY is duplicate.
Catch objY As ArgumentException
'Step F-Inform User
MessageBox. Show (objY.Message)
'Step G-Traps for general exceptions.
Catch objE As Exception
'Step H-Inform User
MessageBox. Show (objE.Message)
End Try
End Sub

115

Step 7: EditCustomer_Click() event-handler — Trap for NotSupportedException

O TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

TR A A AR A AR A AR A AR A AR A AR AR AR A AR A AR A Ak Ak Ak kA kA hkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhhkhkx
' <summary>
Name: Event-Handler for btnEditCustomer button
Purpose: Initiate the Edit process to modify an object in the collection
</summary>
<param name="sender'"></param>
<param name="e"></param>
<remarks></remarks>
Private Sub btnEditCustomer Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnEditCustomer.Click
'Step A- Begin Error trapping
Try
Dim bolResults As Boolean

'Step 1-Call Module EditItem(index,x,y,z,...) method with textbox data
bolResults = objCustomerList.Edit (txtIDNumber.Text.Trim, _
txtName.Text.Trim, txtSSNum.Text.Trim, CDate (txtBirthDate.Text), _
txtAddress.Text.Trim, txtPhone.Text.Trim)

'Step 2-If not found display Message & clear all controls
If bolResults <> True Then

MessageBox. Show ("Customer Not Found")
End If

'Step B-Traps for Business Rule violations
Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step B-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step C-Inform User
MessageBox.Show (objX.Message)
'Step D-Traps for general exceptions.
Catch objE As Exception
'Step E-Inform User
MessageBox.Show (objE.Message)
End Try
End Sub

116

Step 8: Delete_Click() event-handler — Trap for NotSupportedException

O TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

Thhkhkhkhkhkhkhkhkkhkhkhkhhkhkhkhkhkhkkhkhkhkkhhkhkhhkhkhkhkhkhkhkhkhhkhkhhkhhhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkkhhkhkhkhkhkhkkhkkhkkhkhkhkhkhxhhkxkx

""" <summary>

Name: Event-Handler for btnDelete button

Purpose: To delete an object from the collection base on ID or Key

</summary>

<param name="sender'"></param>

<param name="e'"></param>

<remarks></remarks>
Private Sub btnDelete Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnDelete.Click

'Step A- Begin Error trapping

Try

Dim bolResults As Boolean

'Step 1-Calls Remove () method of module. Key is passed as argument
bolResults = objCustomerList.Remove (txtIDNumber.Text.Trim)

'Step 2-If not found display Message & clear all controls
If bolResults <> True Then

MessageBox.Show ("Customer Not Found")
End If

'Step B-Traps for Business Rule violations
Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step D-Inform User
MessageBox.Show (objX.Message)
'Step E-Traps for general exceptions.
Catch objE As Exception
'Step F-Inform User
MessageBox.Show (objE.Message)
End Try
End Sub

117

Step 9: Print_Click() event-handler — Trap for NotSupportedException
a Trap for NotSupportedException exception in case the call to the PrintCustomer method may return business object exceptions.

L R g g SR L Rt R R R R SRS S
' <summary>
Name: Event-Handler for btnPrint button
Purpose: Prints Object in the list to printer file
</summary>
<param name="sender'"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub btnPrint Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnPrint.Click
'Step A- Begin Error trapping
Try
Dim bolResults As Boolean

'Step 1-Calls Remove (Key) method of module
bolResults = objCustomerList.Print (txtIDNumber.Text.Trim)

'Step 2-If not found display Message & clear all controls
If bolResults <> True Then

MessageBox.Show ("Customer Not Found")
End If

'Step B-Traps for Business Rule violations
Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for ArgumentNullException when key is Nothing or null.
Catch objX As ArgumentNullException
'Step D-Inform User
MessageBox.Show (objX.Message)
'Step E-Traps for general exceptions.
Catch objE As Exception
'Step F-Inform User
MessageBox.Show (objE.Message)
End Try

118

Step 10: PrintAll_Click() event-handler— Trap for NotSupportedException

Q Trap for NotSupportedException exception in case the call to the PrintalLLCustomer method may return business object
exceptions.

Thhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkkhkkkkkkx
T

<summary>
'''" Name: Event-Handler for btnPrintAllCustomers button
Purpose: Prints all Objects in the list to file
</summary>
<param name="sender'"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub btnPrintAll Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnPrintAll.Click
'Step A- Begin Error trapping
Try
'Step 1-Calls PrintAllCustomers () method of module.

objCustomerList.PrintAll ()

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step D-Traps for general exceptions.

Catch objE As Exception
'Step E-Inform User
MessageBox. Show (objE.Message)

End Try

End Sub

119

Step 11: Add code to the btnList_Click() event-handler

Q Trap for NotSupportedException exception due to the BUSINESS OBJECT POINTER CREATED FOR THE FOR-EACH

LOOP.
O IN ADDITION, WE NEED TO MODIFY THE OBJECT CREATION CODE TO REFERENCE THE DLL.

TR AR AR A AR A AR A AR A AR A AR A AR A AR A AR Ak kA Ak kA kA hkhkkhkhkkhhhkhk

""" <summary>

Name: Event-Handler for btnList button

Purpose: List properties of object to the listBox as comma-delimited line

</summary>

<param name="sender"></param>

<param name="e'"></param>

<remarks></remarks>
Private Sub btnList Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnList.Click

'Step A- Begin Error trapping

Try

'Step 1-Clear the list
lstCustomers.Items.Clear ()

'Step 2-Create Temporary Person and Dictionary object POINTERS
Dim objDictionaryEntry As DictionaryEntry
Dim objItem As BusinessObjectsDLL.clsCustomer

'Step 3-Use For..Each loop to iterate through Collection Class Object
'GET properties of object pointed by objItem and write to listbox
For Each objDictionaryEntry In objCustomerlist

'Step 4-Convert DictionaryEntry pointer returned to Type Person
objItem = CType (objDictionaryEntry.Value, BusinessObjectsDLL.clsCustomer)

'Step 5-Create the string to list

Dim strLine As String = objItem.CustomerID & "," &
objItem.Name & "," & _
objItem.SocialSecurity & "," &
objItem.BirthDate & "," &
objItem.Address & "," & _
objItem.Phone

'Step 6-Add string to ListBox
lstCustomers.Items.Add (strLine)
Next

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.

Catch objE As Exception
'Step D-Inform User
MessageBox.Show (objE.Message)

End Try

End Sub

End Class

120

Retail Management Form
= Now we need to make some small changes to the Customer Management Form. We need to the following:

1. ADD REFERENCE TO DLL where required
2. ADD any required Error handling when CREATING AND MODIFYING BUSINESS OBJECTS, by trapping for
NotSupportedException Exception

O The Retail Management Form looks as follows:

Manager Information Form -1ol x|

Retail Screen

i Customer Infarmation

1D Mumber I

Mame I Frint
Eirth Date: I
Exit

Address I

Phone I

[Shopping Section

Murmber of Items ta Purchase I Buy Mow
Tatal Purchases I

0 Inaddition we will automatically LOAD all customer data from file during Form_Load event and SAVE all customer data to file
when the Exit button is clicked.

Step 1: Modity the Form Level Object to Use the DLL. Also we show the Form Load() event

0 Modify OBJECT DECLARATION TO USE CLASS in DLL:

LI b b b b I S b I S I I S S I S b i S IR I S S S b S S I e S I S S I S S I S S b S S e S S S I S Sb g b S b b db b b Sb b Sb b S b b 4

' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION

LI e A e b S b I e i B S A I A I b i S AR B A e B S S S S B b B S dh I S A I S dh S I I I S S B S B I B b B b e b b I A b i b e B b i 4

'Module-level Object POINTER Declaration
Private WithEvents objCustomer As BusinessObjectsDLL.clsCustomer

121

Step 2: The FORM_LOAD() event-handler

O WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

Thkhkkdhhhhhkhkhhhhhkhhhhkdhhhhhhhhhhhkhhkkkhhhhhhkhhhhhhkkdhhkhhhhkhkhhhhkhhhhkhkkkhhkhkhkkhkk
' EVENT-HANDLER DECLARATIONS SECTION

TAAAKEAAA A A A AR A A AR AR AR A AR A ARk ARk Ak Ak Ak hkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkk

Thhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhhkhhkhkhhkkhkhkhkkhhkhkhhkhkhkhkhkkhkkhkhkhkhhkhkhkkhkkhkhkhkhkhkhkhkkhhkkkhkhkkkx

' <summary>
' Form _Load event. Create object and popoulate Form controls
With object's default values. Also Sets text box to Read-only
in MODULE
</summary>
<param name="sender'"></param>
<param name="e"></param>
'''" <remarks></remarks>
Private Sub frmRetailManagement Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
'Step A-Begins Exeception handling.
Try
'Step 1-Create EMPTY Form-Level Object
objCustomer = New BusinessObjectsDLL.clsCustomer

'Step 2-Populate Form Controls with Object's data
With objCustomer
txtName.Text = .Name
txtIDNumber.Text = .CustomerID
txtBirthDate.Text = CStr(.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone
End With

'Step 3-Disable txtTotalPurchases Text Box to make it Read-only
txtTotalPurchases.Enabled = False

'Step 1-Load objects from file to collection
objCustomerList.Load ()

'Step B-Traps for Business Rule violations
Catch objNSE As NotSupportedException
MessageBox. Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.
Catch objE As Exception
'Step D-Inform User
MessageBox. Show (objE.Message)
End Try

End Sub

122

Step 3: The FORM_CLOSE() event-handler

O WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

Thhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkkhkkkkkk

' <summary>
'Name: Event-Handler Form Close()
'Purpose:Destroys Form-level object pointer when form closes
'Saves Collection objects to file and clears the collection
''" </summary>
''" <param name="sender"></param>
''" <param name="e'"></param>
''' <remarks></remarks>
Private Sub frmRetailManagement FormClosed(ByVal sender As Object, ByVal e As
System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed
'Step A-Begins Exeception handling.
Try

'Step 1-Destroy Form-Level Objects
objCustomer = Nothing

'Step 2-Save objects from Collection to file
objCustomerList.Save ()

'Step 3-Clear the Collection
objCustomerList.Clear ()

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.

Catch objE As Exception
'Step D-Inform User
MessageBox. Show (objE.Message)

End Try

End Sub

Step 4: The btnExit_Click() event-handler

o NO MODIFICATION REQUIRED SINCE NO BUSINESS OBJECTS ARE CREATED OR MODIFIED:

TR A A A AR A AR A AR A AR A AR AR A AR AR ARk Ak Ak hkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkk

' <summary>
Event-handler calls Form Close() method to close the Form.
</summary>
<param name="sender"></param>
<param name="e"></param>
<remarks></remarks>

Private Sub btnExit Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnExit.Click
'Step 1-Close yourself (Form)
Me.Close()
End Sub

123

Step 5: Get_Click() event-handler — We Catch a NotSupportedException for Our Business Object Validation Rules

O TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

Thhkkhkhkhkhkhkhkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkkhkhkhkhkhhhkhhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkkhhkkhx

' <summary>
' Calls Search method of module to search database for object
whose ID is passed as argument. Returns a pointer to the object
found, else returns a Nothing.
</summary>
<param name="sender'"></param>
<param name="e"></param>
'''" <remarks></remarks>
Private Sub btnGet Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnGet.Click
'Step A-Begins Exeception handling.
Try
'Step 1-Call Calls Collection.Item() Property to return pointer to object
objCustomer = objCustomerList.Item(txtIDNumber.Text.Trim)

'Step 2-If result of search is Nothing, then display customer is not found
If objCustomer Is Nothing Then
MessageBox . Show ("Customer Not Found")

'Step 3-Clear all controls

txtName.Text = ""

txtIDNumber.Text = ""

txtBirthDate.Text = ""

txtAddress.Text = ""

txtPhone.Text = ""

Else
'Step 4-Then Data is extracted from customer object & placed on textboxes

With objCustomer
txtName.Text = .Name
txtIDNumber.Text = .CustomerID
txtBirthDate.Text = CStr (.BirthDate)
txtAddress.Text = .Address
txtPhone.Text = .Phone

'Set total purchases
txtTotalPurchases.Text = CStr(.TotalltemsPurchased)
End With
End If

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.

Catch objE As Exception
'Step D-Inform User
MessageBox. Show (objE.Message)

End Try

End Sub

124

Step 6: Print_Click() event-handler — Trap for NotSupportedException

a Trap for NotSupportedException exception in case the call to the Print method may return business object exceptions.

Thhkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkkkhkkkhkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkhkkhkhkkhkhkkkx
' <summary>
'''" Event-handler call PRINT () METHOD of Form-Level object.
"' </summary>
Private Sub btnPrint Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnPrint.Click
'Step A- Begin Error trapping
Try
'Step 1-Tell object to print itself
objCustomer.Print ()

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
'Step C-Inform User
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step D-Traps for general exceptions.

Catch objE As Exception
'Step E-Inform User
MessageBox. Show (objE.Message)

End Try

End Sub

Step 7: SHOP_Click() event-handler — Trap for NotSupportedException
O Trap for NotSupportedException exception in.

Thhkkhkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhkhkkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkhrkhkkhkkk

' <summary>
'' Calls customer object Shop() method to purchase items and cleas text box.
Also displays total purchases of customer
</summary>
<param name="sender"></param>
<param name="e'"></param>
<remarks></remarks>
Private Sub btnShop Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnShop.Click
'Step A-Begins Exeception handling.
Try
'Step 1-Call the Shop Method of the Object to shop and trigger event
objCustomer. Shop (CInt (txtItems.Text.Trim))

'Step 2-Clear Items textbox
txtItems.Text = ""

'Step 3-Set total purchases
txtTotalPurchases.Text = CStr (objCustomer.TotalItemsPurchased)

'Step B-Traps for Business Rule violations

Catch objNSE As NotSupportedException
MessageBox.Show ("Business Rule violation! " & objNSE.Message)
'Step C-Traps for general exceptions.

Catch objE As Exception
'Step D-Inform User
MessageBox.Show (objE.Message)

End Try

End Sub

Step 8: ONSHOPPING_Click() event-handler

0 NO MODIFICATIONS REQUIRED!

Thhkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkkkhkkkhkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkhkkhkhkkhkhkkkx

<summary>

Event-handler of Customer Objects. Triggered when Shop() method is called.

Displays a message every time customer shops.

</summary>

<param name="intTotalItems"></param>

<remarks></remarks>
Private Sub objCustomer OnShopping(ByVal intTotalltems As Integer) Handles
objCustomer.OnShopping

MessageBox.Show ("The Total items purchased by the Customer is " &
intTotalItems)

End Sub

End Class

126

Step 4: Build & Execute Project

‘ Step 1: Compile and Build the project.

‘ Step 2: Execute the application

Get Customer

Add New

Edit Custarmer

Delete

Frint

333.5am Franks,333-22-3333 3121967 333 Jap Street, 718 2605333
444 Mary Jones 444-44-4444 1/23/1974.444 Jay Steet 718 260-4444
111 Joe Smith,111-11-1111,1/23/1371,111 Jay Shreet, 718 260-5000
222 Angel Rod 222-22-2222 3/12/1967 222 Jay Shreet, 718 260-5000

Customers Managemet Form

r—Custamer Information

ID Humber [1{11
_ pem | Mame [Jce Smith

35 Humber |111-11-1111

Exit
Birth Date 1/231971
4
Address |1 11 Jay Strest
Phone 718 260-5000

Frint A1l
Customers

Exit

Rl

List |

=10l x|

‘ Step 3: Test the Business Rules

= Attempting to ADD Customer and violating the exact length Business Rule of the SS Number:

Customers Form

Customers Managemet Form

— Cusztamer Information

ID Humber [555

Mame INanc_l,J Ramirez

S5 Number |55555
Birth Date |5.:"23.f'1 975

Get Cusztomer

Add Mew

Edit Cuztamer

Delete

Address |555 Jay Strest

Phaone |?1 8 260-5555

Print

Fint Al
Customers

E it

N x|

Business Rule violakion! Yalue not exack Lenght

333.5am Framks,333-22-3333,3/12/1967,333 Jay Steet, 718 260-5333
444 Mary Jones,444-44-4444 1/23/1974,444 Jay Street, 715 260-4444
111 Joe Smith, 111-11-1111,1/23/1971,111 Jay Street 718 260-5000
222 Angel Rod 222-22-2222, 31 2/1967 222 Jay Street, 718 260-5000

=0l x|

127

= Attempting to ADD Customer and violating the NON-EMPTY Business Rule for the Name Property:

e Customers Form _ O] =
aL

Customers Managemet Form
— Cuztomer Information Giet Cust
E LIStormer
1D Humber [Faa
Mo I Add Mew
55 Humber |555-55-5555 Edit Custamer
Birth D ate |5.-"23.-"1 975
Delete
Address |555 Jap Street
Prirt
Fhone |?1 8 260-5555 i
Prink &l
Customers
E it

333.5am Franks,333-22-3333.3/12/1967 333 Jay Sheet 718 260-5333
444 Mary Jores 444-44-4444 1/23/1974 444 Jay Steet, 713 260-4444
111 .Joe Smith 111-11-1111,1/23/1971.1171 Jay Street, 718 260-5000
222 Angel Rod 222-22-2222,3/1 21967 222 Jay Street, 718 260-6000

B x|

Business Rule violation! Business Rule: Mame cannot be blank

LI=T

= Attempting to ADD Customer and violating the NON-EMPTY Business Rule for the ADDRESS Property:

Customers Form

BcustomersForm ~=loi x|

Customers Managemet Form

1D Humber

Mame

55 Mumber

Birth D ate

Addreszs

Fhore

r— Cuztomer Information

555

INanc_l,J Ramirez

|555-55-5555
|1 5231575

fi
[718 260-5555

Get Customer

Add Hew

E dit Customer

Delete

Prirt

Prirt &l
Customers

E =it

333.5am Franks,333-22-3333.3/12/1967.333 Jay Sheet 718 260-5333
444 Mary Jones,444-44-4444 1/23/1974.444 Jay Steet, 713 260-4444
111 .Joe Smith.111-11-1111.1/23/1971.117 Jay Street, 718 260-5000
222 Angel Rod 222-22-2222 3121967 222 Jay Street, 718 260-5000

B x|

Business Rule violation! Business Rule: Address cannok be blank

4

= ATTENTION! SOME BUSINESS RULES CANNOT BE TESTED AT THIS TIME. BUSINESS RULES INVOLVE THE
“DIRTY & NEW MECHANISM, WHICH ALSO WORK HAND-IN-HAND WITH THE DATABASE ACCESS
METHOD! SINCE WE ARE NOT USING THE CUSTOMER.LOAD() METHOD AT THIS TIME, WHICH DETERMINES
IF AN OBJECT IS NEW OR OLD, WE CANNOT TEST BUSINESS RULES SUCH AS “WRITE-ONCE” ETC., WHICH

IS ARULE BASED ON THE OBJECT BEING NEW OR OLD.

= IN THE NEXT LECTURE, WE WILL IMPLEMENT THE DATA ACCESS CODE AND WILL BE ABLE TO TEST ALL
OUR BUSINESS RULES.

128

B Manager Information Form
¥l Manager Information Form

—

B Manager Information Form =
Manager Information Form

N —

129

| Database Layer

Temporarily implemented using Files

O The File which are simulating our database are located in the Bin folder of the Client Application as shown in the illustration
below:

=10/ x|
| &

File Edit ‘“jew Faworites Tools Help

eBack - -\‘_;J b lj]“ /'__.] Search - Folders | = x n | v

&ddress Il’f} cts Implementation!BusinessApplicationExamplesiUsing File .ﬁ.ccess'I,SmalIBusiness.ﬁ.pp'l,Win.ﬁ.ppCIient'l,I:uin'l,Debugj = =t
e ——

é:]éBusinessOl:ujectsDLL.|:|||§ CIretalclient, exe

'ﬁ BusinessObjectsDLL, pdb '-ﬁ Retaillient. pdb

BusinessObjecksDLL . xml ERetaiICIient.vshDst.exe

Z] CustomerData, bt RetaiICIient.me
E] CustomerPrinker . bxk

|9 objects

321 KB | 4 My Computer v

O The content of the file is formatted as comma delimited strings as shown below:

E'. CustomerData.txt - Notepad

_{o] x|
File Edit Format Wiew Help

E33,5am Franks,333-22-3333,3/12/1967,333 Jay Street,7l8 260-5333,0 ;I
444, Mary Jones, 444 -44-4444,1 /231974, 444 Jay Street, 718 260-4444,0

111, Joe smith,111-11-1111,1/23,15%71,111 Jay Street, 718 260-5000,157
222,angel Rod,222-22-2222,3/12/15967,222 Jay Street,7l8 260-5000,55

" -

Real Data Access will be implemented in Next Lectures

O We will implement this Layer using MS Access. Although Access is not a True DBMS, nevertheless, it is commonly used for
many application projects.

o We will finally implement using a true DBMS via SQL 2005 SERVER EXPRESS.

130

