

CS708 Lecture Notes

Visual Basic.NET Object-Oriented Programming

Implementing Business Objects (Part II)

Business Rules & Validation

Part (II of III)

(Lecture Notes 3B)

Professor: A. Rodriguez

 2

CHAPTER 5 BUSINESS RULES & VALIDATION ... 4

5.1 Business Objects Review & Status.. 4
5.1.1 Business Objects Requirements Status ... 4
5.1.2 Key Technologies to Implement Business Object Review ... 6
5.1.3 Business Objects Requirements Overview & Summary ... 6

5.2 Business Objects – Data Access Requirements.. 7
5.2.1 Overview ... 7

Data Access Objectives:... 7
Implementing the Data Access Objectives: ... 7

5.2.2 Implementation Overview... 11
Data Access Methods Details: ... 11

5.3 Creating the Business Logic & Rules. Business Classes, & BusinessBase Class Templates ... 12
5.3.1 Overview ... 12

Business Rules ... 12
Business Class.. 12
BusinessBase Class .. 12

5.3.2 Implementing BusinessBase Class .. 12
5.3.3 IMPORT Required Libraries... 13
5.5.4 Convert Class into Distribute Object/Unanchored Class .. 13
5.3.5 Tracking Dirty Object ... 14

Implementing Dirty Object .. 14
5.3.6 Tracking New Object .. 15

Implementing NEW Objects .. 15
5.3.7 Adding Tracking Mechanism to BusinessBase Class ... 16
5.3.8 MustOverride Data Access Methods – Declared in BusinessBase ... 17

BusinesBase & MustOverride .. 17
Declaring Public & Protected Data Access Methods in BusinessBase .. 17

5.3.8 Other Data Access Helper Methods (BusinessBase) .. 18

5.4 Business Base Template – Putting the Base Class Together... 20
5.4.1 Implementing Business Base .. 20
5.4.2 Sample Program #1 – Creating the BusinessBase Class ... 21

5.5 Creating our Business Classes – Business Class Template ... 24
5.5.1 Implementing Business Class ... 24
5.5.2 IMPORT Required Libraries... 24
5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from BusinessBase Class.. 24
5.5.4 Implementing Data, Properties, Methods and Events ... 25
5.5.5 Public Data Access Methods – Forced Upon by BusinessBase .. 25

Public Data Access Methods Implementation Details ... 25
5.5.6 Protected Data Access Methods – Implemented in Business Class .. 27
5.5.7 Implementing Business Class Template ... 29

Components of Business Class .. 29
5.4.8 Sample Program #2 – Creating the Business Class Template ... 30
5.4.9 CONCLUSION ... 34

5.5 BusinessCollectionBase class ... 35
5.5.1 Overview ... 35
5.5.2 IMPORT Required Libraries... 35
5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from DictionaryBase .. 35
5.5.4 Tracking Dirty Objects.. 36

Implementing Dirty Collection Object... 36
5.5.5 Declared Data Access Methods .. 37

MustOverride PUBLIC DATA ACCESS METHODS .. 37
Declaring Public & Protected Data Access Methods in BusinessBase .. 37

5.5.6 Other Data Access Helper Methods (BusinessCollection Base) ... 38

5.6 BusinessCollection Base Implementation... 39

 3

5.6.1 Implementing BusinessCollection Base .. 39
5.6.2 Sample Program #3 – Creating the BusinessCollectionBase Class .. 40
5.6.3 CONCLUSION ... 42

5.7 BusinessCollection Class Details ... 43
5.7.1 Overview ... 43
5.7.2 Business Class Requirements.. 43
5.7.3 IMPORT Required Libraries... 43
5.7.4 Convert Class into Distribute Object/Unanchored Class & Inherit from BusinessCollectionBase Class 43
5.7.5 Implementing Data, Properties, Methods and Events ... 44
5.7.6 Public Data Access Methods Forced upon us by BusinessCollectionBase ... 44

Public Data Access Methods Implementation Details ... 44
5.7.7 BusinessCollection Class – Protected Data Access Methods.. 45

5.8 Creating the BusinessCollectionClass Template ... 48
5.8.1 Implementing BusinessCollection Class Template ... 48

Components of BusinessCollection Class .. 48
5.8.2 Sample Program #4 – Creating the BusinessCollection Class Template .. 49
5.8.3 CONCLUSION ... 58

5.9 Business Rules and Validation (Business Object Requirements)... 59
5.9.1 Implementing Dirty & NEW Business Rule In Properties & Methods ... 59
5.9.2 Implementing Validation Business Rule ... 63

Implementing Max-Length inside Class Property: .. 63
Handling Max-Length in User-Interface or Client:.. 64
Implementing Write-Once inside Class: .. 64
Handling WRITE-ONCE in User-Interface or Client: ... 64
Implementing NO BLANK inside Class: .. 65
Handling NO-BLANK/EMPTY Rule in User-Interface or Client: .. 65
Implementing EXACT-LENGTH inside Class: .. 66
Implementing EXACT-LENGTH Rule in User-Interface or Client: ... 66

5.9.3 Constructor Methods & Business Rules.. 67
Implementing the Default Constructor method .. 67
Implementing the Parameterized Constructor method ... 67

5.9.4 Listing of all Base Classes & Templates (Summary).. 68
Class MustInherit clsBusinessBase .. 68
Class MustInherit clsBusinessCollectionBase ... 68
Class clsBusinessCollectionClass .. 68
Class clsBusinessClass... 68

5.9 User-Interface Support for Business Objects .. 70
5.9.1 Overview ... 70
5.9.2 Programming the UI to use the Business Objects ... 70

Final Summary ... 71

6.1 Sample Program #5 – Customer Management Business Objects Program .. 72
6.1.1 Overview ... 72

Class MustInherit BusinessBase .. 72
Class MustInherit clsPerson ... 72
Class clsCustomer (Business Class)... 72
Class clsCustomerList .. 72
Inherits clsBusinessCollectionBase ... 72
Class MustInherit BusinessCollectionBase.. 72

6.1.2 Problem Statement .. 73

file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009794
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009795
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009796
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009797
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009804
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009805
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009806
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009807
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009808
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203B%20-%20CS708%20Business%20Objects%20(Part%20II%20of%20III).docx%23_Toc167009809

 4

Chapter 5 Business Rules & Validation

5.1 Business Objects Review & Status

5.1.1 Business Objects Requirements Status

 Ok, let’s review where we are as far as Business Objects requirements, and what we have done to implement them.

 The following is a listing of the Business Object’s requirements and the status of what we have accomplished:

Business Object Requirements Status Comments

Business Object Represents Real-World Business
Entities – Business Objects contain the necessary

attributes & methods to behave like their real-world

counterparts.

 We added private data & properties

to emulate real word logic to our

objects, for example in the clsPerson

class we added variables such as

Name, Birthday, address, phone etc.

Attributes which makes our person

objects behave as a person.

 In addition we added a Shop()

method that emulated the process of

a person shopping. Also we
implemented clsEmployee Class with

Authentication(u,p) method to

authenticate employees

 DONE

User Interface Support – The Business Objects

should contain the following logic to support the User

Interface (UI):

- Contain all the features and functionality the UI-

Developer will need to make communication

between the User & the application effective.

- The Business Objects are the core of the

application and must be designed in a way that is

very easy to change the UI Layer without risking

the business logic stored in the business objects

 Begun to design our applications by

using the 5-tier Application

Architecture. Thus separating the

Presentation/User Interface layer

from the business processing.

 We have placed all processing code

in the Business Object Layer. In our

examples, all processing code is done

within the classes (clsPerson) &

collection classes

(lsCustomerManager).

 DONE

Business Object contain all Business Logic & Rules
– contain the necessary Business Logic & Rules to

perform their business process & support the data
access

 Business object has to have the logic

and intelligence required to support

all the methods and data access.
 We need an object that contains logic

and automation of functionalities.

More on this later

 OPEN REQUIREMENT

 COVERED IN THIS
COURSE

BO Manage their own data & database access –
Business Objects should contain logic to handle data

access:

- The Business Object should contain all the code to

manage the data access or interact with the

database. Operations such as searching, inserting,

updating, deleting the database should be done by

the business objects.

- Database access should NOT be performed in the

User Interface Layer. Only from the Business

Object Layer.

 These features have not yet been

implemented in this course.

 OPEN REQUIREMENT

 COVERED IN THIS

COURSE

 5

Business Object Requirements Status Comments

Scalable & Reusable – Business Objects should be

design with the following logic:

- Can evolve & gain new data, properties & methods

to support more functionality

 Design application using the 5-tier

Application Architecture.

 Created Class Library or DLL to

encapsulate our classes, thus enabling

them to be placed in the 5-tier

Application Architecture Business

Object & Data Access Business
Objects layers.

 Discussed & implemented

technologies to implement scalability
such as:

- DLL

 DONE

- WE PACKAGED OUR

CLASSES IN A DLL OR

COMPONENT

Validation or Enforcement & Status Tracking –
Business Objects should contain the following logic:

- Business Objects should contain the logic to verify

that the data being set by the user is valid, correct

data type, length etc

- The Business Objects should be able to keep track

of it’s current status

- The Business Objects should be able to keep track

of the business rules that are broken.

- Business Objects should protect itself from

unauthorized or unwanted, harmful access

 These feature have not yet been

implemented in this course so far.

 OPEN REQUIREMENT

 LECTURE

AVAILABLE IN THE

NOTES, BUT WILL BE

PARTIALLY

COVERED. NO

TIME!!!

Distributed Business Objects – Business Objects

should be design base with the following network

distribution scheme in mind:

- Business Objects should contain the technology to
allow them to be distributed across processes and

application.

- Distributed Objects are about sending the object

(smart data) from one machine to another, rather

than sending raw data and hoping that the business

logic on each machine is being kept in sync.

 Discussed technologies to implement

distributed or unanchored objects as

well as non-distributed or anchored

objects.

 Implemented distributed or
unanchored objects by using the

<Serializable()> _ attribute

statement in our clsPerson Business

Object.

 Discussed technologies to implement

business objects, such as:
- DLL

- Serialization

- Remoting

OPEN REQUIREMENT:

- Have not yet implemented

Serialization
- Not yet implemented

Anchored Objects
- Not yet implemented

Remoting

 WILL DISCUSS IN

CLASS AND

PREPARE FOR IT,

BUT NOT

IMPLEMENT OR

COVERED IN THIS

COURSE

 6

5.1.2 Key Technologies to Implement Business Object Review

 We have discussed and address the following key technologies to implement Business Objects:

1. Local objects:

 Default designation of object when created. Can only be accessed by components within its process (In-Process

Communication)

 Local Classes are NOT available to the technology or Remoting, which enables objects to communicate across

networks and processes.
 We have implemented this technology by default since CS608.

2. Anchored objects:

 These objects are stuck on the process or machine in which they were created and are important, because we can

guarantee that they will always run on a specific machine only.

 Communication with these types of objects is via Pass-By-Reference or a pointer is passed to other processes that wish

to communicate with the Anchored Objects.

 Data Access BO Layer will be created as Anchored Objects since they need to run on a specific machine with access to

the Database Layer.

 To implement we need to inherit our classes from the MarshalByRefObject class as follows.

Public Class MyClass

 Inherits MarshalByRefObject

End Class

 Anchored objects are available to the Remoting subsystem.

3. Unanchored Objects or Distributed Objects:

 Distributed Objects can be passed from one process to another process or from one machine to another, By-Value. By

value means that a copy of the original object is placed on the target machine.

 The Business Objects Layer is a candidate as Distributed or Unanchored Objects.

 To implement, you need to use the <Serializable()> _ attribute statement.

 We begun to implement this feature in our last examples as follows.

<Serializable()> _

Public Class clsPerson

End Class

 Unanchored objects are available to the Remoting subsystem.

4. The Anchored and Unanchored Objects require the following technologies:

 Class Library Project (DLL) – Business Objects need to be packaged as a Class Library or DLL (Dynamic-Link-

Library).

 Remoting – .NET Subsystem that handles communication between objects across a Network. Either Pass-By-

Reference or Pass-By-Value.

5.1.3 Business Objects Requirements Overview & Summary

 So far we have made some accomplishments in the pursuit of implementing Business Objects.

 In this lecture notes, we will focus on completing the following requirement of adding validation code and making our business

object more intelligent and the object protect itself.

 Because this topic is quite involved, we will keep our implementation basic and limited to only a few rules. We don’t have the

time in this course to cover many of the required logic.

 7

5.2 Business Objects – Data Access Requirements

5.2.1 Overview

 The next requirement we must address is Data Access.

 Since Business Objects need to handle their own Data Access, we will now cover the methods required to do so.

Data Access Objectives:
 Our objectives is to implement the following two layers:

 The Business Object Layer will contain the business rules
 The Data Access Business Objects will interact with the data base on our behalf. We will start calling this layer the

DataPortal Layer.

Implementing the Data Access Objectives:
 It is important to decide where to place the Data Access code or SQL Statements that will Load, update, insert and delete the

Objects to the database.

 These operations are actually performed on the Object's private data. In other words when an Object performs data access, it’s

actually taking it’s private data and saving, updating , inserting or deleting it to the database

 There are several approaches we can take:

 METHOD 1: Business Objects that perform Data Access (Execute Queries) themselves:
 The Unanchored or Distributed Business Objects save, update insert & delete themselves to the database.

 METHOD 2: Specialized Business Objects whose purpose is to Manage the Data Access (Execute Queries) for other

objects:
 Objects or Business Object rely on another specialize Business Object to manage or save, update insert & delete

their data access.

 You will need one Data Access BO for every type business object.

 Can be Anchored objects

 METHOD 3: General Purpose DATAPORTAL Object (Not Business Objects) whose purpose is to Manage the Data
Access (Execute Queries) for the Business Objects:
 Objects or Business Object rely on a DATAPORTAL Object(s) which perform and manage or save, update insert &

delete.

 DATAPORTAL Object contains all the SQL statements to manage the data access for all objects.

 There may be more than one Dataportal, usually one for every type of database we are going to access, SQL Server,

Oracle etc.

 METHOD 4: Specialized SERVER-SIDE DATAPORTAL Objects (Not Business Objects) whose purpose is to

manage the Business Objects manage and let them do their OWN Data Access:
 Unanchored Business Objects are SENT to the DATAPORTAL Object(s). The DATAPORTAL simply calls the

Business Object’s Data Access methods so the business Objects will save themselves.

 DATAPORTAL Object contains NO SQL statements. The SQL Statements are inside the Business Objects.

 The Business Objects actually save themselves.

 This is a new approach that can be implemented due to VB.NET Remoting and serialization techniques.

Business Logic Objects

Data Access BO (DataPortal)

 8

Method I – Business Objects Perform Their Own Data Access

 In this method it is the Business Objects that handle their own data access

 The Unanchored or Distributed Business Objects save, update insert & delete themselves to the database. They contain the

queries and interact with the database:

Advantages/Characteristics Disadvantages

 Simple. BO handle themselves

 Object is one package with everything we need,

thus we have full encapsulation.

 Not scalable for our multi-tiered Client/Server

architectures.

Method II – Data Access Business Objects Handle the Data Access

 In this method the Business Object rely on another specialize Business Object to manage or save, update insert & delete their data

access

 These Data Access Business Objects can be Anchored and contain the SQL Statements or queries and interact with the database:

Advantages/Characteristics Disadvantages

 Business Objects are light-weight. Less

complex since Data Access BOs contain queries

 Scalable. Fits our client/server architectures

 Object not one single package but broken up into

two separate entities. No more full encapsulation

 Will need one for every type of business objects

 Business Object rely on Data Access BOs

Business Object

UI
Data Access

Methods

(SQL Statements)

Solution

User Interface

Data Access

Business Object

Database

UI

User Interface Data Access

Data Access Business Object

Data Access

Methods

(SQL Statements)

 9

Method III – General Purpose DataPortal Layer Handle the Data Access (Common Practice)

 In this method the Business Object rely on a general DATAPORTAL Object or Layer to manage or save, update insert & delete

their data access

 The DATAPORTAL is usually Anchored and contain the SQL Statements or queries and interact with the database:

Advantages/Characteristics Disadvantages

 Business Objects are light-weight. Less

complex since DataPortal contains queries

 Scalable. Fits our client/server architectures

 Object partially a single package and

encapsulated

 One DataPortal for all BO objects.

 Could have a DataPortal for each type of

Database SQL, Oracle etc.

 No data access code in Business Objects.

 Business Objects will always rely on DataPortal

#Region

"Public

Regular

Methods

Declarat

ions"

'*******

'Class

Regular

Methods.

Ex:

EditItem

(k,O),

EditItem

(x,y,z..

),

Print(X)

, etc.

#End

Region

Business Object

Database

UI

User Interface Data Access

DataPortal Object

Data Access

Methods

(SQL Statements)

 10

Method IV – General Purpose Server-Side DataPortal Layer allows Business Objects to Handle the
Data Access (New Method – Preferred Method for this Course)

 In this method the Unanchored or Distributed Business Object perform their OWN data access.

 But they rely on a general DATAPORTAL Object or Layer to manage the process by CALLING the Business Objects Data

Access Methods on behalf of the Business Objects.

 The key here is that the Business Objects save themselves and contain the SQL Statements or queries and interact with the

database, but is the DATAPORTAL that is telling them when and how to do it.

 The DATAPORTAL is Anchored but the Business Objects must be Unanchored using using .NET technologies such as

Remoting and Serialization etc.

Advantages/Characteristics Disadvantages

 Business Objects are a complete single package

and contain data access code.

 Scalable. Fits our client/server architectures

 One DataPortal for all BO objects since BO

save themselves

 Could have a DataPortal for each type of

Database SQL, Oracle etc

 Business Object don’t need to always rely on

Dataportal, they can be configured to save

themselves.

 Business Objects will always rely on DataPortal

 May be more difficult to implement

Database

UI

User Interface

DataPortal Object

Business Object (Copy)

Data Access

Methods

(SQL Statements)

Data Access

Note that Unanchored Object is copied to Server

Public Methods

(Call Data Access

Methods in BO)

Original Unanchored BO

Data Access

Methods

(SQL Statements)

 11

5.2.2 Implementation Overview

 Base on our discussion of the four methods, in this course we will use the following options:

 Option I – Business Object will perform their own data access:
- We will use this option for the first semester project and to implement our Single-Tier Client/Server

 Option IV – DATAPORTAL will manage Data Access but Business Object will perform their own data access:
- We will use this option for the to upgrade our semester project and to implement a three-Tier & Web-based

Client/Server

Data Access Methods Details:
 Since Business Objects need to handle their own Data Access, we will now cover the methods required to do so.
 First we break up the data access methods into two sections, PUBLIC DATA ACCESS METHODS AND PROTECTED OR

PRIVATE DATA ACCESS METHODS:

 Public Data Access Methods – These methods are Public and assessable to the User-Interface or clients. These methods

will be declared and implemented in our Business Classes.

- Note that these methods will be implemented in our Business Classes, and will be forced upon the Business Class by

the BusinessBase class. Therefore these methods will appear in the BusinessBase as well as MustOverride.

 Protected, Private Data Access methods – These methods can only be accessed internally within the class and its inherited

children. These methods will actually perform the data access and contain the SQL queries or Stored Procedures. These

methods are called by the Public Data Access Methods.

- Note that these methods will be implemented in our Business Classes, and will be forced upon the Business Class by

the BusinessBase class. Therefore these methods will appear in the BusinessBase as well as MustOverride.

 The idea here is that there will be data access methods available to the outside world or user interface, and internal private

methods that will perform the actual Data Access.

Solution

UI

User Interface
Data Access

Business Object

Public Data Access Methods

- Create

- Load()

- Save()

Protected Data Access Methods

- Create()

- Fetch()

- Update()

- Insert()

- Delete()

 12

5.3 Creating the Business Logic & Rules. Business Classes, & BusinessBase Class

Templates

5.3.1 Overview

Business Rules
 Our focus in this section is to implement all non-data access code required in a Business Object.

 Because of the short time frame for this course, we will only implement a few Business rules.

 In this section we will implement the following business logic:

 Tracking the Status of an object for NEW, OLD or MODIFIED

i. Track whether the object is new or has just been created

ii. Track whether it’s data has been changed

 Validation – Enforcement of business rules, such data being set by the user is valid, correct data type, length etc

Business Class
 Our Business objects will contain all the business logic and data access code.
 The Business Objects are objects created from a Business Class. So our Business Classes are the classes we are going to create

for our customers, employees, autos, videos, checking accounts, etc.

 All our business classes need to have the mechanism to implement the required logic, data access and rules.

BusinessBase Class
 Our Business Classes, require business rules for tracking, validation and data access etc.

 We need these rules in EVERY BUSINESS CLASS, so what we are going to do is create a BASE CLASS that will contain the

mechanism to FORCE our classes to implement the business rules and data access methods. We will call this class

BusinessBase.

 We will derive our Business Classes from BusinessBase in order to inherit all the business rules, tracking etc.

 First thing we need to do is create the BusinessBase Class.

5.3.2 Implementing BusinessBase Class

 Our first objective is to create a Base Class named BusinessBase. This Base class will contain all the Business Objects tracking,

validation mechanism & logic required. Therefore we can simply derive our classes from this base class and inherit all the

Business rules.

 So the code we will implement will be with Inheritance in mind, therefore we will use inheritance concepts like Overloading,

Overriding, Shadowing will apply here.

 The first thing we will create is the class header. This class will only be used as a base class so we will use the keyword

MustInherit.

 In addition the Business Object will be an unanchored object or distributed so, we will use the <Serializable()> _ attribute

BusinessBase

Business Logic

Business Rules

MustOverride Methods
BusinessClass

Data

Properties

Methods

Overrides Methods

 13

5.3.3 IMPORT Required Libraries

 Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

 ADO.NET Data Access Libraries

 Serialization Libraries

 Remoting Libraries

 Other necessary libraries, for example, I will include the System.IO for any file access I may need in my projects.

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.5.4 Convert Class into Distribute Object/Unanchored Class

 Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration.
 The class header will look as follows:

<Serializable()> _

Public MustInherit Class BusinessBasee

End Class

 14

5.3.5 Tracking Dirty Object

 We need to keep track if the object has changed. If so, we will designate this object as being DIRTY.

 A DIRTY object has the following definition:

 A DIRTY Object is an Object whose data or private variables have been modified.

- When an object changes it means that any of the data or private variables have been modified thus DIRTY.

 BECAUSE IT HAS BEEN CHANGED, A DIRTY Object does not match the data in the DATABASE.

- It is important that you understand this concept clearly. When we refer to an object being dirty, we not only mean
that the data has changed, but that it has changed in reference to its copy in the database.

- Think of it this way, when we populate an object with data from the database, once we change the data in the object,

the data no longer is the same as the data in the database. Therefore, the object is dirty and does not represent what

is in the database

 HERE IS THE MAIN POINT, if the object is dirty, then we need to perform some kind of UPDATE or INSERT operation

on the database base on this status. This will also be determined by the NEW Rule which will be explained in the next

section.

Implementing Dirty Object
 To implement dirty objects, declare:

I. Declare the Boolean flag flgDirty, which when TRUE the object is dirty, when FALSE, the object is not dirty. .

 This Boolean flag will be set to TRUE by default. This makes sense since when an object is created it does NOT

match any data in the database therefore it is dirty by our definition

Private mflgIsDirty As Boolean = True

II. We need to expose the dirty flag to the User-Interface & Business Logic to be able to retrieve this value ONLY. We will

declare a READ-ONLY Property IsDirty(). We will make the property Overridable reason being that derived objects of this

class may want to override this property for special situation (more on this later). Create the property as follows.

 Public Overridable ReadOnly Property IsDirty() As Boolean

 Get

 Return mflgIsDirty

 End Get

 End Property

III. This flag also needs to be set by the Business Object. But the code outside the class should NOT be able to alter this flag.

On the other hand, derived children should be able to set this flag. With this in mind, we will implement a Protected Method

named MarkDirty() as follows:

 Protected Sub MarkDirty()

 mflgIsDirty = True

 End Sub

 IMPORTANT! – ANY PROPERTY (SET portion only) OR METHOD WHICH MODIFIES DATA MUST CONTAIN A

CALL TO MarkDirty()

IV. Finally we need a way to mark the object as clean when the data is saved or updated to the database. This is done by

implementing a Private Method named MarkClean(). This sub procedure is created private because it will only be called

from within the Base Class, no need for child object to have access to this method. In the mean time, this method is

implemented as follows:

 Private Sub MarkClean()

 mflgIsDirty = False

 End Sub

 15

5.3.6 Tracking New Object

 The third status-tracking mechanism we will implement is the concept of a NEW object

 A new object has the following definition:

 A NEW Object is an Object that was just created and in Local MEMORY ONLY.

- Every time we create an object using the basic object creation syntax, the object is NEW

- The following creation of an object signifies that this object is NEW:

Public objCustomer As New clsCustomer

 A NEW Object exists in memory but NOT in DATABASE.

- Objects that are newly created, exists in the memory of the computer, but have not been committed to database.

They DO NOT exist in the database therefore are NEW.

 A NEW Object is also DIRTY since Data in the Object does not match ANY Data in the DATABASE
- A new object is marked dirty because it does not match any data in the database, therefore when committing an

object we can determine whether to perform an UPDATE or INSERT operation on the database base on the IRTY

status.
 An OLD Object is an object committed to DATABASE and no longer NEW

- Once a NEW object has been SAVED or INSERT to Database it is classified as OLD.

 We now implement a mechanism that will track if the object is NEW (not in database) or OLD (exists in database).

Implementing NEW Objects
 To implement the NEW object feature perform the following:

I. Declare the Boolean flag flgIsNew. When TRUE, this flag indicates Object has just been created or does not exist in the

database. A FALSE indicates object already contains a record in the database.

 This Boolean flag is set to TRUE by default. When an object is created it is NEW since NOT EXIST in database.

Private mflgIsNew As Boolean = True

II. We need to expose the deleted flag to the User-Interface & Business Logic to be able to retrieve this value ONLY. We will

declare a READ-ONLY Property IsNew(). The property is declared as follows:

 Public ReadOnly Property IsNew() As Boolean

 Get

 Return mflgIsNew

 End Get

 End Property

III. This flag also needs to be set by the Business Object logic. In addition, derived children should be able to set this flag. Note

that when we mark an object as NEW, we need to set the IsDirty flag to True by calling the MarkDirty() method, because the

data in a new object does not match any data in the database, therefore it is dirty. With this in mind, we will implement a

Protected Method named MarkNew() as follows:

 Protected Sub MarkNew()

 mflgIsNew = True

 MarkDirty()

 End Sub

IV. Finally, we need to provide a method that will mark the object as OLD, to indicate the object has been SAVED to

DATABASE. Therefore we implement a MarkOld() method. We also need to set the dirty flag to True, indicating that the

data in the object matches the data in the database. This is implemented as follows:

 Protected Sub MarkOld()

 mflgIsNew = False

 MarkClean()

 End Sub

 16

5.3.7 Adding Tracking Mechanism to BusinessBase Class

 So far we have implemented the following basic required tracking mechanism that will add to a Business Base Class:

 Track whether the object is NEW & DIRTY.

 At this point, the BusinessBase Class looks as follows:

<Serializable()> _

Public MustInherit Class BusinessBase

#Region "Business Rules IsNew, IsDirty"

 Private mflgIsDirty As Boolean = True

 Private mflgIsNew As Boolean = True

 Public ReadOnly Property IsNew() As Boolean

 Get

 Return mflgIsNew

 End Get

 End Property

 Public Overridable ReadOnly Property IsDirty() As Boolean

 Get

 Return mflgIsDirty

 End Get

 End Property

 Protected Sub MarkDirty()

 mflgIsDirty = True

 End Sub

 Private Sub MarkClean()

 mflgIsDirty = False

 End Sub

 Protected Sub MarkNew()

 mflgIsNew = True

 MarkDirty()

 End Sub

 Protected Sub MarkOld()

 mflgIsNew = False

 MarkClean()

 End Sub

#End Region

End Class

 17

5.3.8 MustOverride Data Access Methods – Declared in BusinessBase

 Now we address the data access code that will perform the actual database retrieval, update, insert or delete.

 These methods will be declared in the BusinessBase Class and FORCED upon the Business Class.

BusinesBase & MustOverride
 Again we will declare these methods MustOverride in our BusinessBase class, thus forcing the derived classes (Business Class)

to have to implement them.

 THESE METHODS ARE NOT IMPLEMENTED IN BUSINESSBASE, BUT ONLY DECLARED MUSTOVERRIDE. THEY

MUST BE IMPLEMENTED IN THE DERIVED CLASSES.

 With this in mind, we will ONLY declare these methods in the Base Class as MustOverride methods. If you remember in

inheritance a MustOverride method is declared in the Base class, but MUST be implemented in the derived class. The derived

class MUST implement this method otherwise you cannot compile the application.

Declaring Public & Protected Data Access Methods in BusinessBase
 To implement these methods we make the following declarations in the BusinessBase Class:

I. Public MustOverride Create(), Load(Key), Save() & DeleteObject – These methods are MustOverride, therefore

CANNOT be implemented in the Base Class, but the derived class will be FORCED to implement tem. Declare methods here

as follows:

 'Public Shared Data Access Methods Declarations

 ''' Override these Public Methods in SubClass to perform Data Access

 ''' These methods are the public interface provided by the class

 ''' for data access

 Public MustOverride Sub Create()

 Public MustOverride Sub Load(ByVal Key As Object)

 Public MustOverride Sub Save()

 Public MustOverride Sub DeleteObject(ByVal Key As Object)

II. Protected MustOverride DataAccess Methods – These methods are MustOverride, therefore CANNOT be implemented in

the Base Class, but the derived class will be FORCED to implement them. Implement this method as follows:

 ''' Override these methods in SubClass or Business Classes to

 ''' actually perform data access. SQL Queries & Stored Procedures

 ''' are handled by these methods

 Protected MustOverride Sub DataPortal_Create()

 Protected MustOverride Sub DataPortal_Fetch(ByVal Key As Object)

 Protected MustOverride Sub DataPortal_Update()

 Protected MustOverride Sub DataPortal_Insert()

 Protected MustOverride Sub DataPortal_DeleteObject(ByVal Key As Object)

 18

5.3.8 Other Data Access Helper Methods (BusinessBase)

 When performing data access from a database, we need to establish a DATABASE CONNECTION.

 This connection, also know as a CONNECTION STRING.

 There are several options to creating a connection string. I will show three:

 METHOD 1: Create or hard-code Connection String inside class either in BusinessBase or Business Class itself:

Advantage:
 Simple and effective.

 Objects don’t need to go anywhere to get the connection string; it is available inside the object.
 Secured. No one can see connection string, since it is compiled within the class

Disadvantage:
 Creating the connection string inside the class is perfectly fine, but what happens if we change database? Now

we need to go inside each class and make the change manually.

 Thus Difficult to maintain and update. Must recompile program.

 METHOD 1I: Create or hard-code Connection String in an external Configuration File – All objects can retrieve the

connection string from one file.

Advantage:
 Easy to create and write

 Central location where string could be found. Can be XML file

 Easy to maintain and change. Change one location, all objects get the change.

Disadvantage:
 Not Secured. Configuration file is a text file and can be seen by anyone with access to server

 You may be able to encrypt the file, but would need encryption/decryption code inside every business object.

 METHOD 1II: Create or hard-code Connection String in the Computer Registry – All objects can retrieve the

connection string from the registry.

Advantage:
 Central location where string could be found.

 Easy to maintain and change. Change one location, all objects get the change.

Disadvantage:
 Must create code to write to Registry the connection string details.

 Not secured. Not as available as configuration file, but registry can still be read

 You can encrypt the entries in registry, but would need encryption/decryption code inside every business object.

 We will implement both Method I & II.

 We will hard-code the connection string the class for the FIRST DATA ACCESS EXAMPLE, then implement method II for the

SECOND DATA ACCESS SAMPLE PROJECT.

 Nevertheless, we will prepare our BusinessBase Class to contain code for implementing METHOD II or reading from

configuration file.
 In the BusinessBase Class add the following code:

I. Protected Function DBConnectionString() – This is where the code and queries or stored procedures are listed for creating

new objects and populating them with data from database:

 'Method will return the Database Connection string from Configuration File

 'Assumes the database name is prefixed with "DB"

 Protected Function DBConnectionString(ByVal sDatabaseName As String) As String

 Return ConfigurationManager.AppSettings("DB:" & sDatabaseName)

 End Function

 19

II. Imported Library – In order for this to work, we need to perform the following steps:

1. Add reference to the System.Configuration Library

a. In solution explorer, SELECT the Project, then RIGHT-CLICK, select Add Reference… you will invoke the “Add

Reference” dialog box

b. Select the .NET tab and scroll and select the System Configuration Library, then click OK :

2. Import the System.Configuration Library into your code:

Imports System.Configuration 'Configuration File for DB Connection

 20

5.4 Business Base Template – Putting the Base Class Together

5.4.1 Implementing Business Base

 Now we at will put all the code together to create our BusinessBase Class.

 This is the Base Class we will used to derive all our Business Classes from.

 Keep in mind that this in ONLY a base class, we still need to create the Business Classes (employees, customers, etc.) that will be

used to create the Business Objects themselves.

 So far we have implemented the following basic required tracking mechanism that will add to a BusinessBase Class:

 Track whether the object is new or has just been created or NEW

- Private flgIsNew, Property IsNew & MarkNew(), MarkOld() Methods

 Track whether it’s data has been changed or DIRTY

- Private flgIsDirty, Property IsDirty & MarkDirty(), MarkClean() Methods

 In addition we need to DECLARE ONLY the MustOverride protected Data Access methods that we are imposing upon our

derived classes or children:

 Public MustOverride Create()

 Public MustOverride Load()

 Public MustOverride Save()

 Public MustOverride DeleteObject()

 Protected MustOverride DataPorta_Create()

 Protected MustOverride DataPorta_Fetch()

 Protected MustOverride DataPorta_Update()

 Protected MustOverride DataPorta_Insert()

 Protected MustOverride DataPorta_DeleteObject()

 Protected Function DBConnectionString()

 In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the

required libraries for the following:

 ADO.NET Library

I/O Library for any file access requirements

 Configuration File library to use and manage configuration files storing our connection strings

 Remoting Libraries

 Serialization Library

 21

5.4.2 Sample Program #1 – Creating the BusinessBase Class

 We now implement the BusinessBase class that will server as the basis for creating the Bussiness Classes

Example 5.1 – Creating a BusinessBase Class

Problem statement:
 Create the BusinessBase class using all the rules covered in the lecture.

Business Object Layer – Business Class & DLL Requirements
 Implement the BusinessBase in a DLL project

 We now go through the steps of creating our BusinessBase class.

 The diagram below shows the Regions that make up the BusinessBase Class Format.

Region view of BusinessBase Format

Step 0: Create an Empty Solution and do the following:

1. Create Empty Solution

2. Create a Class Library Project

3. Add a Class, name it BusinessBase

 22

Step 1: Imports and Class declarations:

 At this point, the BusinessBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Step 2: Add the Business Rules Data, Property Procedures & Methods:

 Dirty and New mechanism:

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Config File DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public MustInherit Class BusinessBase

#Region "Business Rules IsNew, IsDirty"

 Private mflgIsDirty As Boolean = True

 Private mflgIsNew As Boolean = True

Public ReadOnly Property IsNew() As Boolean

 Get

 Return mflgIsNew

 End Get

 End Property

 Public Overridable ReadOnly Property IsDirty() As Boolean

 Get

 Return mflgIsDirty

 End Get

 End Property

 Protected Sub MarkDirty()

 mflgIsDirty = True

 End Sub

 Private Sub MarkClean()

 mflgIsDirty = False

 End Sub

 Protected Sub MarkNew()

 mflgIsNew = True

 MarkDirty()

 End Sub

 Protected Sub MarkOld()

 mflgIsNew = False

 MarkClean()

 End Sub

#End Region

 23

Step 3: Add the Public Data Access MustOverride Method Declarations:

 Protected Data Access declarations:

Step 4: Add the Protected Data Access MustOverride Method Declarations:

 Protected Data Access declarations:

Step 5: Add the Data Access Helper Methods Declarations:

 Helper method to allow CONNECTION STRING IN CONFIGURATION FILE.

 IMPORTANT! DON’T FORGET TO ADD A REFERENCED TO THE System.Configuration LIBRARY as follows:

a. In Solution Explorer SELECT & RIGHT-CLICK PROJECT, in drop-down menu, select Add Reference.

b. In the reference DIALOG BOX, select .NET TAB,

c. Scroll and select System.Configuration library, the click OK.

#Region "Public MustOverride Data Access Methods"

 '***

 'Public Shared Data Access Methods Declarations

 ''' Override these Public Methods in SubClass to perform Data Access

 ''' These methods are the public interface provided by the class

 ''' for data access

 Public MustOverride Sub Create()

 Public MustOverride Sub Load(ByVal Key As Object)

 Public MustOverride Sub Save()

 Public MustOverride Sub DeleteObject(ByVal Key As Object)

#End Region

#Region "Protected MustOverride Data Access Methods"

 ''' Override these methods in SubClass or Business Classes to

 ''' actually perform data access. SQL Queries & Stored Procedures

 ''' are handled by these methods

 Protected MustOverride Sub DataPortal_Create()

 Protected MustOverride Sub DataPortal_Fetch(ByVal Key As Object)

 Protected MustOverride Sub DataPortal_Update()

 Protected MustOverride Sub DataPortal_Insert()

 Protected MustOverride Sub DataPortal_DeleteObject(ByVal Key As Object)

#End Region

#Region "Data Access Helper Methods"

 'Method will return the Database Connection string from Configuration File

 'Assumes the database name is prefixed with "DB"

 Protected Function DBConnectionString(ByVal sDatabaseName As String) As String

 Return ConfigurationManager.AppSettings("DB:" & sDatabaseName)

 End Function

#End Region

 24

5.5 Creating our Business Classes – Business Class Template

5.5.1 Implementing Business Class

 Now we focus on our Business Class. REMEMBER THIS IS THE CLASS IN WHICH WE WILL BUILD OUR OBJECTS

FROM (clsCustomer, clsEmployee etc.)

 DO NOT CONFUSE THE BUSINESS CLASS WITH BUSINESS OBJECTS, BUSINESS OBJECTS ARE INSTANCE OF A

BUSINESS CLASS!

 OBJECT-ORIENTED RULES REVISED:

I. CREATE BUSINESS CLASS

II. CREATE BUSINESS OBJECT

III. USE BUSINESS OBJECT

 We will now CREATE A BUSINESS CLASS TEMPLATE, that we can use to guide us in creating or modifying our classes.
 This class will be inherited from BusinessBase thus FORCING the business rules and data access methods upon the BUSINESS

CLASS

5.5.2 IMPORT Required Libraries

 Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

 ADO.NET Data Access Libraries

 Serialization Libraries

 Remoting Libraries

 Other necessary libraries, for example, I will include the System.IO for any file access I may need in my projects.

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from BusinessBase

Class

 Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration:

<Serializable()> _

Public Class BusinessClassTemplate

 Then we inherit this class from BUSINESSBASE class, we can INHERIT THE BUSINESS RULES and METHOD forced upon

the BUSINESS CLASS by BUSINESS BASE.

<Serializable()> _

Public Class BusinessClassTemplate

 Inherits BusinessBase 'Inherits from BusinessBase.

 25

5.5.4 Implementing Data, Properties, Methods and Events

 Nothing new here. These are the components every class should have, private data, public properties, public methods etc.

 In addition, we have the default and parameterized constructors.

5.5.5 Public Data Access Methods – Forced Upon by BusinessBase

 We will look at the four Public Data Access Methods created in the Business Classes to be called by the User-Interface:

Public Data Access Methods Implementation Details
 We will implement these Public Data Access Methods in our Business Classes. Our Business Classes are the Business Objects

themselves such as customers, videos, cars, employees etc.

 To implement we must use the keyword Overrides since they are FORCED by BusinessBase

 In our Business Classes, we will use ADO.NET to implement our data access. In order to user ADO.NET we need to add the

namespace libraries as follows:

Imports System.Data

Imports System.Data.OleDb 'Data Access Library OLEDB Provider

Implementing Create(), Load(key) and Save()
 NOTE THA THE IMPLEMENTATIONS SHOWN HERE ARE EXAMPLES ONLY. THERE ARE MANY WAYS TO DO

THIS. YOU ARE WELCOME TO READ OTHER MATERIAL AND LEARN HOW IS DONE BY OTHER DEVELOPERS

AND AUTHORS. To implement these methods we make the following declarations in the Business Class:

I. Public Sub Create()
 Declared Override since it is forced by Base Class

 This method is OPTIONAL and we may not implement, but we will have it for future use. Most times, objects need to

be created with default data from the DATABASE. If this is the case, the Business Object needs to be created by the

DATAPORTAL Server and populated with data from the database and returned to the client for use. This method calls

the Protected DataPortal_Create() method that will contain the necessary code to create the object and populated with

defaults from the database

 'Public interface to Create objects from database

 Public Overrides Sub Create()

 DataPortal_Create()

 End Sub

II. Public Sub Load(key) – Implement this method as follows:

 This method is labeled as Overrides, since we are forced to override the base class

 Calls the Protected DataPortal_Fetch(ByVal Key As Object) method to LOAD data from database

 The argument to this method Load(Key As Object) represents the database key and it is of type Object, which means

that we can pass any object type as argument, string, customers, cars, videos etc

 Public Overrides Sub Load(ByVal Key As Object)

 'Calls Local DatPortal_Fetch(Key) To do the work

 DataPortal_Fetch(Key)

 End Sub

III. Public Shared Sub Delete() – Implement this method as follows:

 Public Overrides Sub DeleteObject(ByVal Key As Object)

 'Calls Local DatPortal_DeleteObject() To do the work

 DataPortal_DeleteObject(Key)

 End Sub

 This method is labeled as Overrides, since we are forced to override the base class

 Calls the Protected DataPortal_DeleteObject(ByVal Key As Object) method to DELETE object from database

 The argument to this method Load(Key As Object) represents the database key and it is of type Object, which means

that we can pass any object type as argument, string, customers, cars, videos etc

 26

IV. Public Function Save() – Implement this method as follows:

 This method is labeled as Overrides, since we are forced to override the base class

 Note that the decision to perform and update or insert is based on the status of the DIRTY & NEW flags

 Calls the Protected DataPortal_Insert() or Protected DataPortal_Insert() methods based on the status of the Dirty and

New flags

 Public Overrides Sub Save()

 'Only save if dirty, otherwise do nothing in this method

 If Me.IsDirty Then

 If Me.IsNew Then

 'We are new and being inserted

 'Calls Local DataPortal_Insert()

 DataPortal_Insert()

 Else

 'We are OLD so we are being updated

 'Calls Local DataPortal_Update()

 DataPortal_Update()

 End If

 End If

 End Sub

 27

5.5.6 Protected Data Access Methods – Implemented in Business Class

 Now we look at the implementation of the protected DATA ACCESS METHODS in the Business Classes.

 Since we declared these methods in the BusinessBase Class as MustOverride methods, we are forced to implement them here

otherwise we cannot compile our class. To implement we must use the keyword Overrides.

 There are two requirements for implementing the Data Access Methods:

1. Implement the ADO.NET Code to perform the Data Access

 SINCE WE ARE NOT COVERING DATA ACCESS USING ADO.NET AT THIS TIME. I WILL NOT SHOW THE
ACTUAL CODE HERE

 THIS WILL BE DONE IN THE NEXT LECTURE NOTES

2. Incorporate the DIRTY & NEW mechanism in the Data Access Methods for database operations such as loading records

(SELECT), inserting record (INSERT), updating records (UPDATE), deleting records (DELETE) and finally in some

circumstances we create an object with default data from database (CREATE).

 The logic is as follows:

- CREATE:
o MARKS OBJECT AS NEW, WHEN CREATING A NEW OBJECT WITH DEFAULT DATA FROM DB

- SELECT:
o MARKS OBJECT AS OLD, AFTER RETRIEVING RECORDS FROM DB

- INSERT:
o ONLY PERFORMED WHEN OBJECT IS DIRTY & NEW.
o MARKS OBJECT AS OLD AFTER INSERT

- UPDATE:
o ONLY PERFORMED WHEN OBJECT IS DIRTY & OLD.

o MARKS OBJECT AS OLD AFTER UPDATE

- DELETE:
o MARKS OBJECT AS NEW, AFTER DELETE SINCE OBJECT DOES NOT EXIST IN DB.

 To implement these methods we make the following declarations in the Business Class:

I. Protected Overrides DataPortal_Create() – This is where the code and queries or stored procedures are listed for creating

new objects and populating them with data from database:

 A business rule is applied that set the object as a NEW object since it was just created.

 'Data Access Code for Creating a New Business Object

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to True a new object is created

 MyBase.MarkNew()

 End Sub

 28

II. Protected Overrides DataPortal_Fetch(key As Object) – This is where the queries or stored procedures are listed for

fetching an object from database base on the parameter key:

 A business rule is applied that set the object as a OLD object since it was just retrieved from database, thus it exists and

is old.

 'Data Access Code to fetch an object from Database

 Protected Overrides Sub DataPortal_Fetch(ByVal Key As Object)

 'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to False. NOT Dirty since found in database

 MyBase.MarkOld()

 End Sub

III. Protected Overrides DataPortal_Update() – This is where the queries or stored procedures are listed for updating an

object’s data to database:

 A business rule is applied that set the object as a OLD object since it was just updated to database, thus it exists and is

old.

 'Data Access Code to Update an Objects data to database

 Protected Overrides Sub DataPortal_Update()

 'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

IV. Protected Overrides DataPortal_Insert() – This is where the queries or stored procedures are listed for inserting new

objects to database:

 A business rule is applied that set the object as a OLD object since it was just INSERTED into the database, thus it exists

and is old.

 'Data Access Code to insert a new object to database

 Protected Overrides Sub DataPortal_Insert()

 'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

V. Protected Overrides DataPortal_DeleteObject() – This is where the queries or stored procedures are listed for deleting

objects from database:

 A business rule is applied that set the object as a NEW object since it was just DELETED from database, thus it DOES

NOT EXIT in database thus NEW.

 'Data Access Code to immediatly delete an object from database.

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Object no longer in database, therefore reset our status to be a new object

 MyBase.MarkNew()

 End Sub

 29

5.5.7 Implementing Business Class Template

 Now we focus on the Business Class. This is the class we will create our business objects from.

 We need to derive this class from BusinessBase which imposes MustOverride methods on the Business Class.

 We are going to create a template of what a Business Class requires.

 NOTE, THIS IS NOT A BASE CLASS BUT A TEMPLATE TO GUIDE YOU AS TO WHAT THE CLASSES REQUIRES.

Components of Business Class
 So far we have implemented the following basic requirements for the Business Class.

 First we need to inherit from BUSINESSBASE

 We will look at the four MustOverride Public Data Access Methods imposed on us by the BusinessBase class and to be called by

the User-Interface:

 Public Overrides Sub Create()
 Public Overrides Sub Load(ByVal Key As Object)

 Public Overrides Sub DeleteObject (ByVal Key As Object)

 Public Overrides Sub Save()

 In addition we need to CREATE the MustOverride protected Data Access methods imposed on us by the BusinessBase class:

 Protected Overrides DataPortal_Create()

 Protected Overrides DataPortal_Fetch()

 Protected Overrides DataPortal_Update()

 Protected Overrides DataPortal_Insert()

 Protected Overrides DataPortal_DeleteObject()

 In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the

required libraries for the following:

 ADO.NET Library

 I/O Library for any file access requirements
 Configuration File library to use and manage configuration files storing our connection strings

 Remoting Libraries

 Serialization Library

 Finally we will add to our template regions for our standard class declarations such as:

 Private Data

 Public Event Declarations

 Public Properties

 Constructor Methods

 Regular Business Methods
 Helper Methods – These are other methods needed by the data access or any other methods to handle some maintenance or

any required process that is not business related.

 30

5.4.8 Sample Program #2 – Creating the Business Class Template

 We now implement a template or Business Class that will server as our templates for the Bussiness Objects

Example 5.2 – Creating a Business Class

Problem statement:
 Create the Business Class Template class that we can use as a template to create our classes.

Business Object Layer – Business Class & DLL Requirements
 Add to the BusinessObjects DLL project

 The diagram below shows a Regions that make up the Business Class Template Format.

Region view of BusinessBase Format

Step 0: Create an Empty Solution and do the following:

1. To the existing DLL project containing our BusinessBase, add a Class, name it Business Class

 31

Step 1: Imports and Class declarations:

 At this point, the BusinessBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Step 2: Add The Common Class Components Regions:

 Add Private Data, Event declarations, Property, Constructors:

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Config File DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class BusinessClass

 Inherits BusinessBase 'Must implement MustInherits methods

#Region "Events Declarations"

 '***

 'Event Declarations

#End Region

#Region "Property Procedures"

 '***

 'Class Properties declarations

#End Region

#Region "Constructor Methods"

 '***

 'Class Constructor declarations

#End Region

#Region "Business & Regular Methods"

 '***

 'Methods declarations

#End Region

 32

Step 3: Add the Public Data Access Method Declarations:

 Public Shared Data Access declarations:

#Region "Public Shared Data Access Methods"

 '***

 'Public Shared Data Access Methods Declarations

 '***

 'Public interface to Create objects from database

 Public Overrides Sub Create()

 DataPortal_Create()

 End Sub

 Public Overrides Sub Load(ByVal Key As Object)

 'Calls Local DatPortal_Fetch(Key) To do the work

 DataPortal_Fetch(Key)

 End Sub

 Public Overrides Sub Save()

 'Only save if dirty, otherwise do nothing in this method

 If Me.IsDirty Then

 If Me.IsNew Then

 'We are new and being inserted

 'Calls Local DataPortal_Insert()

 DataPortal_Insert()

 Else

 'We are OLD so we are being updated

 'Calls Local DataPortal_Update()

 DataPortal_Update()

 End If

 End If

 End Sub

 Public Overrides Sub DeleteObject(ByVal Key As Object)

 'Calls Local DatPortal_DeleteObject() To do the work

 DataPortal_DeleteObject(Key)

 End Sub

#End Region

 33

Step 4: Add the Protected Data Access Method Declarations:

 Protected Data Access Methods that contain the SQL Queries:

#Region "Protected Data Access Methods"

 '***

 'Protected Data Access Methods declarations

 'Data Access Code for Creating a New Business Object

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to True a new object is created

 MyBase.MarkNew()

 End Sub

 'Data Access Code to fetch an object from Database

 Protected Overrides Sub DataPortal_Fetch(ByVal Key As Object)

 'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to False. NOT Dirty since found in database

 MyBase.MarkOld()

 End Sub

 'Data Access Code to Update an Objects data to database

 Protected Overrides Sub DataPortal_Update()

 'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

 'Data Access Code to insert a new object to database

 Protected Overrides Sub DataPortal_Insert()

 'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

 'Data Access Code to immediatly delete an object from database.

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Object no longer in database, therefore reset our status to be a new object

 MyBase.MarkNew()

 End Sub

#End Region

 34

Step 6: Helper Methods:

 Other non-business related methods:

5.4.9 CONCLUSION

 WE NOW HAVE A TEMPLATE BUSINESS CLASS FROM WHICH WE CAN CREATE
ALL OUR BUSINESS CLASSES!!!

#Region "Helper Methods"
 '***

 'Methods used to assist other methods or maintenance

#End Region

End Class

 35

5.5 BusinessCollectionBase class

5.5.1 Overview

 OK, in the previous section we created the BusinessBase & Business Class or template for our Business Objects.

 We also need to support for Collections of Business Objects, in other words Collection Classes.

 We will now implement the BusinessCollectionBase Class that will serve as the base class for our Collection Classes. In

addition we will create a template for our BusinessCollection Classes themselves.

 The BusinessCollectionBase class needs to support many of the functionality as BusinessBase. They include the following only:

 Track whether it’s data has been changed or DIRTY. Note that in this case a dirty collection means that a child object or an

object stored in the list has been changed.

 In addition we need to support Data Access for our Collection Classes.
 Finally we need to import the Collections Namespace into this class:

Imports System.Collections 'Collections Namespace

5.5.2 IMPORT Required Libraries

 Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

 ADO.NET Data Access Libraries

 Serialization Libraries

 Remoting Libraries

 Other necessary libraries, for example, I will include the System.IO for any file access I may need in my projects.
 Finally the Collection Library

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File Access

Imports System.Collections 'Collection Library

'Configuration File for DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.5.3 Convert Class into Distribute Object/Unanchored Class & Inherit from DictionaryBase

 Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration:

<Serializable()> _

Public MustInherit Class BusinessCollectionBase

 Then we inherit this class from DICTIONARYBASE class since we are using the DICTIONARY LIBRARY.

<Serializable()> _

Public MustInherit Class BusinessCollectionBase

 Inherits DictionaryBase

 36

5.5.4 Tracking Dirty Objects

 We need to keep track if the Collection has been modified or is DIRTY.

 A DIRTY Collection Object means that one of the CHILD objects stored in the collection has been modified, as shown in the

diagram below:

 If any of the Child Object in the collection is modified, the Collection Object is DIRTY.

 So tracking simply means the following:

1. Iterate through the Collection and ask each CHILD object if it’s Dirty

2. IF ANY OBJECT IS DIRTY, THE COLLECTION IS A DIRTY COLLECTION!

Implementing Dirty Collection Object
 To implement dirty objects, declare:

I. Iterate through the Collection and test if any of the Objects are DIRTY. As with the BusinessBase Class, the User-Interface

& Business Logic needs to be able to determine if an object is DIRTY. Therefore, we will declare the READ-ONLY

Property IsDirty(). Create the property as follows.

 Public ReadOnly Property IsDirty() As Boolean

 Get

 'Any Dirty Object make the entire collection dirty

 Dim objDEntry As DictionaryEntry

 Dim objChild As BusinessBase

 For Each objDEntry In MyBase.Dictionary

 objChild = CType(objDEntry.Value, BusinessBase)

 If objChild.IsDirty Then Return True

 Next

 Return False

 End Get

 End Property

Collection Business Object

Private Data

Public Properties

Public Methods

Child Dirty

Child

Child

 37

5.5.5 Declared Data Access Methods

 As with BusinessBase & Business Class, the BusinessCollectionBase and BusinessCollection Class we also contain data access

methods.

 As with the regular Business Objects, we will break up the data access methods into two sections, THOSE IN THAT ARE

PUBLIC TO THE WORLD AND THOSE THAT ARE PROTECTED

 Public Data Access Methods – These methods are Public and assessable to the User-Interface or clients.

 Protected Data Access methods – These methods will actually perform the data access and contain the SQL queries or
Stored Procedures. These classes are called by the Public Data Access Methods.

 Again, the idea here is that there will be data access methods available to the outside world or user interface, and internal private

methods that will perform the actual Data Access.

 These methods are MUSTOVERRIDE and only declared in the BusinessBase Class but implemented in the Business Class.

MustOverride PUBLIC DATA ACCESS METHODS
 Again we will declare these methods MustOverride in our BusinessCollectionBase class, thus forcing the derived classes

(BusinessCollection Class) to have to implement them.

 THESE METHODS ARE NOT IMPLEMENTED IN BUSINESSCOLLECTIONBASE, BUT ONLY DECLARED

MUSTOVERRIDE. THEY MUST BE IMPLEMENTED IN THE DERIVED BUSINESSCOLLECTION CLASSES.

 In BusinessCollection Base, we will declare the following MustOverride methods:

Declaring Public & Protected Data Access Methods in BusinessBase
 To implement these methods we make the following declarations in the BusinessBase Class:

I. Public MustOverride Create(), Load(), Save() & DeleteObject() – These methods are MustOverride, therefore CANNOT

be implemented in the Base Class, but the derived class will be FORCED to implement tem. Declare methods here as

follows:

 'Public Shared Data Access Methods Declarations

 ''' Override these Public Methods in SubClass to perform Data Access

 Public MustOverride Sub Create()

 Public MustOverride Sub Load()

 Public MustOverride Sub Save()

 Public MustOverride Sub DeleteObject(ByVal Key As Object)

II. Protected MustOverride Data Access Methods – These methods are MustOverride, therefore CANNOT be implemented

in the Base Class, but the derived class will be FORCED to implement them. Implement this method as follows:

 ''' Override this method in SubClass to create new Collection Object

 Protected MustOverride Sub DataPortal_Create()

 Protected MustOverride Sub DataPortal_Fetch()

 Protected MustOverride Sub DataPortal_Save()

 Protected MustOverride Sub DataPortal_DeleteObject(ByVal Key As Object)

 38

5.5.6 Other Data Access Helper Methods (BusinessCollection Base)

 As with BusinessBase, we will implement in our Collection Base Class the ability to retrieve the DATABASE CONNECTION

string from a configuration file:

 In the BusinessCollectionBase Class add the following code:

III. Protected Function DBConnectionString() – This is where the code and queries or stored procedures are listed for creating

new objects and populating them with data from database:

 'Method will return the Database Connection string from Configuration File

 'Assumes the database name is prefixed with "DB"

 Protected Function DBConnectionString(ByVal sDatabaseName As String) As String

 Return ConfigurationManager.AppSettings("DB:" & sDatabaseName)

 End Function

IV. Imported Library – In order for this to work, we need to import the following library:

Imports System.Configuration 'Configuration File for DB Connection

 39

5.6 BusinessCollection Base Implementation

5.6.1 Implementing BusinessCollection Base

 Now we at will put all the code together to create our BusinessCollectionBase and BusinessCollection Class Classes.

 First we focus on BusinessCollectionBase

 The only required tracking mechanism is to determine if an object is dirty in the Collection:

 Track whether it’s data has been changed or DIRTY

- Iterate through collection and ask each Business Child Object if it’s dirty

 In addition we need to DECLARE ONLY the MustOverride protected Data Access methods that we are imposing upon our

derived classes or children:

 Public MustOverride Create()
 Public MustOverride Load()

 Public MustOverride Save()

 Public MustOverride DeleteObject(Key)

 Protected MustOverride DataPorta_Create()

 Protected MustOverride DataPorta_Fetch()

 Protected MustOverride DataPorta_Save()

 Protected MustOverride DataPorta_DeleteObject()

 Protected Function DBConnectionString()

 In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the

required libraries for the following:

 ADO.NET Library

 I/O Library for any file access requirements

 Configuration File library to use and manage configuration files storing our connection strings
 Remoting Libraries

 Serialization Library

 40

5.6.2 Sample Program #3 – Creating the BusinessCollectionBase Class

 We now implement the BusinessCollectionBase class that will server as the basis for creating the Business Collection Classes

Example 5.3 – Creating a BusinessCollectionBase Class

Problem statement:
 Create the BusinessCollectionBase class using all the rules covered in the lecture.

Business Object Layer – Business Class & DLL Requirements
 Implement the BusinessCollectionBase in a DLL project. Reuse the Solution/DLL project from example 5.1

Code to Implement BusinessCollectionBase Class

 Now we show all the code to implement the BusinessCollectionBase Class. Diagram below shows the view of the format for this

class

Region view of BusinessCollectionBase Format

Step 0: Create an Empty Solution and do the following:

1. Create a Class Library Project

2. Add a Class, name it BusinessCollectionBase

 41

Step 1: Imports and Class declarations:

 At this point, the BusinessCollectionBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Step 2: Add the Business Rules:

 Determine if Collection is Dirty:

Step 3: Add the Public Data Access MustOverride Method Declarations:

 Public Data Access declarations:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB Connection

Imports System.Collections 'Collection Library

'Configuration File for DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public MustInherit Class BusinessCollectionBase

 Inherits DictionaryBase

#Region " Dirty Object Business Logic "

 'Search and Find the first Dirty Child Object

 Public ReadOnly Property IsDirty() As Boolean

 Get

 'Any Dirty Object make the entire collection dirty

 Dim objDEntry As DictionaryEntry

 Dim objChild As BusinessBase

 For Each objDEntry In MyBase.Dictionary

 objChild = CType(objDEntry.Value, BusinessBase)

 If objChild.IsDirty Then Return True

 Next

 Return False

 End Get

 End Property

#End Region

#Region "Public MustOverride Data Access Methods"

 '***

 'Public Shared Data Access Methods Declarations

 ''' Override these Public Methods in SubClass to perform Data Access

 Public MustOverride Sub Create()

 Public MustOverride Sub Load()

 Public MustOverride Sub Save()

 Public MustOverride Sub DeleteObject(ByVal Key As Object)

#End Region

 42

Step 4: Add the Protected Data Access MustOverride Method Declarations:

 Protected Data Access declarations:

Step 5: Add the Helper Data Access Method Declarations:

 Helper methods:

5.6.3 CONCLUSION

 WE NOW HAVE A BASE CLASS TO ENFORCE BUSINESS RULES ON OUR

COLLECTIONS CLASSES!!!

#Region "Protected MustOverride Data Access Methods"

 ''' Override this method in SubClass to create new Collection Object

 Protected MustOverride Sub DataPortal_Create()

 Protected MustOverride Sub DataPortal_Fetch()

 Protected MustOverride Sub DataPortal_Save()

 Protected MustOverride Sub DataPortal_DeleteObject(ByVal Key As Object)

#End Region

#Region "Helper Data Access Methods"

 'Method will return the Database Connection string from Configuration File

 'Assumes the database name is prefixed with "DB"

 Protected Function DBConnectionString(ByVal sDatabaseName As String) As String

 Return ConfigurationManager.AppSettings("DB:" & sDatabaseName)

 End Function

#End Region

End Class

 43

5.7 BusinessCollection Class Details

5.7.1 Overview

 We will now implement the BusinessCollectionClass Class that will serve as a template or model for us to create our Collection

Classes.

 These are the actual collection classes that will do the work, such as CustomerList, EmployeeList etc. and will be derived from

the base class BusinessCollectionBase

 Our Collection Classes are imposed the MustOverride Data Access methods by the BusinessCollectionBase Class..

5.7.2 Business Class Requirements

 REMEMBER THIS IS THE CLASS IN WHICH WE WILL BUILD OUR COLLECTION CLASSES FROM (clsCustomerList,

clsEmployeeList etc.)

 DO NOT CONFUSE THE BUSINESS COLLECTION CLASS WITH BUSINESS COLLECTION OBJECTS, BUSINESS

COLLECTION OBJECTS ARE INSTANCE OF A BUSINESS CLASS!

 OBJECT-ORIENTED RULES REVISED:

I. CREATE BUSINESS COLLECTION CLASS

II. CREATE BUSINESS COLLECTION OBJECT

III. USE BUSINESS COLLECTION OBJECT

 We will now CREATE A BUSINESS COLLECTION CLASS TEMPLATE, that we can use to guide us in creating or modifying

our COLLECTION CLASSES.

 This class will be inherited from BusinessCollectionBase thus FORCING the business rules and data access methods

5.7.3 IMPORT Required Libraries

 Then First thing we need to do is IMPORT ALL THE REQUIRED LIBRARIES. These include the following:

 ADO.NET Data Access Libraries

 Serialization Libraries

 Remoting Libraries

 Other necessary libraries, for example, I will include the System.IO for any file access I may need in my projects.

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

5.7.4 Convert Class into Distribute Object/Unanchored Class & Inherit from
BusinessCollectionBase Class

 Now we convert the class into an UNANCHORED CLASS, using the following TAG, just before the class declaration:

<Serializable()> _

Public Class BusinessCollectionClass

 Inherits BusinessCollectionBase

 44

5.7.5 Implementing Data, Properties, Methods and Events

 Nothing new here. These are the components every COLLECTION CLASS HAS, such as public properties (Count, Item), public

Wrapper methods (Add, Remove, Clear()), Regular methods (Edit, Print, PrintAll, Authenticate etc.)

5.7.6 Public Data Access Methods Forced upon us by BusinessCollectionBase

 We will look at the four Public Data Access Methods created in the BusinessCollection Classes to be called by the User-

Interface
 These are similar to the ones used in the Business Classes, except that we are now using a Collection.

Public Data Access Methods Implementation Details
 In our Business Classes, we will use ADO.NET to implement our data access. In order to user ADO.NET we need to add the

namespace libraries as follows:

Imports System.Data

Imports System.Data.OleDb 'Data Access Library OLEDB Provider

Implementing Create(), Load(key), DeleteObject(Key) and Save()
 NOTE THA THE IMPLEMENTATIONS SHOWN HERE ARE EXAMPLES ONLY. THERE ARE MANY WAYS TO DO

THIS. YOU ARE WELCOME TO READ OTHER MATERIAL AND LEARN HOW IS DONE BY OTHER DEVELOPERS

AND AUTHORS. To implement these methods we make the following declarations in the BusinessCollection Class:

I. Public Overrides Sub Create() – CREATES A NEW COLLECTION OBJECT. Implement this method as follows:

 Public Overrides Sub Create()

 'Calls Local DatPortal_Create() To do the work

 DataPortal_Create()

 End Sub

II. Public Overrides Sub Load() – LOADS COLLECTION WITH OBJECTS. Implement this method as follows:

 Public Overrides Sub Load()

 'Calls Local DatPortal_Fetch() To do the work

 DataPortal_Fetch()

 End Sub

III. Public Overrides Sub DeleteObject() – DELETES A CHILD OBJECT. Implement this method as follows:

 Public Overrides Sub DeleteObject(ByVal Key As Object)

 'Calls Local DatPortal_DeleteObject() To do the work

 DataPortal_DeleteObject(Key)

 End Sub

 45

IV. Public Overrides Sub Save() – SAVES COLLECTION TO DATABASE. Implement this method as follows:

- Note that the decision to perform and update or insert is based on the status of the DIRTY flags. No need to iterate

through the collection and save every object if none of the objects are DIRTY!

 Public Overrides Sub Save()

 'Verify there are dirty objects in Collection

 'Only modify if dirty, otherwise do nothing in this method

 If IsDirty Then

 'Dirty Collection, go ahead and update

 DataPortal_Save()

 End If

 End Sub

5.7.7 BusinessCollection Class – Protected Data Access Methods

 We now focus on the Protected Data Access Methods imposed on us (MustOverride) by the BusinessCollectionBase Classe.

 These methods can only be called from within the BusinessCollection Class and it’s children

 Since we declared these methods in the BusinessCollectionBase Class as MustOverride methods, we are forced to implement

them here otherwise we cannot compile our class.

 To implement these methods we make the following declarations in the BusinessCollection Class:

I. Protected Overrides DataPortal_Create() – This is where the code and queries or stored procedures are listed for creating

new objects and populating them with data from database:

 'Data Access or other Code for Creating a New Business COLLECTION Object

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 End Sub

II. Protected Overrides DataPortal_Fetch() – This method iterates through the collection and add the populated objects to

collection. ADO.NET code and query or stored procedure will be required:

 Protected Overrides Sub DataPortal_Fetch()

 'Iterates through Collection, Calling Each CHILD object.Load() method

 'CHILD Objects load themselves. ADO.NET Queries may be required

 'for obtaininig key of every object for every object to load themselves

 'THIS CODE WILL BE IMPLEMENTED WHEN DURING THE ADO.NET LECTURES

 End Sub

 46

III. Protected Overrides DataPortal_Save() – Save is done by iterating through Collection and asking every object to save

themselves:

 'Data Access Code to Update an Objects data to database

 'Simply iterate through collection and call each object's save method

 Protected Overrides Sub DataPortal_Save()

 'Iterates through Collection, Calling Each CHILD object.Save() method

 'CHILD Objects save themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objChild As BusinessClass

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objChild = CType(objDictionaryEntry.Value, BusinessClass)

 'Step 4-Call Child to Save itself

 objChild.Save()

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error! " & objE.Message)

 End Try

 End Sub

 NOTE THAT IN YOUR PROJECT, YOU NEED TO REPLACE THE NAME BusinessClass WITH THE CLASS

TYPE OF THE CHILD OBJECTS YOU ARE STORING AND SAVING IN THE COLLECTION, For example,

clsEmployee, clsCustomer, etc.

 47

IV. Protected Overrides DataPortal_DeleteObject() – Iterates through collection, finds target object and tells object to delete

itself. Optional, you can also delete the object from the collection or leave it to the UI programmer to do so.

 'Data Access Code to immediatly delete an object from database.

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'Iterates through Collection, Calling Each CHILD object.Delete() method

 'CHILD Objects Delete themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objChild As BusinessClass

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objChild = CType(objDictionaryEntry.Value, BusinessClass)

 'Step 4-Find target object based on key

 'YOU WILL NEED TO SELECT THE CORRECT PROPERTY

 'FOR objItem.Property, ALSO YOU NEED TO CONVERT THE

 'KEY PARAMETER USING CSTR OR CINT ETC. DEPENDING

 'ON THE DATATYPE OF THE ob

 If objItem.Property = CStr(Key) Then

 'Step 5-Object deletes itself

 objChild.DeleteObject(Key)

 ''Step 6-[OPTIONAL] Remove Object From Collection

 ''since no longer in DB

 'MyBase.Dictionary.Remove(Key)

 End If

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error! " & objE.Message)

 End Try

 End Sub

 AGAIN, HERE YOU NEED TO REPLACE THE NAME BusinessClass WITH THE CLASS TYPE OF THE CHILD

OBJECTS YOU ARE STORING AND SAVING IN THE COLLECTION, For example, clsEmployee, clsCustomer,

etc.

 48

5.8 Creating the BusinessCollectionClass Template

5.8.1 Implementing BusinessCollection Class Template

 Now we focus on the BusinessCollection Class. This is the class we will create our business COLLECTION objects from.

 We need to derive this class from BusinessCollectionBase which imposes MustOverride methods.

 We are going to create a template of what a Business Class requires.

 NOTE, THIS IS NOT A BASE CLASS BUT A TEMPLATE TO GUIDE YOU AS TO WHAT THE CLASSES REQUIRES.

Components of BusinessCollection Class
 First we need to inherit from BUSINESSCOLLECTIONBASE

 We will implement the four Public Data Access Methods created to be called by the User-Interface:

 Public Overrides Sub Create() – Creates objects with default values from DB. Class the Protected DataPortal_Create()

method to do the work, the queries etc.

 Public Overrides Sub Load() – Fetches data from database all objects and populates COLLECTION. Calls the Protected

DataPortal_Fetch() method to do the work.

 Public Overrides Sub DeleteObject (ByVal Key As Object) – Iterates through COLLECTION and Deletes object from

database. Calls Protected DataPortal_DeleteObject(ByVal Key As Object) methods to do the work.

 Public Overrides Sub Save() – Iterates through collection and saves each object. Calls Protected DataPortal_Save() to do

the work.

 In addition we need to CREATE the MustOverride protected Data Access methods imposed on us by the BusinessBase class:

 Protected Overrides DataPorta_Create()

 Protected Overrides DataPorta_Fetch()

 Protected Overrides DataPorta_Save()

 Protected Overrides DataPorta_DeleteObject()

 In addition, there are .NET namespace libraries which must be included for these mechanisms to work. Therefore we will add the

required libraries for the following:

 ADO.NET Library

 I/O Library for any file access requirements

 Configuration File library to use and manage configuration files storing our connection strings

 Remoting Libraries

 Serialization Library

 Finally we will add to our template regions for our standard COLLECTION CLASS declarations such as:

 Public Properties (Count, Item, etc.)

 Wrapper Methods

 Regular Methods
 Helper Methods – These are other methods needed by the data access or any other methods to handle some maintenance or

any required process that is not business related.

 49

5.8.2 Sample Program #4 – Creating the BusinessCollection Class Template

 We now implement a template or BusinessCollection Class template that will server as our templates for the COLLECTION

Objects

Example 5.4 – Creating a BusinessCollection Class Template

Problem statement:
 Create the BusinessCollection Class Template class that we can use as a template to create our classes.

Business Object Layer – Business Class & DLL Requirements
 Implement the BusinessCollection Class in a DLL project

 The diagram below shows the Regions that make up the Business Class Template Format.

Region view of BusinessCollection Class Format

Step 0: Create an Empty Solution and do the following:

1. To the existing DLL project containing our BusinessBase, BusinessClass, & BusinessCollectionBase add a Class

2. Name the class BusinessCollectionTemplate Class

 50

Step 1: Imports and Class declarations:

 At this point, the BusinessBase Class looks as follows. Library declarations, Unanchored Object & Class declaration:

Step 2: Add The Common COLLECTION Class Properties Region:

 Add Properties, Wrapper Methods etc:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class BusinessCollectionClassTemplate

 Inherits BusinessCollectionBase

#Region "Public Properties Declarations"

 '***

 'Class Properties declarations, Example Count, Item etc.

 '***

 'Name: Count Property *

 'Purpose: Returns the number of item in collection *

 '***************************e***

 Public Shadows ReadOnly Property Count() As Integer

 Get

 Return MyBase.Dictionary.Count

 End Get

 End Property

 '***

 'Name: Item(Key) Property *

 'Purpose: Sets or get the object specified by key *

 '***************************e***

 Public Property Item(ByVal key As Object) As BusinessClassTemplate

 Get

 'Step 1- Return POINTER of Object of associated key

 'Convert returned POINTER

 Return CType(MyBase.Dictionary.Item(key), BusinessClassTemplate)

 End Get

 Set(ByVal value As BusinessClassTemplate)

 'Step 1-Verify if key exists

 If MyBase.Dictionary.Contains(key) Then

 'Step 2-Set or overwrite object in collection

 MyBase.Dictionary.Item(key) = value

 Else

 'Step 3-Else throws an Argument Exeption to indicate not found.

 Throw New System.ArgumentException("Key Not found")

 End If

 End Set

 End Property

#End Region

 51

Step 3: Add The Common COLLECTION Class Wrapper Region:

 Add Wrapper Methods etc:

#Region "Public Wrapper Methods Declarations"

'**

 ''' <summary>

 ''' Name: Add(Key, Object)Method

 ''' Purpose: Adds new object to the Collection.

 ''' Includes support for duplicate key

 ''' </summary>

 ''' <param name="key"></param>

 ''' <param name="objItem"></param>

 ''' <remarks></remarks>

 Public Sub Add(ByVal key As Object, ByVal objItem As BusinessClassTemplate)

 'Step A- Begin Error trapping

 Try

 'Step 1-Calls Collection.Add(Key,Object) Method to Add object

 MyBase.Dictionary.Add(key, objItem)

 'Step B-Traps argumentNullException when key is Nothing or null

 Catch objX As ArgumentNullException

 'Step C-ReThrow ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key: " & objX.Message)

 'Step D-Traps for ArgumentExecption when KEY is duplicate.

 Catch objY As ArgumentException

 'Step E-ReThrow an ArgumentExecption to calling programs

 Throw New System.ArgumentException("Duplicate Key: " & objY.Message)

 'Step F-Traps for general exceptions.

 Catch objE As Exception

 'Step G-ReThrow an general exceptions

 Throw New System.Exception("Add Method Error: " & objE.Message)

 End Try

 End Sub

 52

 Continue Wrapper Methods etc:

'**

 ''' <summary>

 ''' Name: Function Remove(Key)Sub Method

 ''' Purpose: Remove object from collection based on key.

 ''' </summary>

 ''' <param name="key"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Remove(ByVal key As Object) As Boolean

 'Step A- Begin Error trapping

 Try

 'Step 1-Verify object exists

 If MyBase.Dictionary.Contains(key) Then

 'Step 2-Calls CollectionObject.Remove(Key) Method

 MyBase.Dictionary.Remove(key)

 'Step 3-Return True since found and removed

 Return True

 Else

 'Step 4-Return False since not found

 Return False

 End If

 'Step B-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step C-Throw Collection ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key: " & objX.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Throw an general exceptions

 Throw New System.Exception("Remove Error: " & objE.Message)

 End Try

 End Function

 53

 Continue Wrapper Methods etc:

Step 5: Add Regular Method Declarations:

 Public Regular Methods or non Wrapper methods, such as Edit, Print, etc.:

'**

 ''' <summary>

 ''' Name: Clear()Method

 ''' Purpose: Remove all objects from collection

 ''' </summary>

 ''' <remarks></remarks>

 Public Shadows Sub Clear()

 'Step A- Begin Error trapping

 Try

 'Step 1-Calls Collection.Clear() Method

 MyBase.Dictionary.Clear()

 'Step B-Traps for General exceptions

 Catch objex As Exception

 'Step C-Throw an General Execption to calling programs.

 Throw New System.Exception("Unexpected error clear(). " & objex.Message)

 End Try

 End Sub

 '**

 'Name: Contains()Method *

 'Purpose: Verify if object is in Collection *

 '**

 Public Shadows Function Contains(ByVal Key As Object) As Boolean

 'Step A- Begin Error trapping

 Try

 If MyBase.Dictionary.Contains(Key) Then

 Return True

 Else

 Return False

 End If

 'Step B-Traps for General exceptions

 Catch objex As Exception

 'Step C-Throw an General Execption

 Throw New System.Exception(objex.Message)

 End Try

 End Function

 '***

 'Add other Overloaded Wrappers here as well, such as Add(x,y,z..)

#End Region

#Region "Public Regular Methods Declarations"

 '***

 'Class Regular Methods. Ex: EditItem(k,O), EditItem(x,y,z..), Print(X), etc.

#End Region

 54

Step 6: Add the Public Shared Data Access Method Declarations:

 Public Shared Data Access declarations:

#Region "Public Data Access Methods"

 '***

 ''' <summary>

 ''' [Optional] Calls Data Portal_Create to create a Collection Object. This

 ''' Method is not used in this class, but can be used in the

 ''' future to create objects that need data from database upon Creation

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Create()

 'Calls Local DatPortal_Create() To do the work

 DataPortal_Create()

 End Sub

 '**

 ''' <summary>

 ''' Calls Data_Portal_Fetch to load all objects from database

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Load()

 'Calls Local DatPortal_Fetch() To do the work

 DataPortal_Fetch()

 End Sub

 '**

 ''' <summary>

 ''' Calls DataPortal_Save() to save all objects in collection to Database

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Save()

 'Verify there are dirty objects in Collection

 'Only modify if dirty, otherwise do nothing in this method

 If IsDirty Then

 'Dirty Collection, go ahead and update

 DataPortal_Save()

 End If

 End Sub

 '**

 ''' <summary>

 ''' Calls DataPortal_DeleteObject to delete an object residing

 ''' In the collection from the database

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Public Overrides Sub DeleteObject(ByVal Key As Object)

 'Calls Local DatPortal_DeleteObject() To do the work

 DataPortal_DeleteObject(Key)

 End Sub

#End Region

 55

Step 7: Add the Protected Data Access Method Declarations:

 Protected Data Access Methods that contain the SQL Queries etc.:

#Region "Protected Data Access Methods"

 '***

 'Protected Data Access Methods declarations

 '**

 ''' <summary>

 ''' Data Access or other Code for Creating a New Business COLLECTION Object

 ''' Used when object requires data from db upon creation

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 End Sub

 '**

 ''' <summary>

 ''' Loads all objects from database by Iterating through Collection, and

 ''' calling Each ITEM object LOAD() method so each Item loads itself

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Fetch()

 'Iterates through Collection, Calling Each CHILD object.Load() method

 'CHILD Objects load themselves. ADO.NET Queries may be required

 'for obtaininig key of every object for every object to load themselves

 'THIS CODE WILL BE IMPLEMENTED WHEN DURING THE ADO.NET LECTURES

 End Sub

 56

 Continue Protected Data Access Methods:

 IMPORTANT! YOU NEED TO REPLACE BusinessClassTemplate STATEMENT BY THE CLASS OF THE ITEMS

BEING STORED IN THE COLLECTION, FOR EXAMPLE, clsCustomer, clsEmployee etc.

 '**

 ''' <summary>

 ''' SAVES all objects from database by Iterating through Collection, and

 ''' calling Each ITEM object SAVE() method so each Item saves itself

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Save()

 'Iterates through Collection, Calling Each CHILD object.Save() method

 'CHILD Objects save themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objChild As BusinessClassTemplate

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objChild = CType(objDictionaryEntry.Value, BusinessClassTemplate)

 'Step 4-Call Child to Save itself

 objChild.Save()

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error! " & objE.Message)

 End Try

 End Sub

 57

 Continue Protected Data Access Methods:

 IMPORTANT! Note that in the following code, Property represents the ID number, SS number or whatever is the ID property of

the Item Object. YOU NEED TO MODIFY THIS CODE, REPLACE THE PROPERTY BY THE CORRECT PROPERTY OF

THE OBJECT. ALSO YOU NEED TO USE THE CORRECT DATA TYPE CONVERSION FUNCTION INSTEAD OF CStr()

 If objItem.Property = CStr(Key) Then

 'Step 5-Object deletes itself

 objItem.DeleteObject(Key)

 ALSO, YOU NEED TO REPLACE TO REPLACE BusinessClassTemplate STATEMENT BY THE CLASS OF THE

ITEMS BEING STORED IN THE COLLECTION, FOR EXAMPLE, clsCustomer, clsEmployee etc

 '**

 ''' <summary>

 ''' DELETES AN OBJECT BY ID from database by Iterating through Collection

 ''' and calling Each ITEM object DELETE(ID) method so each Item delete itself

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'Iterates through Collection, Calling Each CHILD object.Delete() method

 'CHILD Objects Delete themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objItem As BusinessClassTemplate

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objItem = CType(objDictionaryEntry.Value, BusinessClassTemplate)

 'Step 4-Find target object based on key

 'YOU WILL NEED TO SELECT THE CORRECT PROPERTY

 'FOR objItem.Property, ALSO YOU NEED TO CONVERT THE

 'KEY PARAMETER USING CSTR OR CINT ETC. DEPENDING

 'ON THE DATATYPE OF THE objItem.Property

 If objItem.Property = CStr(Key) Then

 'Step 5-Object deletes itself

 objItem.DeleteObject(Key)

 ''Step 6-[OPTIONAL] Remove Object From Collection

 ''since no longer in DB

 'MyBase.Dictionary.Remove(Key)

 End If

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error! " & objE.Message)

 End Try

 End Sub

#End Region

 58

Step 7: Helper Methods:

 Other non-business related methods:

5.8.3 CONCLUSION

 WE NOW HAVE A TEMPLATE BUSINESS COLLECTION CLASS FROM WHICH WE
CAN CREATE ALL OUR COLLECTION CLASSES!!!

#Region "Helper Methods"
 '***

 'Methods used to assist other methods or maintenance

#End Region

End Class

 59

5.9 Business Rules and Validation (Business Object Requirements)
 Now we address how to use some of the business rules we’ve implemented so far.

 In addition we implement another requirement for our Business Objects, and that is that they must validate themselves.

5.9.1 Implementing Dirty & NEW Business Rule In Properties & Methods

 We implemented several Business Rules and logic into our templates, such as NEW & DIRTY Objects.

 We now look at how to implement these rules.

Implementing Dirty Objects in Property Methods

 Every time an object is SET with data via properties, the object is DIRTY!.

 Therefore we need to MARK EVERY SET portion of a property by calling the Business Rule MARKDIRTY() method

 For example, lets look at the following Name Property:

 Public Property Name() As String

 Get

 Return m_Name

 End Get

 Set(ByVal value As String)

 m_Name = value

 'Mark Ojbect as dirty it has been modified

 MyBase.MarkDirty()

 End Set

 End Property

 Another example:

 Public Property IDNumber() As Integer

 Get

 Return m_IDNumber

 End Get

 Set(ByVal value As Integer)

 m_IDNumber = value

 MyBase.MarkDirty() 'Now DIRTY! Must be in Every Set Property

 End Set

 End Property

 IMPORTANT! EVERY PROPERTY SET MUST HAVE THE CALL TO MARKDIRTY()

 60

Implementing Dirty Objects in Regular Methods

 As usual, you need to add you’re the regular methods that make the object behave like its real world counterpart.

 Nevertheless, if a Method makes any modification to the data, then we need to mark the object as DIRTY once the method

executes.

 For example, in the following Shop() method, modifies the private data Therefore it must be marked DIRTY

 'Methods modifies data, object must be marked as Dirty

 Public Sub Shop(ByVal intItems As Integer)

 'Data is modified

 intTotalItemsPurchased = intTotalItemsPurchased + intItems

 MyBase.MarkDirty() 'Must Mark Dirty since private data is being modified

 'Raise or trigger event & send information with the event

 RaiseEvent OnShopping(intTotalItemsPurchased)

 End Sub

 Note that if a method makes no kind of modification to the data, then we DO NOT need to mark it as dirty

 ONLY METHODS THAT MODIFY DATA MUST CALL THE MARKDIRTY() METHOD!

Dirty Objects & Public Data Access Methods

 Our BusinessClasses & BusinessCollectionClasses contain Public Data Access Methods.

 These include:

 Public Create()

 Public Load()

 Public Save()

 Public DeleteObject (Key)

 These Public methods don’t require that we mark them DIRTY since these methods simply call the Protected DataPortal_XXX

classes to do the work. It is inside the Protected Classes were changes are made and we need to apply these rules

 61

Implementing Dirty Objects in Protected Data Access Methods

 Because these are the classes that actually perform the Data Access and modify the object, we need to implement our DIRTY

AND NEW LOGIC.

 This applies only to the BusinessClass and NOT the COLLECTION BusinessCollectionClass.

 The COLLECTION CLASSES, don’t really modify the CHILD Business Objects, they rely on these object to do their own
DIRTY WORK, therefore collection classes don’t require that we add DIRTY or NEW logic to the Data Access Methods.

 With that said lets focus on the BusinessClass Protected Data Access Methods

 The protected methods include:

 Protected Overrides DataPorta_Create()

 Protected Overrides DataPorta_Fetch()

 Protected Overrides DataPorta_Update()

 Protected Overrides DataPorta_Insert()

 Protected Overrides DataPorta_DeleteObject()

Business Rules & DataPortal_Create() method

 This method loads creates new object and populates them with default values from database etc.

 IMPORTANT! – Business Rules dictate that newly create objects are NEW. With this in mind, we need to call the MarkNew()

method at the end of the method as follows:

 'Data Access Code for Creating a New Business Object

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 'At the end, set New flag to True a new object is created

 MarkNew()

 End Sub

Business Rules & DataPortal_Fetch(Key) method

 This method loads the object with data from the database based on the key. Using ADO.NET.

 IMPORTANT! – Business Rules dictate that an object loaded from database is marked OLD since it does exist in the database.

With this in mind, we need to call the MarkOld() method at the end of the method as follows:

 'Data Access Code to fetch an object from Database

 Protected Overrides Sub DataPortal_Fetch(ByVal Key As Object)

 'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

 'Data Access Code Here!

 'At the end, set New flag to False. NOT Dirty since found in database

 MarkOld()

 End Sub

 62

Business Rules & DataPortal_Update() method

 This method UPDATES the object in the database using ADO.NET.

 IMPORTANT! – After updating, since this object exists in the database, we need to mark it OLD. Remember that marking and

object OLD also marks it CLEAN. Call the MarkOld() method at the end of the method.

 Implementation is as follows:

 'Data Access Code to Update an Objects data to database

 Protected Overrides Sub DataPortal_Update()

 'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

 'Data Access Code Here!

 'Set New flag to False since exist in database/and is Not dirty any longer

 MarkOld()

 End Sub

Business Rules & DataPortal_Insert() method

 This method INSERTS a new record to the database using ADO.NET.

 IMPORTANT! – Since this object was just inserted and NOW exists in the database, we need to mark it OLD. Call the

MarkOld() method at the end of the method.

 Implementation is as follows:

 'Data Access Code to insert a new object to database

 Protected Overrides Sub DataPortal_Insert()

 'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

 'Data Access Code Here!

 'Set New flag to False since exist in database/and is Not dirty any longer

 MarkOld()

 End Sub

Business Rules & DataPortal_DeleteObject() method

 This method DELETES a record from the database using ADO.NET.

 IMPORTANT! – Deleting an object from the database, means that the Object is new NEW, since it does not exist in the

database any more, we need to mark it NEW. Call the MarkNew() method at the end of the method.

 Implementation is as follows:

 'Data Access Code to immediatly delete an object from database.

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

 'Data Access Code Here!

 'Object no longer in database, therefore reset our status to be a new object

 MarkNew()

 End Sub

 63

5.9.2 Implementing Validation Business Rule

 In this section we implement the validation rules.

 Validation is performed in the PROPERTY methods of the object.

 The validation process usually occurs in the SET portion of a property where modification takes place.

 Validation involves using program code to verify that the value passed into a Property SET is within the expected data type,

length, size, not empty etc.

 Validation usually involves the following:

 Use If/Else and other VB.NET statements to accomplish the test and perform and action based on the results
 The action usually involves Throwing and Exception.

 Examples of validation business rules are:

 BLANK Property – A property is left blank or empty. For example, in a School Management Program, the student’s SS

Number can never be blank, therefore we need to validate for this rule.

 MAXIMUN-LENTH Property – Some properties may require that the string be kept within a certain length.

 EXACT-LENTH Property – Property where the length must be exact. Example SSNUmber etc.

 WRITE-ONCE Property – Some properties require that the value can only be set once and can never change. Example,

SSNumber, LicenceID etc.

 Again, the idea is that when any of these rules are broken, we need to do handle this and let the User-interface that a rule was

broken.

 Due to time constraints, we will NOT be implementing a more sophisticated mechanism, so we will simply raise exceptions.

 We will show the code required for the Class Developer as well as what the User-Interface Developer needs to do.

Maximum-Length String Business Rule

 Maximum-Length String Properties refers to a property that cannot exceed the length of a particular value. For example if the

maximum value we want the Name property to contain under 50 characters, then we need to test for this length. If the length is

exceeded, then we Throw a NotSupportedException.

Implementing Max-Length inside Class Property:
 Example of this code is as follows:

 Public Property Name() As String

 Get

 Return strName

 End Get

 Set(ByVal Value As String)

 'Maximum-lengh property

 If Len(Value) > 50 Then

 Throw New NotSupportedException("Name too long")

 End If

 strName = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty

 End Set

 End Property

 64

Handling Max-Length in User-Interface or Client:
 Now we need to know how to code the MAX-LENGTH rule in the User Interface (Forms, Clients etc).

 Since what the rule does is throw a NotSupportedException, we need to trap for this exception in the client program and display

the error message returned from the Business Object.

 Example of this is as follows:

 Try

 'Step x-Traps for Business Rule violations & Display Error Message

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 End Try

Implementing Write-Once Properties

 Write -Once Properties refers to a property that is only written once and cannot be changed once is written.

 This is an excellent technique to use for unique key values that identify an object and once entered can no longer be changed.

 For example a CustomerID value or SSN number, LicenseNum, etc.

 Write -Once Properties are implemented by testing the new flag = flgIsNew, if this flag is TRUE, then we can allow the Set

portion of the property to execute, otherwise we cannot allow this property to run if this object is NOT NEW, which means the

value has been already set.

 IF A PROPERTY IS GIVEN A WRITE-ONCE RULE, IN YOUR CODE, YOU CANNOT ATTEMPT TO SET THAT
PROPERTY ANYWHERE IN YOUR CODE WHERE THE OBJECT IS OLD. FOR EXAMPLE THE Edit() method.

Implementing Write-Once inside Class:
 Write-Once Properties are implemented as follows:

I. In the Property Set portion of a Property statement, we test the status of the IsNew flag to implement this logic :

 'Write-Once Property

 Public Property IDNumber() As Integer

 Get

 Return intIDNumber

 End Get

 Set(ByVal intTheID As Integer)

 If Not Me.IsNew Then

 Throw New NotSupportedException("Write-Once Property already set")

 Else

 intIDNumber = intTheID

 MyBase.MarkDirty() 'Must be in Every Set Property

 End If

 End Set

 End Property

Handling WRITE-ONCE in User-Interface or Client:
 We need to know how to handle this Business Rule in the UI.

 Since the rule throw a NotSupportedException, we need to trap for this exception in the client program and display the error

message returned from the Business Object.

 Again, is the same code as before:

 Try

 'Step x-Traps for Business Rule violations & Display Error Message

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 End Try

 65

Implementing NO BLANK/EMPTY String Rule

 No Blank/Empty Properties refers to a property that cannot be left blank or 0 in an Object.

 Examples of this rule such as the SSN or CustomerID which cannot be left blank, they must be populated since they usually

represent a Primary Key in the database.

Implementing NO BLANK inside Class:
 No Blank or Empty Properties are implemented by verifying if the length of the string is empty:

I. In the Property Set portion of a Property statement, enter code to verify the length = 0:

 Public Property Address() As String

 Get

 Return strAddress

 End Get

 Set(ByVal Value As String)

 If Len(Trim(Value)) = 0 Then

 Throw New NotSupportedException("Value is empty")

 End If

 strAddress = Value

 MarkDirty() 'Must be in Every Set Property

 End Set

 End Property

Handling NO-BLANK/EMPTY Rule in User-Interface or Client:
 Again, we need to trap for a NotSupportedException, and display the error message:

 Try

 'Step x-Traps for Business Rule violations & Display Error Message

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 End Try

 66

Implementing EXACT-LENGTH Rule

Implementing the EXACT-LENGTH Rule
 Exact-Length Properties refers to a property that length of the string must be of an exact size.

 Examples of this rule such as the SSN which the size must be exactly 11 characters (including – character) or a Phone number

which must be say 14 characters: (718)-260-5000.

Implementing EXACT-LENGTH inside Class:
 Exact-Length Properties are implemented by comparing the length is within a range

 This mechanism is implemented as follows.

 Public Property Phone() As String

 Get

 Return strPhone

 End Get

 Set(ByVal Value As String)

 'Enforce exact-lenght: (212)-555-1212

 If (Len(Trim(Value)) <> 14) Then

 Throw New NotSupportedException("Value not exact Lenght")

 End If

 strPhone = Value

 MarkDirty() 'Must be in Every Set Property

 End Set

 End Property

Implementing EXACT-LENGTH Rule in User-Interface or Client:
 Again, we need to trap for a NotSupportedException, and display the error message:

 Try

 'Step x-Traps for Business Rule violations & Display Error Message

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 End Try

 67

5.9.3 Constructor Methods & Business Rules

 As we know, when we create an object, constructors execute, such as default and parameterized constructors.

 These constructors modify data! They either set the data to default values or assign data to the parameters

 We have to options:

 Modify via the Private Data – Modifies private data directly, but we have no way of knowing or checking if the data

modified satisfy our validations rules. This is more of a concern when this data is being passed as parameters to the

parameterized constructor.

 Modify via Public Properties – Using Public Properties guarantees that the property validation mechanism catches any issues.

 With this said, we will do the following:

1. Assign the Default constructor to Private Data directly – We don’t have to concern ourselves with the default since we

control it from within the class.

2. Assign the Parameterized Constructor to the PROPERTY PROCEDURES. We don’t have control of what the UI

developer will pass as arguments to objects so we need to make sure they are within our validation rules.

Implementing the Default Constructor method
 No changes required here, if you are using the Private Data to initialize the default constructor.

 Public Sub New()

 'Note that private data members are being initialized

 strName = ""

 intIDNumber = 0

 dBirthDate = #1/1/1900#

 strAddress = ""

 strPhone = "(000)-000-0000"

 intTotalItemsPurchased = 0

 End Sub

 Note that if you decide to use the Properties instead of the private data directly, the default data that you enter, must satisfy the
Business Rules dictated by the property otherwise you will yield errors.

Implementing the Parameterized Constructor method
 In this case we will assign the argument parameters to the Properties instead of the private data.

 By doing this we make sure that when an object is created and data is passed to the object upon creation, that data must satisfy the

Business rules.

 Implementation is as follows:

 Public Sub New(ByVal strN As String, ByVal intIDNum As Integer, ByVal bBDate As Date,

_

 ByVal strAdr As String, ByVal strPh As String)

 'Note that we are NOT using the private data but the Property Procedures instead

 Me.Name = strN

 Me.IDNumber = intIDNum

 Me.BirthDate = bBDate

 Me.Address = strAdr

 Me.Phone = strPh

 Me.TotalItemsPurchased = 0

 End Sub

 68

5.9.4 Listing of all Base Classes & Templates (Summary)

 So this is what we have so far:

 BusinessBase – Base Class for our Business Classes. BusinessCollectionBase – Base Class for Business Collection Classes:

 BusinessClass Template & BusinessCollectionClass Template – INHERITED from BUSINESSBASE for creating our

REGULAR CLASSES & BUSINESSCOLLECTIONBASE for our COLLECTION CLASSES.

Imports

<Serializable()> _

Class clsBusinessClass
Inherits clsBusinessBase

Private data:

Public Event Declarations:

Public Properties:

Public Constructors:

Public Methods:

Public Shared Data Access Methods:
Create()

Load(Key)

DeleteObject(Key)

Save()

Protected Override Data Access Methods:
DataPortal_Create()

DataPortal_Fetch(Key)

DataPortal_Update()

DataPortal_Insert()

DataPortal_DeleteObject(Key)

Public Helper Methods:

Imports

<Serializable()> _

Class clsBusinessCollectionClass
Inherits clsBusinessCollectionBase

Public Properties:

Public Wrapper Methods:

Public Regular Methods:

Public Shared Data Access Methods:
Create()
Load()

DeleteObject(Key)

Save()

Protected Override Data Access Methods:
DataPortal_Create()

DataPortal_Fetch()

DataPortal_Save()

DataPortal_DeleteObject(Key)

Public Helper Methods:

Imports

<Serializable()> _

Class MustInherit clsBusinessBase

Private Business Rules data:
mflgIsDirty, mflgIsNew

Public Business Rules Properties:
IsNew, IsDirty

Public MustOverride Data Access Methods:
Create()

Load(Key)
DeleteObject(Key)

Save()

Protected MustOverride Data Access Methods:
DataPortal_Create()

DataPortal_Fetch(Key)

DataPortal_Update()

DataPortal_Insert()

DataPortal_DeleteObject(Key)

Public Helper Data Access Methods:
DBConnectionString(DBName)

Imports

Class MustInherit clsBusinessCollectionBase
Inherits DictionaryBase

Public Business Rule Properties:
IsDirty

Public MustOverride Data Access Methods:
Create()

Load()

DeleteObject(Key)
Save()

Protected MustOverride Methods:
DataPortal_Create()

DataPortal_Fetch()

DataPortal_Save()

DataPortal_DeleteObject(Key)

Public Helper Data Access Methods:
DBConnectionString(DBName)

 69

 At this point, we implemented a DLL component Project that contains our Base Classes & Templates, for us to use in our

programs:

 Going forward, when we create applications, we can use these base classes and templates for our Business Objects projects:

 70

5.9 User-Interface Support for Business Objects

5.9.1 Overview

 Ok, now that we have gone thought the Business object Layer. We need to address the User-Interface Layer.

 What we need to know is what needs to be done in our Forms or UI to support the Business Objects.

 What does our User-Interface Developer needs to know so they can use our Business Objects.

5.9.2 Programming the UI to use the Business Objects

 For starters we know the following:

1. UI will create Business Objects and use them.

2. UI will call Regular Public Methods & Properties to make the object behave as its real-world counterpart. Some of these

methods modify data.

3. UI will also call Business Rules Public Properties to track the STATUS of the Business Object, such as IsDirty & IsNew

4. UI will also call Business Rules Public Data Access Methods: Create(), Load(), Save() & DeleteObject()

 So now let’s address each one of these tasks at a time, see what needs to be done:

1. UI will create Business Objects and use them.

2. UI will call Regular Public Methods & Properties to make the object behave as its real-world counterpart.

How is done: Create Object using default or Parameterized values

How Business Object React:
 BO will throw a NotSupportedException if the values passed to the parameterized

constructor are in violation of Validation Business Rules: NO-BLANK, MAXIMUM-

LENGTH, and WRITE-ONCE etc.

How User-Interface Should React:
 Trap for a NotSupportedException.

How is done: Call Properties or Methods using normal syntax: Object.Property or Object.Method()

How Business Object React:
 If the Property or Method creates temporary BO’s and uses them, BO will throw a

NotSupportedException if the values assigned to the temporary objects are in violation of

Validation Business Rules: NO-BLANK, MAXIMUM-LENGTH, and WRITE-ONCE etc.

 If the Property or Method MODIFIES the OBJECT, BO’s will mark the Object as Dirty.

How User-Interface Should React:
 Trap for a NotSupportedException.

 71

3. UI will call Business Rules Public Properties to track the STATUS of the Business Object, such as IsDirty & IsNew.

4. UI will also call Business Rules Public Data Access Methods: Load(), Save() & DeleteObject()

Final Summary
 From our analysis of how the UI performs the operations listed and how the Business Object reacts we can conclude the

following:

 UI uses the object (Properties & method calls) and let’s the object perform the requested operation

 UI needs to trap for the NotSupportedException in case the UI violates the rules.

 UI can use a Try-catch Block to trap for this exception and Handle the exception as required.

 So the UI developer needs to be aware of the exception and use a Try-Catch Block to trap and handle appropriately.

How is done: Call Properties using normal syntax: Object.Property

How Business Object React:
 Returns a TRUE or FALSE depending on the Status of the Object.

How User-Interface Should React:
 Take any necessary action based on these the True/False results.

How is done: Call Methods using normal syntax: Object.Method()

How Business Object React:
 Perform the data access
 Marks the Object as Dirty, New etc based on the data access method called.

How User-Interface Should React:
 Nothing or may need to trap for Exceptions generated by ADO.NET code.

 72

6.1 Sample Program #5 – Customer Management Business Objects Program

6.1.1 Overview

 We will now upgrade the Customer Management Application from previous lecture, which resembles the class project. We will

inherit from BusinessBase, BussinessCollectionBase and implement our Business Classes following the rules and format of the

BusinessClass, BussinessCollectionClass templates.

 In summary we will add the following new functionality:

1. Inheritance & Business Object requirements using BusinessBase, BussinessCollectionBase, and BusinessClass,

BussinessCollectionClass templates:

 The clsPerson Class will now inherit from BusinessBase class.

 Continue to Inherit the clsCustomer from clsPerson class.

 Modify clsCustomer to adhere to the BusinessClass template
 The clsCustomerList will now Inherit from BussinessCollectionBase.

 Modify clsCustomerListManager to adhere to the BusinessCollectionClass template

 Maintain all Business Template logic within this new inheritance scheme.

 The new object model should look as follows for the Business Classes:

 The Collection Class hierarchy looks as follows:

Class MustInherit

clsPerson

Private data members:

strName, strSSNum, dBirthDate

sAddress, sPhone,

Properties

Public Methods

Necessary Business Rules

Class clsCustomer

(Business Class)

Private data members:

 strCustomerID,

m_TotalItemsPurchased

Properties

Public Methods

Public Data Access Methods

Protected Data Access

Methods

Class MustInherit

BusinessBase

Business Rules

MustOverride Data Access

Methods

Class clsCustomerList
Inherits clsBusinessCollectionBase

Public Properties & Wrapper Methods

Public Regular Methods

Public Data Access Methods

Protected Data Access Methods

Business Methods

Class MustInherit BusinessCollectionBase

Business Rules

MustOverride Data Access Methods

 73

1. We will enforced Dirty Objects to ALL OUR PROPERTY SET:

 Customer Name: Call MARK-DIRTY()

 Social Security & Customer ID Number – Call MARK-DIRTY()

 Address, & Phone – Call MARK-DIRTY().

2. We will enforced the following Field-Level Validation to our Properties:

 Customer Name – NO-BLANK & MAX-LENGTH.

 Social Security & Customer ID Number – WRITE-ONCE, EXACT LENGTH & NO-BLANK/EMPTY

 Address, & Phone – NO-BLANK/EMPTY.

3. In addition we will CUT/PASTE FILE ACCESS CODE from the current load() & save() to the clsCustomerList DATA

ACCESS METHODS, DataPortal_Fetch() & DataPortal_Save() in order to permanently store our data and simulate the

database partially:

 In the CustomerList Collection we include File Access code to Load & Save the Customer Child Objects with data

from a comma-delimited file.

 A file named Customers.txt is used to store the data.

 NOTE! We will keep all Business Object structure as is. The Business Methods and properties should not be

modified in any way.

6.1.2 Problem Statement

 The requirements for Sample program #5. are as follows:

Example #5 – Business Object Customer Management Application (Version 2)

Problem statement:
 Upgrade the Customer Management application as described in previous Overview section.

Business Object Layer – Business Class & DLL Requirements
 Implement the following classes:

 clsPerson Class – MustInherit Class that inherits from BusinessBase. Details in code to follow

 clsCustomer Class – Inherit from clsPerson. Details in code to follow

 clsCustomerList Collection Class – Inherits from BusinessCollectionBase:

- Derive this class from BusinessCollectionBase.

- In the DataPortal_Fetch() Add File Access Code to load data from the Customer.txt file and populate the collection

with data read from file.

- In the DataPortal_Save(), add File Access Code from current Load() & Save() method to the new DataPortal_Fetch()

& DataPortal_Save() in order to permanently store the data to Customer.txt file.

Presentation/UI Layer – Client Process requirements:
 Same as previous Customer Manager Example

 74

HOW IT'S DONE:

 The Component or DLL

Part I – View The Class Library Project:

Step 1: Open the Customer Management Application from Previous DLL Example

 In the previous example in Lecture 2B Sample Program #23 on page 29, we converted the CUSTOMER RETAIL

MANAGEMENT APPLICATION TO USE A DLL COMPONENT.

 The high-level steps are as follows:

1. Created a Blank Solution & added a NEW DLL Project
2. Copied the CUSTOMER RETAIL APPLICATION or Client Project FOLDER from previous application into this Blank

Solution FOLDER STRUCTURE.

3. We then ADDED CUSTOMER MANAGEMENT client into the Solution.

4. We renamed the solution to WinAppClient

5. Made the WinAppClient the STARTUP OBJECT, since it is an executable, it will now control the application

6. We MOVED ALL CLASSES TO THE DLL PROJECT

7. Set REFERENCE on the WinAppClient to POINT TO THE DLL COMPONENT

8. Modified all code in the application were the CLASSES were being used to take into account that the classes NOW RESIDE

INSIDE THE DLL using the syntax: DLL.CLASS, example: BusinessObjects.clsCustomer

 If you have not done so, follow the steps to convert the Customer Management application to use a Class Library from our

previous example and notes Lecture 2B Sample Program # 2 on page 29.

Step 1: View of Solution at this point:

 The entire solution looks as follows:

Solution

DLL Project

Client Project

 75

 The file structure looks as follows:

 76

Business Object Layer (Business Classes)

Overview

 We need to add the BusinessBase & BusinessCollectionBase Classes so our Business Classes (clsPerson, clsCustomer &

clsCustomerList) can inherit all the Business Rules.

 We also need the methods that we need to implement in our classes and are contained in the BusinessClass & BusinessCollection

Class templates. Since we are NOT starting from scratch we don’t want to use these Business Class Templates as a starting point.

So what we are going to do is simply copy what we need from them into our existing classes to turn them into Business Classes

and save us some typing.

 I provided business class & business collection class templates for your use.

 Open these templates using Visual Studio and keep them handy so you can copy what you need from them as you modify your

project.

Step 2: Add Business Base & Business Collection Base Classes to Project.

 Steps are as follows:

Step 1: Open CUSTOMER RETAIL MANAGEMENT SOLUTION (SHOULD ALREADY BE OPEN):

 At this point, you should have the Customer Retail Management solution DLL project from STEP 1 above running.

Step 2: Open THE BUSINESS OBJECTS TEMPLATES available on the WEB SITE

 At this point, ALSO OPEN THE BUSINESS OBJECTS TEMPLATE DLL Project I available on the COURSE WEB SITE.

 This DLL project contains all the Business Class TEMPLATES, AS WELL AS BASE CLASSES FOR ALL OUR BUSINESS
CLASSES AND BUSINESS COLLECTION CLASSES

 77

Step 3: COPY BASE CLASSES FILES FROM TEMPLATE DLL PROJECT TO CUSTOMER MANAGEMENT

PROJECT:

 Now we need to navigate to the folder containing the BusinessBase & BusinessCollectionBase classes and copy/paste into our

project.

 Steps are as follows:

1. Using Widows Explore or My Computer, navigate to the BUSINESS OBJECTS DLL TEMPLATE PROJECT FOLDER

where the BusinessBase & BusinessCollectionBase classes are located:

2. Right-Click & COPY the two base classes: BusinessBase & BusinessCollectionBase

3. Now navigate to the TARGET LOCATION IN YOU’RE THE CUSTOMER MANAGEMENT SOLUTION

BUSINESSOBJECTS DLL COMPONENT & PASTE the two base classes: BusinessBase & BusinessCollectionBase:

 78

Step 4: ADD BusinessBase & BusinessCollectionBase to the CUSTOMER MANAGEMENTSOLUTION:

 Now we ADD the TWO BASE CLASSES (BusinessBase & BusinessCollectionBase) to the Solution.

 Steps are as follows:

1. Go or open the Customer Management Solution, if you have not done so

2. In the Solution Explore window, RIGHT-CLICK the BusinessObjects DLL COMPONENT PROJECT

3. In the drop-down menu, select ADD|EXISTING ITEM…

4. Navigate to the Client or WinAppClient project and select and add the two base classes (BusinessBase &

BusinessCollectionBase) just copied to that folder:

Step 5: CUSTOMER MANAGEMENT APPLICATION NOW HAS THE TWO BASE CLASSES AS PART OF THE DLL

COMPONENT:

 The BusinessObjects DLL COMPONENT now contains the BusinessBase & BusinessCollectionBase to serve as the base

classes for ALL OUR CLASSES & COLLECTION CLASSES:

 79

Step 3: Modify the clsPerson TO USE THE BUSINESSBASE CLASS

 We need to modify the clsPerson Class to contain the required Business rules based on the BusinessClassTemplate as follows:

1. The clsPerson Class HAS TO BE a MustInherit Class, otherwise, we will be FORCED to implement the

MUSTOVERRIDE Data Access Methods of the BusinessBase Class (Load(), Save(), DeleteObject() etc.) here in

clsPerson.

 We DON’T want to implement the MustOverride Business methods of the BusinessBase here because Person is not a

complete Customer. Only the Customer class contains all the data necessary for the application, therefore it is in

CUSTOMER that we will implement all the MustOverrided Business methods.

 Since clsPerson is a MustInherit Class, we cascade all the FORCED MustOverride Business methods from

BusinessBase to the inherited Customer class.

2. Nevertheless, clsPerson contains private data and properties which need to adhere to our business rules, such as

MarkDirty() and validation rules, etc.

3. We also need to copy all the Inports and Serialization tag to make this class an UnAnchored Class.

4. THE CLSPERSON CLASS DOES NOT REQUIR DATA ACCESS METHOD. IT IS A MUST INHERIT BASE CLASS

FOR IT’S CHILDREN clsCustomer & clsEmployee.

5. At the end of this section, the structure of the clsPerson class should look like our BusinessClass Template.

 Perform the following steps:

Step 1: AT THIS POINT, MAKE SURE BOTH YOUR CUSTOMER RETAIL SOLUTION AND BUSINESS OBJECTS

DLL TEMPLATE SOLUTION ARE BOTH OPEN:

 Verify both Solutions are running:

Step 2: Copy from BusinessClass Template the Imports and Serializable Tag & other IMPORT statements:

1. IN THE TEMPLATE DLL PROJECT, Open the BusinessClassTemplate class

2. In the header section of this class, SELECT/COPY all the Imports, declarations & the SERIALIZABLE TAG information

3. IN THE CUSTOMER RETAIL SOLUTION, OPEN THE CLSPERSON CLASS, in the top declaration section click

PASTE
4. Make sure THERE ARE NO SPACES BETWEEN THE <Serializable()> _ TAG AND THE clPerson CLASS

DECLARATION
5. The DECLARATION portion of the clsPerson class now looks as follows:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public MustInherit Class clsPerson

 80

Step 3: INHERIT FROM BUSINESS BASE:

1. NOW we need to Inherit from BusinessBase Class

2. IN THE TEMPLATE DLL PROJECT, Open the BusinessClassTemplate class

3. SELECT/COPY THE STATEMENT TO INHERIT FROM BUSINESSBASE

4. IN THE CUSTOMER RETAIL SOLUTION, BELOW THE DECLARATION OF THE CLSPERSON CLASS, click

PASTE
5. THE INHERIT FROM BUSINESS BASE STATEMENT IS NOW LOCATED BELOW THE CLASS DECLARATION

AS EXPECTED:

Step 4: General Class Private data:

 No changes required for Private Data.

#Region "Private Data"

 '***

 'Class Data or Variable declarations

 Private m_Name As String

 Private m_SSNumber As String

 Private m_BirthDate As Date

 Private m_Address As String

 Private m_Phone As String

#End Region

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public MustInherit Class clsPerson

 Inherits BusinessBase 'Inherits from BusinessBase.

 81

Step 5: Add DIRTY OBJECT Mechanism (MANDATORY!) & [OPTIONAL] add any FIELD-LEVEL VALIDATION rules

To Properties:

 IMPORTANT & MANDATORY! Add code for implementing DIRTY OBJECTS. EVERY PROPERTY SET MUST

INCLUDE THE MARKDIRTY() CALL AFTER THE DATA IS SET.

 [OPTIONAL] if required add any Field-Level Validation Business Rules:

#Region "Property Procedures"

 '***

 'Enforcing NO-BLANK, MAX-LENGTH & MARK DIRTY for Name

 Public Property Name() As String

 Get

 Return m_Name

 End Get

 Set(ByVal Value As String)

 'NO-BLANK validation

 If Len(Trim(Value)) = 0 Then

 Throw New NotSupportedException("Business Rule: Name cannot be blank")

 End If

 'MAX-LENTHG VALIDATION

 If Len(Value) > 25 Then

 Throw New NotSupportedException("Business Rule: Name is too long")

 End If

 m_Name = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

 '***

 'Enforcing NO-BLANK, WRITE-ONCE, EXACT-LENGTH & MARK DIRTY for Address

 Public Property SocialSecurity() As String

 Get

 Return m_SSNumber

 End Get

 Set(ByVal Value As String)

 'NO-BLANK validation

 If Len(Trim(Value)) = 0 Then

 Throw New NotSupportedException("Business Rule: SSNum cannot be blank")

 End If

 'WRITE-ONCE validation

 If Not Me.IsNew Then

 Throw New NotSupportedException("Business Rule: SSNum is Write-once")

 End If

 'EXACT-LENTH validation

 If (Len(Trim(Value)) <> 11) Then

 Throw New NotSupportedException("Value not exact Lenght")

 End If

 m_SSNumber = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

 82

 '***

 'Enforcing MARK DIRTY for Birthday

 Public Property BirthDate() As Date

 Get

 Return m_BirthDate

 End Get

 Set(ByVal Value As Date)

 m_BirthDate = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

 '***

 'Enforcing NO-BLANK & MARK DIRTY for Address

 Public Property Address() As String

 Get

 Return m_Address

 End Get

 Set(ByVal Value As String)

 'NO-BLANK validation

 If Len(Trim(Value)) = 0 Then

 Throw New NotSupportedException("Business Rule: Address cannot be blank")

 End If

 m_Address = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

 '***

 'Enforcing NO-BLANK & MARK DIRTY for Phone

 Public Property Phone() As String

 Get

 Return m_Phone

 End Get

 Set(ByVal Value As String)

 'NO-BLANK validation

 If Len(Trim(Value)) = 0 Then

 Throw New NotSupportedException("Business Rule: Address cannot be blank")

 End If

 m_Phone = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

#End Region

 83

Step 6: MAKE sure the PAREMETERIZED Constructors are using the class PROPERTIES AND NOT PRIVATE DATA:

 No changes required for the constructors.

Step 7: Print Class requires NO change since it DOES NOT MODIFY DATA. NO MARKDIRTY() REQUIRED:

 No changes required to this method since no modification to data is made.

#Region "Constructor Methods"

 '***

 'Class Constructor Methods

 'Default Constructor

 Public Sub New()

 'Note that private data members are being initialized

 m_Name = ""

 m_SSNumber = ""

 m_BirthDate = #1/1/1900#

 m_Address = ""

 m_Phone = "(000)-000-0000"

 End Sub

 'Parameterized Constructor

 Public Sub New(ByVal N As String, ByVal SSNum As String, ByVal BDate As Date, _

 ByVal Adr As String, ByVal Ph As String)

 'Note that Property Procedures are used when setting the data

 Me.Name = N

 Me.SocialSecurity = SSNum

 Me.BirthDate = BDate

 Me.Address = Adr

 Me.Phone = Ph

 End Sub

#End Region

#Region "Regular Class Methods"

 '***

 '***

 'Class Methods

 '***

 'Author of base class allows sub classes to overide Print()

 'If they want to, it is not mandatory

 Public Overridable Sub Print()

 'Create StreamWriter Object for append to file listed

 Dim objPrinter As New StreamWriter("PersonPrinter.txt", True)

 'Call StreamWriter Object WriteLine method to write the string to file

 objPrinter.WriteLine(m_Name & ", " & m_SSNumber & ", " & _

 m_BirthDate & ", " & m_Address & ", " & m_Phone)

 'Close StreamWriter Object

 objPrinter.Close()

 End Sub

#End Region

End Class

 84

Step 4: Modify the clsCustomer class

 Now we focus on clsCustomer. This is another Business Class where we implement all the Business Rules passed down from

clsPerson from BusinessBase

 All the MustOverride methods enforced by the BusinessBase will be implemented here since we passed them down from

clsPerson. Once again, realize that this is ONLY possible because we made clsPerson a MustInherit Class.

 NOTE THAT YOU MAY SEE A SYNTAX ERROR INDICATION DURING THE STEPS BELOW, IGNORE THEM UNTIL

ALL STEPS HAVE BEEN COMPLETED

 Currently the clsCustomer class has the following structure:

Step 1: Copy from BusinessClass Template the Imports and Serializable Tag & other IMPORT statements & PASTE TO

clsCustomer:

1. Open the BusinessClass Template and copy/paste all the Imports & Serialization declarations.

2. PASTE the imports into the clsCustomer class

3. CONTINUE TO INHERIT FROM CLSPERSON
4. Make sure THERE ARE NO SPACES BETWEEN THE <Serializable()> _ TAG AND THE clCustomer CLASS

DECLARATION

5. NOTE THAT YOU MAY SEE A SYNTAX ERROR INDICATOR IN THE CLASS, IGNORE THIS FOR NOW!

6. At the end of this section, the structure of the clsCustomer class should look as follows:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class clsCustomer

 Inherits clsPerson

 85

Step 2: COPY/PASTE from BusinessClass Template the DATA ACCESS METHODS to the clsCustomer Class:

1. Open the BusinessClass Template and COPY the Public & Protected Data Access Methods REGION:

2. PASTE into the clsCustomer class the DATA ACCESS CODE REGIONS, the class should look as follows when

completed:

 86

Step 3: NO CHANGES REQUIRED IN Private data & Event Regions:

 The private data & Event declarations stay the same as before

Step 4: Add MANDATORY DIRTY Object and [OPTIONAL] Validation Rules to the Properties:

 ADD THE MANDATORY DIRTY OBJECT STATEMENT

 ADD ANY REQUIRED VALIDATION CODE

#Region "Private Data"

 '***

 'Class Data or Variable declarations

 Private m_CustomerID As String

 Private m_TotalItemsPurchased As Integer

#End Region

#Region "Events Declaration"

 '***

 'Event Declarations

 Public Event OnShopping(ByVal intTotalItems As Integer)

#End Region

#Region "Property Procedures"

 '***

 'Enforcing NO-BLANK, WRITE-ONCE, EXACT-LENGTH & MARK DIRTY for Address

 Public Property CustomerID() As String

 Get

 Return m_CustomerID

 End Get

 Set(ByVal Value As String)

 'NO-BLANK validation

 If Len(Trim(Value)) = 0 Then

 Throw New NotSupportedException("Business Rule: ID cannot be blank")

 End If

 'WRITE-ONCE validation

 If Not Me.IsNew Then

 Throw New NotSupportedException("Business Rule: ID is Write-once only")

 End If

 'EXACT-LENTH validation

 If (Len(Trim(Value)) <> 3) Then

 Throw New NotSupportedException("ID Value not exact Lenght")

 End If

 m_CustomerID = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

 87

 Continue with PROPERTIES modifications.

Step 5: NO CHANGES IN CONSTRUCTORS:

 No change required to constructor methods.

#Region "Constructor Methods"

 '***

 'Default Constructor

 Public Sub New()

 'Call Base Class Constructor

 MyBase.New()

 'data member is initialized

 m_CustomerID = ""

 End Sub

 'Parameterized Constructor

 Public Sub New(ByVal strNane As String, ByVal strSSNum As String, _

 ByVal bBDate As Date, ByVal strAddress As String, _

 ByVal strPhone As String, ByVal strCustomerID As String)

 'Call Base Class Paremeterized Constructor

 MyBase.New(strNane, strSSNum, bBDate, strAddress, strPhone)

 'Property Member Initialize data

 Me.CustomerID = strCustomerID

 End Sub

#End Region

 '***

 Public Property TotalItemsPurchased() As Integer

 Get

 Return m_TotalItemsPurchased

 End Get

 Set(ByVal Value As Integer)

 m_TotalItemsPurchased = Value

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 End Set

 End Property

#End Region

 88

Step 6: Regular Methods: Print() method stay the same, SHOP() method needs to be MARKED DIRTY

 Regular methods require Business Rules only when you are modifying or making the object dirty, in this case the SHOP()

METHOD REQUIRES.

#Region "Regular Class Methods"

 '***

 'Regular Class Methods

 'This implementation does not call the base class Print to do the work

 'but instead calls each property individually. This is done because if

 'we call the base class Print() first, then we require two output in the

 'file which contain the record for each object. We only want one print

 'file with all the customer data in one line.

 Public Overrides Sub Print()

 'Create StreamWriter Object for append to file listed

 Dim objPrinter As New StreamWriter("CustomerPrinter.txt", True)

 'Call StreamWriter Object WriteLine method to write the string to file

 objPrinter.WriteLine(MyBase.Name & "," & MyBase.SocialSecurity & "," & _

 MyBase.BirthDate & "," & MyBase.Address & "," & _

 MyBase.Phone & "," & Me.CustomerID & "," & Me.TotalItemsPurchased)

 'Close StreamWriter Object

 objPrinter.Close()

 End Sub

 '***

 ''' <summary>

 ''' Shops by addign items to be purchased to running total items.

 ''' Triggers On Shopping Event & MARK DIRY since we are modifying

 ''' </summary>

 ''' <param name="intItems"></param>

 ''' <remarks></remarks>

 Public Sub Shop(ByVal intItems As Integer)

 m_TotalItemsPurchased = m_TotalItemsPurchased + intItems

 MyBase.MarkDirty() 'Mark Ojbect as dirty it has been modified

 'Raise or trigger event & send information with the event

 RaiseEvent OnShopping(m_TotalItemsPurchased)

 End Sub

#End Region

 89

Step 7: VIEW Public Data Access Method from BusinessClass Template

 NO MODIFICATION NEEDED to the Public Shared Data Access Methods we copied from the BusinessClass template and

FORCED upon us by BusinessBase.

#Region "Public Data Access Methods"

 'Public interface to Create objects from database

 '***

 ''' <summary>

 ''' [OPTIONAL] Method to create object if default values

 ''' from database are required

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Create()

 DataPortal_Create()

 End Sub

 '***

 ''' <summary>

 ''' Method to LOAD() OBJECT from DATABASE

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Public Overrides Sub Load(ByVal Key As Object)

 'Calls Local DatPortal_Fetch(Key) To do the work

 DataPortal_Fetch(Key)

 End Sub

 '***

 ''' <summary>

 ''' Method to SAVE() OBJECT to DATABASE. Decision to insert or update

 ''' is done via DIRTY and NEW Mechanism

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Save()

 'Only save if dirty, otherwise do nothing in this method

 If Me.IsDirty Then

 If Me.IsNew Then

 'We are new and being inserted

 'Calls Local DataPortal_Insert()

 DataPortal_Insert()

 Else

 'We are OLD so we are being updated

 'Calls Local DataPortal_Update()

 DataPortal_Update()

 End If

 End If

 End Sub

 '***

 ''' <summary>

 ''' Method to delete an object record's from database via ID or key

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Public Overrides Sub DeleteObject(ByVal Key As Object)

 'Calls Local DatPortal_DeleteObject() To do the work

 DataPortal_DeleteObject(Key)

 End Sub

#End Region

 90

Step 8: VIEW Protected Data Access Methods from Business Class Template

 No Modification is needed in the protected from the BusinessClass template

 Implementation of these methods will take place when we learn ADO.NET

#Region "Protected Data Access Methods"

 '***

 'Protected Data Access Methods declarations

 'Data Access Code for Creating a New Business Object

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to True a new object is created

 MyBase.MarkNew()

 End Sub

 'Data Access Code to fetch an object from Database

 Protected Overrides Sub DataPortal_Fetch(ByVal Key As Object)

 'ADO.NET Queries for Fetching (Select/From/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to False. NOT Dirty since found in database

 MyBase.MarkOld()

 End Sub

 'Data Access Code to Update an Objects data to database

 Protected Overrides Sub DataPortal_Update()

 'ADO.NET Queries for updating (Update/Set/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

 'Data Access Code to insert a new object to database

 Protected Overrides Sub DataPortal_Insert()

 'ADO.NET Queries for Inserting (Insert/Into) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

 'Data Access Code to immediatly delete an object from database.

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'Object no longer in database, therefore reset our status to be a new object

 MyBase.MarkNew()

 End Sub

#End Region

 91

Step 9: VIEW Helper Methods:

 Currently there are no non-business related methods in this class.

Step 5: The clsCustomerList Collection Class

 Now we turn our attention to the Collection Classes. We need to implement the rules and logic from the BusinessCollectionBase

and the BusinessCollectionClass template.

 In addition, we need to add File Access Code to load and save the Business Objects in the collection temporarily to a file.

 We will implement these File Access code in the Protected Data Access Methods DataPortal_Fetch & DataPortal_Save().

 The current structure of the clsCustomeListManager class currently looks as follows:

Step 1: COPY/PASTE import & Serializable statements and Data Access Methods from BusinessCollectionClass Template

AND PASTE TO clsCustomerList Class:

1. Open the BusinessCollectionClass Template and COPY all the Imports declarations and Serializable tag

2. The clsCustomerList class should look as follows:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class clsCustomerList

#Region "Helper Methods"

 '***

 'Methods used to assist other methods or maintenance

#End Region

 92

Step 2: COPY/PASTE the INHERIT from BusinessCollectionClass Template:

1. Open the BusinessCollectionClass Template and copy the INHERIT BUSINESSCOLLECTIONBASE statement

2. PASTE into the clsCustomer Class UNDER THE CLASS DECLARATION

3. The declaration looks as follows:

Step 3: COPY/PASTE Data Access Methods from BusinessCollectionClass Template:

1. Open the BusinessCollectionClass Template from TEMPLATE DLL PROJECT and COPY all Public & Protected Data

Access Methods REGIONS:

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class clsCustomerList

 Inherits BusinessCollectionBase

 93

2. At the end of this step, the structure of the clsCustomerList class should look as follows when completed

 94

Properties

 NO CHANGES REQUIRED.

Step 4: Property Declaration stays the same:

#Region "Public Properties Declarations"

 '***

 ''' <summary>

 ''' Name: Count() Property

 ''' Purpose: Return number of objects in collection

 ''' </summary>

 ''' <value></value>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Shadows ReadOnly Property Count() As Integer

 Get

 Return MyBase.Dictionary.Count

 End Get

 End Property

'***

 ''' <summary>

 ''' Name: Item(Key) Property

 ''' Purpose: GET or SET the object at the specified key in the Collection

 ''' </summary>

 ''' <param name="key"></param>

 ''' <value></value>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Property Item(ByVal key As Object) As clsCustomer

 Get

 'Step 1- Return POINTER of Object of associated key

 'Convert returned POINTER

 Return CType(MyBase.Dictionary.Item(key), clsCustomer)

 End Get

 Set(ByVal value As clsCustomer)

 'Step 1-Verify if key exists

 If MyBase.Dictionary.Contains(key) Then

 'Step 2-Set or overwrite object in collection

 MyBase.Dictionary.Item(key) = value

 Else

 'Step 3-Else throws an Argument Exeption to indicate not found.

 Throw New System.ArgumentException("ID Not found")

 End If

 End Set

 End Property

#End Region

 95

Wrapper Methods

 Only wrapper methods that create and modify Business Object need to trap for NotSupportedException.

Step 5: ADD Wrapper Method

 In this case the ADD WRAPPER METHOD needs NO MODIFICATION SINCE NO BUSINESS OBJECTS ARE

CREATED OR MANIPULATED

#Region "Public Wrapper Methods Declarations"

'**

 ''' <summary>

 ''' Name: Add(Key, Object)Method

 ''' Purpose: Adds new object to the Collection.

 ''' Includes support for duplicate key

 ''' </summary>

 ''' <param name="key"></param>

 ''' <param name="objCustomer"></param>

 ''' <remarks></remarks>

 Public Sub Add(ByVal key As Object, ByVal objCustomer As clsCustomer)

 'Step A- Begin Error trapping

 Try

 'Step 1-Calls Collection.Add(Key,Object) Method to Add object

 MyBase.Dictionary.Add(key, objCustomer)

 'Step B-Traps argumentNullException when key is Nothing or null

 Catch objX As ArgumentNullException

 'Step C-ReThrow ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

 'Step D-Traps for ArgumentExecption when KEY is duplicate.

 Catch objY As ArgumentException

 'Step E-ReThrow an ArgumentExecption to calling programs

 Throw New System.ArgumentException("Duplicate Key Error: " & objY.Message)

 'Step F-Traps for general exceptions.

 Catch objE As Exception

 'Step G-ReThrow an general exceptions

 Throw New System.Exception("Add Method Error: " & objE.Message)

 End Try

 End Sub

 96

Step 6: OVERLOADED ADD Wrapper Method

 The OVERLOADED ADD WRAPPER METHOD CREATES & MANIPULATES a BUSINESS OBJECT, therefore it

requires the NotSupportedException EXCEPTION to be added to the TRY/CATCH

'**

 ''' <summary>

 ''' Name: Overloaded Add(value1, value2..)Method

 ''' Purpose: Add object to collection by passing individual values

 ''' instead of an object. Object is created and populated with parameter values

 ''' Ideal for passing values directly from a user interface textbox control.

 ''' </summary>

 ''' <param name="strCustomerID"></param>

 ''' <param name="strName"></param>

 ''' <param name="strSSNum"></param>

 ''' <param name="dBDate"></param>

 ''' <param name="strAddress"></param>

 ''' <param name="strPhone"></param>

 ''' <remarks></remarks>

 Public Sub Add(ByVal strCustomerID As String, ByVal strName As String, _

 ByVal strSSNum As String, ByVal dBDate As Date, ByVal strAddress As String, _

 ByVal strPhone As String)

 'Step A- Begin Error trapping

 Try

 'Step 1-Creates NEW Temp Object

 Dim objItem As New clsCustomer

 'Step 2-Populates object it with data passed as argument

 With objItem

 .Name = strName

 .SocialSecurity = strSSNum

 .BirthDate = dBDate

 .Address = strAddress

 .Phone = strPhone

 .CustomerID = strCustomerID

 End With

 'Step 3-Use Collection.Add(Key, Object)to add object. Object ID used as Key

 MyBase.Dictionary.Add(objItem.CustomerID, objItem)

 'Step B-Traps for Business Rule violations since object is modified

 Catch objNSE As NotSupportedException

 Throw New System.NotSupportedException(objNSE.Message)

 'Step C-Traps argumentNullException when key is Nothing or null

 Catch objX As ArgumentNullException

 'Step D-ReThrow ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

 'Step E-Traps for ArgumentExecption when KEY is duplicate.

 Catch objY As ArgumentException

 'Step F-ReThrow an ArgumentExecption to calling programs

 Throw New System.ArgumentException("Duplicate Key Error: " & objY.Message)

 'Step G-Traps for general exceptions.

 Catch objE As Exception

 'Step H-ReThrow an general exceptions

 Throw New System.Exception("Add Method Error: " & objE.Message)

 End Try

 End Sub

 97

Step 7: REMOVE Wrapper Method

 The Remove Wrapper method requires NO modification since there are no Business Objects Created or Modified.

'**

 ''' <summary>

 ''' Name: Function Remove(Key)Sub Method

 ''' Purpose: Remove object from collection based on key.

 ''' </summary>

 ''' <param name="key"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Remove(ByVal key As Object) As Boolean

 'Step A- Begin Error trapping

 Try

 'Step 1-Verify object exists

 If MyBase.Dictionary.Contains(key) Then

 'Step 2-Calls CollectionObject.Remove(Key) Method

 MyBase.Dictionary.Remove(key)

 'Step 3-Return True since found and removed

 Return True

 Else

 'Step 4-Return False since not found

 Return False

 End If

 'Step B-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step C-Throw Collection ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Throw an general exceptions

 Throw New System.Exception("Remove Error: " & objE.Message)

 End Try

 End Function

 98

Regular Methods

 Again, only regular methods that create and modify Business Object need to trap for NotSupportedException.

Step 6: EDIT Methods

 The regular EditItem method performs on manipulation of Business Objects therefore work is needed here.

'**

 ''' <summary>

 ''' Name: Function Edit(Key, object)Method

 ''' Purpose: Replaces object located at specified key in the Collection

 ''' </summary>

 ''' <param name="key"></param>

 ''' <param name="objItem"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

 Public Function Edit(ByVal key As Object, ByVal objItem As clsCustomer) As

Boolean

 'Step A- Begin Error trapping

 Try

 'Step 1-Verify object exist

 If MyBase.Dictionary.Contains(key) Then

 'Step 2-Sets CollectionObject.Item(Key) = object

 MyBase.Dictionary.Item(key) = objItem

 'Step 3-Return confirmation

 Return True

 Else

 'Step 4-Return object not found

 Return False

 End If

 'Step B-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step C-Throw Collection ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Throw an general exceptions

 Throw New System.Exception("EditItem Error: " & objE.Message)

 End Try

 End Function

 99

Step 9: OVERLOADED EDIT Methods

 The Overloaded EditItems(x, y, z…) CREATES & MODIFIES a Business Object, trapping for NotSupportedException

required.

 IMPORTANT! NOTE THAT ID NUMBER & SOCIAL SECURITY ARE NOT BEING EDITED! THEY ARE WRITE-

ONCE PROPERTY AND CANNOT BE MODIFIED DURING AND UPDATE OR WHEN OBJECT IS OLD!

 '**

 ''' <summary>

 ''' Name: Function OVERLOADED Edit(value1, value2,etc.)

 ''' Purpose: Sets or MODIFIES object located at specified key in the Collection

 ''' </summary>

 Public Function Edit(ByVal strCustomerID As String, ByVal strName As String, _

 ByVal strSSNum As String, ByVal dBDate As Date, ByVal strAddress As String, _

 ByVal strPhone As String) As Boolean

 'Step A- Begin Error trapping

 Try

 'Step 1-Create temporary POINTER

 Dim objItem As clsCustomer

 'Step 2-Get a Reference of pointer to the actual object inside the collection.

 'Use CType() function to convert object retrieved from list to clsCustomer

 objItem = CType(MyBase.Dictionary.Item(strCustomerID), clsCustomer)

 'Step 3-Verify object exists

 If objItem Is Nothing Then

 'Step 4-Return False since not found

 Return False

 Else

 'Step 5-Sets individual properties of actual object inside the collection.

 'ANY PROPERTY THAT IS WRITE-ONCE CANNOT BE MODIFIED.

 'NOTE THAT THE ID NUMBER & SOCIAL SECURITY ARE NOT PART OF THE PROPERTY SET

 'CODE BECAUSE THEY ARE BOTH WRITE-ONCE PROPERTY AND CANNOT BE MODIFIED

 'WHEN AN OBJECT IS NOT NEW (OLD)/LOADED FROM DATABASE AND MARKED FOR UPDATE!

 With objItem

 .Name = strName

 .BirthDate = dBDate

 .Address = strAddress

 .Phone = strPhone

 End With

 'Step 6-Return True since found and modified

 Return True

 End If

 'Step B-Traps for Business Rule violations since object is modified

 Catch objNSE As NotSupportedException

 Throw New System.NotSupportedException(objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Throw Collection ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

 'Step E-Traps for general exceptions.

 Catch objE As Exception

 'Step F-Throw an general exceptions

 Throw New System.Exception("EditItem Error: " & objE.Message)

 End Try

 End Function

 100

Step 10: PRINT Methods

 No modification is required for the Print and PrintAll methods since no Business Objects are being modified

'**

 ''' <summary>

 ''' Name: Print(Key)Sub Method

 ''' Purpose: Prints object from collection to Printer File

 ''' </summary>

 ''' <param name="key"></param>

 ''' <returns></returns>

 ''' <remarks></remarks>

Public Function Print(ByVal key As Object) As Boolean

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary object POINTER

 Dim objItem As clsCustomer

 'Step 2-Get a Reference of pointer to the actual object inside the collection

 'Use CType() function to convert object retrieved from list to clsCustomer

 objItem = CType(MyBase.Dictionary.Item(key), clsCustomer)

 'Step 3-Verify object exists

 If objItem Is Nothing Then

 'Step 4-Return False since not found

 Return False

 Else

 'Step 5-Calls Temp Object.Print Method to print the object to file

 objItem.Print()

 'Step 6-Return True since found

 Return True

 End If

 'Step B-Traps for Business Rule violations since object is modified

 Catch objNSE As NotSupportedException

 Throw New System.NotSupportedException(objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Throw Collection ArgumentNullException

 Throw New System.ArgumentNullException("Invalid Key Error: " & objX.Message)

 'Step E-Traps for general exceptions.

 Catch objE As Exception

 'Step F-Throw an general exceptions

 Throw New System.Exception("PrintCustomer Error: " & objE.Message)

 End Try

End Function

 101

Step 11: PRINTALL Methods

 No modification is required for the Print and PrintAll methods since no Business Objects are being modified

'**

 ''' <summary>

 ''' Name: PrintAllCustomers()Sub Method

 ''' Purpose: Use For..Each loop to Prints all objects in collection to File

 ''' </summary>

 ''' <remarks></remarks>

 Public Sub PrintAll()

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary customer and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objItem As clsCustomer

 'Step 2-Use For..Each loop to iterate through Dictionary

 'Pointer points to each object during every iteration.

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objItem = CType(objDictionaryEntry.Value, clsCustomer)

 'Step 4-Calls Temp Object.Print Method to print the object to file

 objItem.Print()

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("PrintAll Method Error: " & objE.Message)

 End Try

 End Sub

#End Region

 102

Public Data Access Methods

 Now we need to look at the Public Data Access Methods we copied from the BusinessCollectionClass template.

 NO MODIFICATION IS REQUIRED, SINCE THESE METHODS SIMPLY CALL THE PROTECTED DATA ACCESS

METHOD TO DO THE WORK.

Step 12: Public Shared Data Access Method

 NO MODIFICATION REQUIRED.

#Region "Public Data Access Methods"

 '***

 ''' <summary>

 ''' [Optional] Calls Data Portal_Create to create a Collection Object. This

 ''' Method is not used in this class, but can be used in the

 ''' future to create objects that need data from database upon Creation

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Create()

 'Calls Local DatPortal_Create() To do the work

 DataPortal_Create()

 End Sub

 '**

 ''' <summary>

 ''' Calls Data_Portal_Fetch to load all objects from database

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Load()

 'Calls Local DatPortal_Fetch() To do the work

 DataPortal_Fetch()

 End Sub

 '**

 ''' <summary>

 ''' Calls DataPortal_Save() to save all objects in collection to Database

 ''' </summary>

 ''' <remarks></remarks>

 Public Overrides Sub Save()

 'Verify there are dirty objects in Collection

 'Only modify if dirty, otherwise do nothing in this method

 If IsDirty Then

 'Dirty Collection, go ahead and update

 DataPortal_Save()

 End If

 End Sub

 '**

 ''' <summary>

 ''' Calls DataPortal_DeleteObject to delete an object residing

 ''' In the collection from the database

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Public Overrides Sub DeleteObject(ByVal Key As Object)

 'Calls Local DatPortal_DeleteObject() To do the work

 DataPortal_DeleteObject(Key)

 End Sub

#End Region

 103

Protected Data Access Methods

 Now we need to modify the PROTECTED SHARED Data Access Methods we copied from the BusinessCollectionClass

template.

 THESE ARE THE METHODS THAT PERFORM THE ACTUAL DATA ACCESS, THERE ARE TWO TYPES OF

MODIFICATIONS REQUIRED FOR THE PROTECTED DATA ACCESS METHOD:

1. The modification is simply to replace the BusinessCollectionClass statements in the code with clsCustomerList

2. ADD the DATA ACCESS CODE USING ADO.NET. WE WILL NOT DO THIS STEP IN THIS EXAMPLE.

3. TEMPORARY!!!! CUT/PASTE THE FILE ACCESS CODE from the PREVIOUS LOAD() & SAVE() Method TO
MAKE THIS PROJECT WORK USING THE FILE ACCESS. THIS IS ONLY TEMPORARY SINCE THE NEXT STEP IS

TO PUT REAL ADO.NET DATA ACCESS CODE

Step 13: CREATE PROTECTED DataPortal_Create Data Access Method

 THIS IS AN OPTIONAL METHOD. Only required when we need CREATE A COLLECTION that requires DEFAULT

DATA FROM THE DATABASE.

 NO MODIFICATION REQUIRED AT THIS TIME.

#Region "Protected Data Access Methods"

 '***

 'Protected Data Access Methods declarations

 '**

 ''' <summary>

 ''' Data Access or other Code for Creating a New Business COLLECTION Object

 ''' Used when object requires data from db upon creation

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 End Sub

 104

Step 14: *****SPECIAL TEMPORARY FILE ACCESS CODE DataPortal_Fetch and File

 In the DataPortal_Fetch() method is where we will place our temporary FILE ACCES CODE to the Fetch data from the

Customer.txt file.

 Future implementation will use ADO.NET, but for now we will use a file.

 '**

 Protected Overrides Sub DataPortal_Fetch()

 '********TEMPORARY FILE ACCESS CODE FOR LODADING DATA******************

 'Step A- Begin Error trapping

 Try

 'Step 1-Declare Customer POINTER

 Dim objCustomer As clsCustomer

 'Step 2-Use File class Shared method to test if File exists

 If Not File.Exists("CustomerData.txt") Then

 'Create the file since it does not exist

 Dim objFile As New StreamWriter("CustomerData.txt")

 'Close the file for writing

 objFile.Close()

 End If

 'Step 3-Open file for reading

 Dim objDataFile As New StreamReader("CustomerData.txt")

 'Step 4-Loop through file

 Do While objDataFile.Peek <> -1

 'Step 5-Read a line from file & assign to variable

 Dim strLine As String = objDataFile.ReadLine

 'Step 6-Parse the line using VB Split() & assign to array

 Dim tempArray() As String = Split(strLine, ",")

 'Step 7-Create NEW Object

 objCustomer = New clsCustomer()

 'Step 7-Populates object it with data from file

 With objCustomer

 .CustomerID = tempArray(0)

 .Name = tempArray(1)

 .SocialSecurity = tempArray(2)

 .BirthDate = CDate(tempArray(3))

 .Address = tempArray(4)

 .Phone = tempArray(5)

 .TotalItemsPurchased = CInt(tempArray(6))

 End With

 'Step 7-Call add to add object to Collection

 Add(objCustomer.CustomerID, objCustomer)

 Loop

 'Step 8-Close File

 objDataFile.Close()

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Load Error: " & objE.Message)

 End Try

 '******** END OF TEMPORARY FILE ACCESS CODE

 'THE CORRECT CODE WILL BE IMPLEMENTED WHEN DURING THE ADO.NET LECTURES

 End Sub

 105

Step 15: *****SPECIAL TEMPORARY CHANGES to DataPortal_Save()

 Now we need to add File Access code to DataPortal_Save(). Nevertheless, the job of this method is to iterate through the

collection and call each CHILD Object’s Save() method to do the work. The code to do this is ALREADY IN THE

TEMPLATE.

 We need to modify this code AS FOLLOWS:

1. Replace the CHILD OBJECT BusinessClass declarations in the code with clsCustomer

2. LEAVE THE CODE PROVIDED BY THE TEMPLATE ALONE.

3. ADD THE FILE ACCESS CODE.

4. IN THE FUTURE - IMPORTANT!!! WHEN WE USE ADO.NET, YOU NEED TO UNCOMMENT THE CODE
AND REMOVE THE FILE ACCESS CODE.

 Comment existing Business Object code and add File Access code

 '**

 ''' <summary>

 ''' SAVES all objects from database by Iterating through Collection, and

 ''' calling Each ITEM object SAVE() method so each Item saves itself

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Save()

 'Iterates through Collection, Calling Each CHILD object.Save() method

 'CHILD Objects save themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objChild As clsCustomer

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objChild = CType(objDictionaryEntry.Value, clsCustomer)

 'Step 4-Call Child to Save itself

 objChild.Save()

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error! " & objE.Message)

 End Try

 106

 Continue DataPortal_Save().

 Add File Access Code

 '********TEMPORARY FILE ACCESS CODE FOR LODADING DATA******************

 'Step A- Begin Error trapping

 Try

 'Step 1-Open file for writing with options to Overwrites the existing file

 Dim objWrite As New StreamWriter("CustomerData.txt", False)

 'Step 2-Create Temporary DictionaryEntry and Customer POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objItem As clsCustomer

 'Step 3-Use For..Each loop to iterate through SortedList

 'Pointer points to each object during every iteration.

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 4-Convert DictionaryEntry pointer returned to Type Person

 objItem = CType(objDictionaryEntry.Value, clsCustomer)

 'Step 5-Write Object's content as a COMMA-DELIMITED line to the file

 objWrite.WriteLine(objItem.CustomerID & "," & _

 objItem.Name & "," & _

 objItem.SocialSecurity & "," & _

 objItem.BirthDate & "," & _

 objItem.Address & "," & _

 objItem.Phone & "," & _

 objItem.TotalItemsPurchased)

 Next

 'Step 6-Close file

 objWrite.Close()

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error: " & objE.Message)

 End Try

 '********END OF TEMPORARY FILE ACCESS CODE FOR LODADING DATA******************

 End Sub

 107

Step 16: CHANGES to DataPortal_DeleteObject(Key)

 Now we need to make some small changes to DataPortal_DeleteObject(). We need to the following:

1. Replace the CHILD OBJECT BusinessClass declarations in the code with clsCustomer

2. Select the Correct Property for the CHILD OBJECT which represents the KEY

 '**

 ''' <summary>

 ''' DELETES AN OBJECT BY ID from database by Iterating through Collection

 ''' and calling Each ITEM object DELETE(ID) method so each Item delete itself

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'Iterates through Collection, Calling Each CHILD object.Delete() method

 'CHILD Objects Delete themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objItem As clsCustomer

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objItem = CType(objDictionaryEntry.Value, clsCustomer)

 'Step 4-Find target object based on key

 'YOU WILL NEED TO SELECT THE CORRECT PROPERTY

 'FOR objItem.Property, ALSO YOU NEED TO CONVERT THE

 'KEY PARAMETER USING CSTR OR CINT ETC. DEPENDING

 'ON THE DATATYPE OF THE objItem.Property

 If objItem.CustomerID = CStr(Key) Then

 'Step 5-Object deletes itself

 objItem.DeleteObject(Key)

 ''Step 6-[OPTIONAL] Remove Object From Collection

 ''since no longer in DB

 'MyBase.Dictionary.Remove(Key)

 End If

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Delete Error! " & objE.Message)

 End Try

 End Sub

#End Region

 108

Step 17: Helper Methods:

 Now we need to modify or add any Helper Methods. Currently there are no non-business related methods in this class.

#Region "Helper Methods"

 '***

 'Methods used to assist other methods or maintenance

#End Region

End Class

 109

Presentation/User-Interface Layer

Module code:

 Now we need to make required changes to the Module. We need to the following:

1. ADD REFERENCE TO DLL where required

2. ADD any required Error handling when CREATING AND MODIFYING BUSINESS OBJECTS, by trapping for

NotSupportedException Exception

Step 3: Modify the Code in the Module

 In the Module, we are force to make some changes.

 REFERENCE DLL WHEN CREATING COLLECTION CLASS OBJECT

Step 1: Sub Main() Stays the same

 No changes needed in Sub Main()

Option Explicit On

Option Strict On

Module modMainModule

 'Declare Public Array of Person Objects

 Public objCustomerList As New BusinessObjectsDLL.clsCustomerList

 Dim objMainForm As frnMain = New frnMain

 Public Sub Main()

 'Perfom initialization

 InitializeList()

 'Display Customer Form

 objMainForm.ShowDialog()

 End Sub

 110

Step 2: IntializeList Method:

 In this implementation, I will NOT create default OBJECTS HERE OR ANY INITIALIZATION

'***

 ''' <summary>

 ''' Name: InitializeList() Method

 ''' Purpose: Nothing is required for this example

 ''' </summary>

 ''' <remarks></remarks>

 Public Sub InitializeList()

 'No objects are added to Customer Collection from intialize

 'Since we are storing our Customers in a File, we don't really

 'want to add Customer object from here! If we do

 'these objects will be stored in the file via Save() and then

 'we will have duplicate objects during the load(), and since we cannot have

 'two objects with the same key we will raise and Exception.

 End Sub

End Module

 111

Step 1: Modify the Presentation/User Interface Layer

Customer Management Form

 Now we need to make some small changes to the Customer Management Form. We need to the following:

1. ADD REFERENCE TO DLL where required

2. ADD any required Error handling when CREATING AND MODIFYING BUSINESS OBJECTS, by trapping for

NotSupportedException Exception

 The Customer Management Form looks as follows:

 In addition we will automatically LOAD all customer data from file during Form_Load event and SAVE all customer data to file

when the Exit button is clicked.

Step 1: Modity the Form Level Object to Use the DLL. Also we show the Form Load() event

 Modify OBJECT DECLARATION TO USE CLASS in DLL:

Option Explicit On

Option Strict On

Public Class frmCustomerManagement

 'Declare Form Level POINTER

 Private objCustomer As BusinessObjectsDLL.clsCustomer

 112

Step 2: The FORM_LOAD() event-handler

 WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

Step 3: The FORM_CLOSE() event-handler

 WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

'**

 ''' <summary>

 '''Name: Event-Handler Form_Close()

 '''Purpose:Destroys Form-level object pointer when form closes

 '''Saves Collection objects to file and clears the collection

Private Sub frmCustomerManagement_FormClosed(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Destroy Form-Level Objects

 objCustomer = Nothing

 'Step 2-Save objects from Collection to file

 objCustomerList.Save()

 'Step 3-Clear the Collection

 objCustomerList.Clear()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

'**

 ''' <summary>

 '''Name: Event-Handler Form_Load

 '''Purpose: Calls Collection.Load() to populate collection with objects from file

Private Sub frmCustomerForm_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Load objects from file to collection

 objCustomerList.Load()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 113

Step 4: The btnExit_Click() event-handler

 NO MODIFICATION REQUIRED SINCE NO BUSINESS OBJECTS ARE CREATED OR MODIFIED:

'**

 ''' <summary>

 '''Name: Event-Handler for for Exit button

 '''Purpose:Closes the Form

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnExit.Click

 'Step 1-Close the file

 Me.Close()

 End Sub

 114

Step 5: GetCustomer_Click() event-handler – We Catch a NotSupportedException for Our Business Object Validation Rules

 TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

'***

 ''' <summary>

 ''' Name: Event-Handler for btnGetCustomer button

 ''' Purpose: To retrieve an POINTER TO object from the collection base on ID

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnGetCustomer_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnGetCustomer.Click

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Call Calls Item() Property to return pointer to objecT in Collection

 objCustomer = objCustomerList.Item(txtIDNumber.Text.Trim)

 'Step 2-If result of search is Nothing, then display customer is not found

 If objCustomer Is Nothing Then

 MessageBox.Show("Customer Not Found")

 'Step 3-Clear all controls

 txtName.Text = ""

 txtIDNumber.Text = ""

 txtBirthDate.Text = ""

 txtAddress.Text = ""

 txtPhone.Text = ""

 Else

 'Step 4-Then Data is extracted from customer object & placed on textboxes

 With objCustomer

 txtIDNumber.Text = .CustomerID

 txtName.Text = .Name

 txtSSNum.Text = .SocialSecurity

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 End With

 End If

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Inform User

 MessageBox.Show(objX.Message)

 'Step E-Traps for general exceptions.

 Catch objE As Exception

 'Step F-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 115

Step 6: Add_Click() event-handler – Trap for NotSupportedException

 TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

'**

 ''' <summary>

 ''' Name: Event-Handler for btnAdd button

 ''' Purpose:To add new object to the collection

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnAdd.Click

 'Step A- Begin Error trapping

 Try

 'Step 1-Calls Collection Add(Value1,Value2,.) pass text control arguments

 objCustomerList.Add(txtIDNumber.Text.Trim, txtName.Text.Trim, _

 txtSSNum.Text.Trim, CDate(txtBirthDate.Text), txtAddress.Text.Trim, _

 txtPhone.Text.Trim)

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Inform User

 MessageBox.Show(objX.Message)

 'Step E-Traps for ArgumentExecption when KEY is duplicate.

 Catch objY As ArgumentException

 'Step F-Inform User

 MessageBox.Show(objY.Message)

 'Step G-Traps for general exceptions.

 Catch objE As Exception

 'Step H-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 116

Step 7: EditCustomer_Click() event-handler – Trap for NotSupportedException

 TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

'***

 ''' <summary>

 ''' Name: Event-Handler for btnEditCustomer button

 ''' Purpose: Initiate the Edit process to modify an object in the collection

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnEditCustomer_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnEditCustomer.Click

 'Step A- Begin Error trapping

 Try

 Dim bolResults As Boolean

 'Step 1-Call Module EditItem(index,x,y,z,...) method with textbox data

 bolResults = objCustomerList.Edit(txtIDNumber.Text.Trim, _

 txtName.Text.Trim, txtSSNum.Text.Trim, CDate(txtBirthDate.Text), _

 txtAddress.Text.Trim, txtPhone.Text.Trim)

 'Step 2-If not found display Message & clear all controls

 If bolResults <> True Then

 MessageBox.Show("Customer Not Found")

 End If

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step B-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step C-Inform User

 MessageBox.Show(objX.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 117

Step 8: Delete_Click() event-handler – Trap for NotSupportedException

 TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

'***

 ''' <summary>

 ''' Name: Event-Handler for btnDelete button

 ''' Purpose: To delete an object from the collection base on ID or Key

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnDelete.Click

 'Step A- Begin Error trapping

 Try

 Dim bolResults As Boolean

 'Step 1-Calls Remove() method of module. Key is passed as argument

 bolResults = objCustomerList.Remove(txtIDNumber.Text.Trim)

 'Step 2-If not found display Message & clear all controls

 If bolResults <> True Then

 MessageBox.Show("Customer Not Found")

 End If

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Inform User

 MessageBox.Show(objX.Message)

 'Step E-Traps for general exceptions.

 Catch objE As Exception

 'Step F-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 118

Step 9: Print_Click() event-handler – Trap for NotSupportedException

 Trap for NotSupportedException exception in case the call to the PrintCustomer method may return business object exceptions.

'***

 ''' <summary>

 ''' Name: Event-Handler for btnPrint button

 ''' Purpose: Prints Object in the list to printer file

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnPrint_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnPrint.Click

 'Step A- Begin Error trapping

 Try

 Dim bolResults As Boolean

 'Step 1-Calls Remove(Key) method of module

 bolResults = objCustomerList.Print(txtIDNumber.Text.Trim)

 'Step 2-If not found display Message & clear all controls

 If bolResults <> True Then

 MessageBox.Show("Customer Not Found")

 End If

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Inform User

 MessageBox.Show(objX.Message)

 'Step E-Traps for general exceptions.

 Catch objE As Exception

 'Step F-Inform User

 MessageBox.Show(objE.Message)

 End Try

End Sub

 119

Step 10: PrintAll_Click() event-handler– Trap for NotSupportedException

 Trap for NotSupportedException exception in case the call to the PrintaLLCustomer method may return business object

exceptions.

'**

 ''' <summary>

 ''' Name: Event-Handler for btnPrintAllCustomers button

 ''' Purpose: Prints all Objects in the list to file

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnPrintAll_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnPrintAll.Click

 'Step A- Begin Error trapping

 Try

 'Step 1-Calls PrintAllCustomers() method of module.

 objCustomerList.PrintAll()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 120

Step 11: Add code to the btnList_Click() event-handler

 Trap for NotSupportedException exception due to the BUSINESS OBJECT POINTER CREATED FOR THE FOR-EACH

LOOP.

 IN ADDITION, WE NEED TO MODIFY THE OBJECT CREATION CODE TO REFERENCE THE DLL.

'**

 ''' <summary>

 ''' Name: Event-Handler for btnList button

 ''' Purpose: List properties of object to the listBox as comma-delimited line

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

Private Sub btnList_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnList.Click

 'Step A- Begin Error trapping

 Try

 'Step 1-Clear the list

 lstCustomers.Items.Clear()

 'Step 2-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objItem As BusinessObjectsDLL.clsCustomer

 'Step 3-Use For..Each loop to iterate through Collection Class Object

 'GET properties of object pointed by objItem and write to listbox

 For Each objDictionaryEntry In objCustomerList

 'Step 4-Convert DictionaryEntry pointer returned to Type Person

 objItem = CType(objDictionaryEntry.Value, BusinessObjectsDLL.clsCustomer)

 'Step 5-Create the string to list

 Dim strLine As String = objItem.CustomerID & "," & _

 objItem.Name & "," & _

 objItem.SocialSecurity & "," & _

 objItem.BirthDate & "," & _

 objItem.Address & "," & _

 objItem.Phone

 'Step 6-Add string to ListBox

 lstCustomers.Items.Add(strLine)

 Next

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

End Class

 121

Retail Management Form

 Now we need to make some small changes to the Customer Management Form. We need to the following:

1. ADD REFERENCE TO DLL where required

2. ADD any required Error handling when CREATING AND MODIFYING BUSINESS OBJECTS, by trapping for

NotSupportedException Exception

 The Retail Management Form looks as follows:

 In addition we will automatically LOAD all customer data from file during Form_Load event and SAVE all customer data to file

when the Exit button is clicked.

Step 1: Modity the Form Level Object to Use the DLL. Also we show the Form Load() event

 Modify OBJECT DECLARATION TO USE CLASS in DLL:

 '**

 ' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION

 '**

 'Module-level Object POINTER Declaration

 Private WithEvents objCustomer As BusinessObjectsDLL.clsCustomer

 122

Step 2: The FORM_LOAD() event-handler

 WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

 '**

 ' EVENT-HANDLER DECLARATIONS SECTION

 '**

 '**

 ''' <summary>

 ''' Form_Load event. Create object and popoulate Form controls

 ''' With object's default values. Also Sets text box to Read-only

 ''' in MODULE

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub frmRetailManagement_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Create EMPTY Form-Level Object

 objCustomer = New BusinessObjectsDLL.clsCustomer

 'Step 2-Populate Form Controls with Object's data

 With objCustomer

 txtName.Text = .Name

 txtIDNumber.Text = .CustomerID

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 End With

 'Step 3-Disable txtTotalPurchases Text Box to make it Read-only

 txtTotalPurchases.Enabled = False

 'Step 1-Load objects from file to collection

 objCustomerList.Load()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 123

Step 3: The FORM_CLOSE() event-handler

 WE NEED TO TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES:

Step 4: The btnExit_Click() event-handler

 NO MODIFICATION REQUIRED SINCE NO BUSINESS OBJECTS ARE CREATED OR MODIFIED:

 '**

 ''' <summary>

 ''' Event-handler calls Form Close() method to close the Form.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnExit.Click

 'Step 1-Close yourself (Form)

 Me.Close()

 End Sub

'**

 ''' <summary>

 '''Name: Event-Handler Form_Close()

 '''Purpose:Destroys Form-level object pointer when form closes

 '''Saves Collection objects to file and clears the collection

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub frmRetailManagement_FormClosed(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Destroy Form-Level Objects

 objCustomer = Nothing

 'Step 2-Save objects from Collection to file

 objCustomerList.Save()

 'Step 3-Clear the Collection

 objCustomerList.Clear()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 124

Step 5: Get_Click() event-handler – We Catch a NotSupportedException for Our Business Object Validation Rules

 TRAP FOR NotSupportedException to support our BUSINESS VALIDATION RULES.

 '**

 ''' <summary>

 ''' Calls Search method of module to search database for object

 ''' whose ID is passed as argument. Returns a pointer to the object

 ''' found, else returns a Nothing.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnGet_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnGet.Click

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Call Calls Collection.Item() Property to return pointer to object

 objCustomer = objCustomerList.Item(txtIDNumber.Text.Trim)

 'Step 2-If result of search is Nothing, then display customer is not found

 If objCustomer Is Nothing Then

 MessageBox.Show("Customer Not Found")

 'Step 3-Clear all controls

 txtName.Text = ""

 txtIDNumber.Text = ""

 txtBirthDate.Text = ""

 txtAddress.Text = ""

 txtPhone.Text = ""

 Else

 'Step 4-Then Data is extracted from customer object & placed on textboxes

 With objCustomer

 txtName.Text = .Name

 txtIDNumber.Text = .CustomerID

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 'Set total purchases

 txtTotalPurchases.Text = CStr(.TotalItemsPurchased)

 End With

 End If

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 125

Step 6: Print_Click() event-handler – Trap for NotSupportedException

 Trap for NotSupportedException exception in case the call to the Print method may return business object exceptions.

Step 7: SHOP_Click() event-handler – Trap for NotSupportedException

 Trap for NotSupportedException exception in.

 '**

 ''' <summary>

 ''' Event-handler call PRINT() METHOD of Form-Level object.

 ''' </summary>

Private Sub btnPrint_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnPrint.Click

 'Step A- Begin Error trapping

 Try

 'Step 1-Tell object to print itself

 objCustomer.Print()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 'Step C-Inform User

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 '**

 ''' <summary>

 ''' Calls customer object Shop() method to purchase items and cleas text box.

 ''' Also displays total purchases of customer

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnShop_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnShop.Click

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Call the Shop Method of the Object to shop and trigger event

 objCustomer.Shop(CInt(txtItems.Text.Trim))

 'Step 2-Clear Items textbox

 txtItems.Text = ""

 'Step 3-Set total purchases

 txtTotalPurchases.Text = CStr(objCustomer.TotalItemsPurchased)

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 126

Step 8: ONSHOPPING_Click() event-handler

 NO MODIFICATIONS REQUIRED!

 '**

 ''' <summary>

 ''' Event-handler of Customer Objects. Triggered when Shop() method is called.

 ''' Displays a message every time customer shops.

 ''' </summary>

 ''' <param name="intTotalItems"></param>

 ''' <remarks></remarks>

Private Sub objCustomer_OnShopping(ByVal intTotalItems As Integer) Handles

objCustomer.OnShopping

 MessageBox.Show("The Total items purchased by the Customer is " &

intTotalItems)

End Sub

End Class

 127

Step 4: Build & Execute Project

Step 1: Compile and Build the project.

Step 2: Execute the application.

Step 3: Test the Business Rules

 Attempting to ADD Customer and violating the exact length Business Rule of the SS Number:

 128

 Attempting to ADD Customer and violating the NON-EMPTY Business Rule for the Name Property:

 Attempting to ADD Customer and violating the NON-EMPTY Business Rule for the ADDRESS Property:

 ATTENTION! SOME BUSINESS RULES CANNOT BE TESTED AT THIS TIME. BUSINESS RULES INVOLVE THE

“DIRTY & NEW MECHANISM, WHICH ALSO WORK HAND-IN-HAND WITH THE DATABASE ACCESS

METHOD! SINCE WE ARE NOT USING THE CUSTOMER.LOAD() METHOD AT THIS TIME, WHICH DETERMINES

IF AN OBJECT IS NEW OR OLD, WE CANNOT TEST BUSINESS RULES SUCH AS “WRITE-ONCE” ETC., WHICH

IS A RULE BASED ON THE OBJECT BEING NEW OR OLD.

 IN THE NEXT LECTURE, WE WILL IMPLEMENT THE DATA ACCESS CODE AND WILL BE ABLE TO TEST ALL

OUR BUSINESS RULES.

 129

 130

Database Layer

Temporarily implemented using Files

 The File which are simulating our database are located in the Bin folder of the Client Application as shown in the illustration

below:

 The content of the file is formatted as comma delimited strings as shown below:

Real Data Access will be implemented in Next Lectures

 We will implement this Layer using MS Access. Although Access is not a True DBMS, nevertheless, it is commonly used for

many application projects.

 We will finally implement using a true DBMS via SQL 2005 SERVER EXPRESS.

