

CS708 Lecture Notes

Visual Basic.NET Object-Oriented Programming

Implementing Business Objects

Data Access Code

Part (III of III)

(Lecture Notes 3C)

Professor: A. Rodriguez

 2

CHAPTER 7 BUSINESS OBJECTS DATA ACCESS CODE .. 3

7.1 Business Objects Review & Status.. 3
7.1.1 Business Objects Requirements Status ... 3

7.2 Business Objects – Data Access Requirements.. 4
7.2.1 Objectives ... 4

Data Access Objectives:... 4
6.2.2 Implementation Overview... 4

Data Access Methods Details: ... 4
7.2.3 Preparing Our Classes for DATA ACCESS (Summary) .. 5

Class MustInherit clsBusinessBase .. 5
Class MustInherit clsBusinessCollectionBase ... 5
Class clsBusinessClass... 6
Class clsBusinessCollectionClass .. 6

7.3 Sample Program #1 – Customer Retail Management Program Data Access, Using Microsoft Access Database 7
7.3.1 Overview ... 7
7.3.2 Object Model Requirements ... 7

Class MustInherit BusinessBase .. 7
Class MustInherit clsPerson ... 7
Class clsCustomer (Business Class)... 7

7.3.3 Business Rules, Logic & Validation Requirements .. 8
7.3.4 Database Requirements for ACCESS DATABASE ... 8

Database & Client Architecture ... 8
Database Schema, Queries & Database Location .. 8
Class clsCustomerList .. 8
Inherits clsBusinessCollectionBase ... 8
Class MustInherit BusinessCollectionBase.. 8
Database Connection String Location .. 9

7.3.4 Form Requirements ... 9
7.3.5 Problem Statement .. 12

Data Access Requirements... 33
Explanation of FETCH() Emplementation .. 35

file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009946
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009947
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009948
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009949
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009953
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009954
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009955
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009960
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009961
file:///C:\Documents%20and%20Settings\rodriq_a\My%20Documents\NYCTC\CS708\Documents\Business%20Objects\Lecture%203C%20-%20CS708%20Business%20Objects%20(Part%20III%20of%20III)TEMPnew.docx%23_Toc167009962

 3

Chapter 7 Business Objects Data Access Code

7.1 Business Objects Review & Status

7.1.1 Business Objects Requirements Status

 Ok, let‟s review and see where we are as far as our Business Object implementation is concerned:

Business Object Requirements Status

Business Object Represents Real-World Business Entities
– Business Objects contain the necessary attributes &

methods to behave like their real-world counterparts.

 Done

User Interface Support – The Business Objects should

contain the following logic to support the User Interface

(UI):

 DONE

 Business objects RAISE NotSupported Exception

when business rules are violated.

 FORMS/UI can trap & handle

Scalable & Reusable – Business Objects should evolve &

gain new data, properties & methods to support more

functionality

 DONE.

 Created Class Library or DLL COMPONENT

to encapsulate our classes,

Business Rules, Validation or Enforcement & Status
Tracking – Business Objects should contain the following
logic:

- Business Objects should VALIDATE that the data being

set by the user is valid, correct data type, length etc

- Business Objects should keep track of its status

- The Business Objects should keep track of the business

rules that are broken.

- Business Objects should protect itself from unauthorized

or unwanted, harmful access

 PARTIALLY DONE.

 We implemented the NEW & DIRTY object

mechanism.

 Implemented Field or Property-level validation

mechanism for NO-BLANKS, MAX-LENGTH,

EXACT-LENGTH, etc.

BO Manage their own data & database access – Business

Objects should contain logic to handle data access.

Operations such as searching, inserting, updating, deleting

the database should be done by the business objects

 OPEN REQUIREMENT

Distributed Business Objects – Business Objects should be

design base with the following network distribution scheme

in mind:

- Business Objects should contain the technology to allow

them to be distributed across processes, network and
applications.

 OPEN REQUIREMENT (WILL NOT BE DONE

IN THIS COURSE)

 Implement unanchored objects and anchored

objects.

 Implemented Serialization

 Implemented Remoting

 WE HAVE TWO REQUIREMENTS LEFT. WE WILL ONLY IMPLEMENT ONE IN THIS COURSE, THAT IS THE DATA

ACCESS CODE

 4

7.2 Business Objects – Data Access Requirements

7.2.1 Objectives

 The next requirement we must address is Data Access.

 Since Business Objects need to handle their own Data Access, we will now cover the methods required to do so.

Data Access Objectives:
 Since it is our BUSINESS OBJECTS THAT PERFORM THEIR OWN DATA ACCESS

 Our objectives is to implement the Data Access Code for the 3-tiered and 4-tiered application architectures:

 IN THIS LECTURE, WE WILL IMPLEMENT THE FIRST DIAGRAM OR DATA ACCESS FOR THE 3-TIERED

APPLICATION ARCHITECTURE

6.2.2 Implementation Overview

Data Access Methods Details:
 In previous lecture, we divided the data access methods into two sections, PUBLIC DATA ACCESS METHODS and

PROTECTED OR PRIVATE DATA ACCESS METHODS:

 Public Data Access Methods – These methods are Public and assessable to the User-Interface or clients. These methods

DO NOT CONTAIN ADO.NET CODE. They call the PROTECTED DATA ACCESS METHODS TO DO THE WORK.

 Protected, Private Data Access methods – These methods can only be accessed internally within the class and its inherited

children. These methods will actually perform the data access and contain the ADO.NET CODE with SQL queries or Stored

Procedure calls. These methods are called by the Public Data Access Methods.

 Diagram of our Data Access implementation goals:

Business Logic Objects

- Data Access Code

Business Logic Objects

Data Access BO (DataPortal)

- Data Access Code

UI

User Interface
Data Access

Business Object

Public Data Access Methods

- Create

- Load()

- Save()

- DeleteObject()

Protected Data Access Methods

ADO.NET CODE HERE!

- DataPortal_Create()

- DataPortal_Fetch()

- DataPortal _Update()

- DataPortal _Insert()

- DataPortal _DeleteObject()
DBMS

 5

7.2.3 Preparing Our Classes for DATA ACCESS (Summary)

 Our BUSINESS CLASSES need to have the proper mechanism to support the Data Access Code.

 We have already done this as follows:

 Created Public & Protected Data Access Methods

 We created a BASE CLASS (BusinessBase) that will force the Data Access code to our Business Classes

 We created our BUSINESS CLASSES, with DIRTY & NEW logic mechanism to work hand-in-hand with the Data Access

Methods

 The DIRTY & NEW mechanism in our classes work with the Data Access Methods as follows:

- CREATE:
o MARKS OBJECT AS NEW, WHEN CREATING A NEW OBJECT WITH DEFAULT DATA FROM DB

- SELECT:
o MARKS OBJECT AS OLD, AFTER RETRIEVING RECORDS FROM DB

- INSERT:
o ONLY PERFORMED WHEN OBJECT IS DIRTY & NEW.

o MARKS OBJECT AS OLD AFTER INSERT

- UPDATE:
o ONLY PERFORMED WHEN OBJECT IS DIRTY & OLD.

o MARKS OBJECT AS OLD AFTER UPDATE

- DELETE:
o MARKS OBJECT AS NEW, AFTER DELETE SINCE OBJECT DOES NOT EXIST IN DB.

 Our Business Classes such as clsCustomer, clsEmployee, clsProduct etc., inherit from BUSINESSBASE class the proper support

for DATA ACCESS methods

 Same is true for our Business Collection Classes, such as clsCustomerList, clsEmployeeList, clsProductList etc., which inherit

from BUSINESSCOLLECTIONBASE class the support for DATA ACCESS methods.

 The BASE classes have the following format:

Imports

<Serializable()> _

Class MustInherit clsBusinessBase

Private Business Rules data:
mflgIsDirty, mflgIsNew

Public Business Rules Properties:
IsNew, IsDirty

Public MustOverride Data Access Methods:
Create()

Load(Key)

DeleteObject(Key)

Save()

Protected MustOverride Data Access Methods:
DataPortal_Create()

DataPortal_Fetch(Key)

DataPortal_Update()

DataPortal_Insert()
DataPortal_DeleteObject(Key)

Public Helper Data Access Methods:
DBConnectionString(DBName)

Imports

Class MustInherit clsBusinessCollectionBase
Inherits DictionaryBase

Public Business Rule Properties:
IsDirty

Public MustOverride Data Access Methods:
Create()

Load()

DeleteObject(Key)

Save()

Protected MustOverride Methods:
DataPortal_Create()

DataPortal_Fetch()
DataPortal_Save()

DataPortal_DeleteObject(Key)

Public Helper Data Access Methods:
DBConnectionString(DBName)

 6

 The FORMAT of the Business Classes we create should be based on the following BUSINESS TEMPLATES:

Imports

<Serializable()> _

Class clsBusinessClass
Inherits clsBusinessBase

Private data:

Public Event Declarations:

Public Properties:

Public Constructors:

Public Methods:

Public Shared Data Access Methods:
Create()

Load(Key)

DeleteObject(Key)
Save()

Protected Override Data Access Methods:
DataPortal_Create()

DataPortal_Fetch(Key)

DataPortal_Update()

DataPortal_Insert()

DataPortal_DeleteObject(Key)

Public Helper Methods:

Imports

<Serializable()> _

Class clsBusinessCollectionClass
Inherits clsBusinessCollectionBase

Public Properties:

Public Wrapper Methods:

Public Regular Methods:

Public Shared Data Access Methods:
Create()

Load()

DeleteObject(Key)

Save()

Protected Override Data Access Methods:
DataPortal_Create()

DataPortal_Fetch()

DataPortal_Save()

DataPortal_DeleteObject(Key)

Public Helper Methods:

 7

7.3 Sample Program #1 – Customer Retail Management Program Data Access, Using

Microsoft Access Database

7.3.1 Overview

 No we upgrade the Customer Management Application from previous lecture (Lecture 3B, Sample Program #5), by

implementing the DATA ACCESS METHODS using ADO.NET.

 In the previous lecture 3B, we upgraded this application by applying the Business Rules & Logic, Validation, and data access as

follows:

1. Inherited our Business Class clsCustomer from BusinessBase
2. Inherited our Business Collection Class clsCustomerList from BusinessCollectionBase

3. Modify the Business Class clsCustomer by following the format provided by the template class BusinessClass

4. Modify the Business Collection Class clsCustomerList by following the format provided by the template class

BusinessCollectionClass

 Using ADO.NET, we will now implement the DATA ACCESS CODE for the four PROTECTED Data Access Methods:

 Protected Overrides DataPortal_Create()

 Protected Overrides DataPortal_Fetch()

 Protected Overrides DataPortal_Update()

 Protected Overrides DataPortal_Insert()

 Protected Overrides DataPortal_DeleteObject()

7.3.2 Object Model Requirements

 We will maintain all the Business Objects requirements from Lecture 3B Sample Program #5, these were as follows.

1. Inherited Business classes from BusinessBase & modified the Business Classes by applying the format of the

BusinessClassTemplate. Object model looks as follows:

Class MustInherit

clsPerson

Private data members:

strName, strSSNum, dBirthDate

sAddress, sPhone,

Properties

Public Methods

Necessary Business Rules

Class clsCustomer

(Business Class)

Private data members:

 strCustomerID,

m_TotalItemsPurchased

Properties

Public Methods

Public Data Access Methods

Protected Data Access

Methods

Class MustInherit

BusinessBase

Business Rules

MustOverride Data Access

Methods

 8

2. Inherited the Business Collection Classes from BussinessCollectionBase, and modified the Collection Classes based on the

template provided by BussinessCollectionClass templates. Object model looks as follows:

7.3.3 Business Rules, Logic & Validation Requirements

 We will maintain all the BUSINESS LOGIC AND VALIDATION RULES from Lecture 3B Sample Program #5, with the

EXCEPTION OF THE FILE ACCESS CODE, this we will remove

 The requirements are as follows:

1. Maintain the Dirty Objects to ALL OUR PROPERTY SET:

 Customer Name: Call MARK-DIRTY()

 Social Security & Customer ID Number – Call MARK-DIRTY()

 Address, & Phone – Call MARK-DIRTY().

2. Maintain the same enforced Field-Level Validation to our Properties:

 Customer Name – NO-BLANK & MAX-LENGTH.

 Social Security & Customer ID Number – WRITE-ONCE, EXACT LENGTH & NO-BLANK/EMPTY

 Address, & Phone – NO-BLANK/EMPTY.

3. REMOVE THE FILE ACCESS CODE from the COLLECTION CLASSES (clsCustomerList), which are located in the

methods: DataPortal_Fetch() & DataPortal_Save(), we will be implementing these using ADO.NET.

4. Place Database Connection String as a private data member to each Business Object. More on this below.

7.3.4 Database Requirements for ACCESS DATABASE

 Before we can begin to add the ADO.NET code and test our application, we need to create our database tables with their

relationships.

 We will begin this application by first creating the DATA ACCESS LAYER or Database portion first

Database & Client Architecture
 In this case we will use Microsoft Access Database; therefore our application will continue to be a Single-Tier Client/Server

Application. Name the database smallbusinessapp.

Database Schema, Queries & Database Location
 The database needs to reside in the BIN\DEBUG FOLDER of the Client program, which is the same location as the CLIENT

EXECUTABLE.

 This is done so the ADO.NET Connection String will not require the FULL PATH; it will automatically search for the database

file in the location of CLIENT EXECUTABLE.

 Create the database, tables and their relationships, as well as populate the table with data and testing our queries in MS ACCESS.

 Once all our queries are tested we will use them in our ADO.NET code in the application.

Class clsCustomerList
Inherits clsBusinessCollectionBase

Public Properties & Wrapper Methods

Public Regular Methods

Public Data Access Methods

Protected Data Access Methods

Business Methods

Class MustInherit BusinessCollectionBase

Business Rules

MustOverride Data Access Methods

 9

Database Connection String Location
 In this example, we will NOT USE THE BEST PRACTICE MECHANISM PROVIDED BY THE BUSINESS BASE CLASSES

(BusinessBase & BussinessCollectionBase). The base classes provide us with a Helper Data Access Method named

DBConnectionString(Key) which allows us to retrieve the connection string from file. In this example we will CREATE THE

CONNECTION STRING IN-LINE WITH OUR CODE INSIDE THE OBJECTS, as shown in diagram below:

7.3.4 Form Requirements

 The FORM requirements are similar to the previous version of this application. Below is a listing of the three main Forms, Main

Form, Customer Management & Retail Management Form:

UI

User Interface

MS ACCESS .mdb FILE

Business Object

Public Data Access Methods

- Create

- Load()

- Save()

- DeleteObject()

Protected Data Access Methods

ADO.NET CODE HERE!

- DataPortal_Create()

- DataPortal_Fetch()

- DataPortal _Update()

- DataPortal _Insert()

- DataPortal _DeleteObject()

Database Connections

 10

New Requirement for Customer Management Form

 The current Customer Management Form requires only ONE MODIFICATION.

 The only issue we have now that we are implementing actual database code, is the following

 THE DELETE BUTTON simply REMOVES AN ITEM OR CUSTOMER FROM THE COLLECTION ONLY! NOT

FROM DATABASE

 WE NEED TO TELL THE ITEM OR CUSTOMER TO DELETE ITSELF FROM DATABASE BEFORE REMOVING IT

FROM THE COLLECTION

 So, we will need to modify the exiting code in the Delete_Click Event-handler to perform the following steps:

 'Step 1-Calls DATA ACCESS METHOD TO DELETE OBJECT FROM DB

 objCustomerList.DeleteObject(txtIDNumber.Text.Trim)

 'Step 2-Calls Remove() method to REMOVE OBJECT FROM COLLECTION

 bolResults = objCustomerList.Remove(txtIDNumber.Text.Trim)

 Note that we are first DELETING the object from the DATABASE, then DELETING THE OBJECT FROM COLLECTION

 View of Customer Retail Screen. No changes are made in the graphical layout, but inside the DELETE CLICK EVENT, WE

MODIFY THE CODE AS SHOWN ABOVE:

 11

New Requirement for Retail Management Form

 The current Retail Management Form has the following characteristics:

 Populates text controls with default object data in the Form _Load() event

 LOADS the CustomerList Collection with ALL Business Objects from FILE

 Search the CustomerList Collection for customer that is going to shop

 Allows for Shopping via “By Now” button

 SAVES the Collection to FILE when closing via the FORM_CLOSE event

 Comments on current Retail Management Form:

 Not efficient:

- Bad performance for Retail or Point-Of-Sales application that handles sales transactions with customers because it loads

all customer objects (records) to memory in order to work on ONE CUSTOMER ONLY

- Loading memory with objects you are not using!

 Retail User-Interface should really deal with the ONE CUSTOMER OBJECT.

 THE CUSTOMER OBJECT SHOULD LOAD & SAVE ITSELF TO DATABASE.

 FOR NEXT CUSTOMER, A NEW OBJECT IS CRATED AND PROCESS REPEATED.

 NEW FORM has the following characteristics:

 Retail Form ONLY OPERATES ON ONE CUSTOMER OBJECT AT A TIME.

 The GET or LOAD PROCESS WILL LOAD THE ONE CUSTOMER WITH DATA FROM DATABASE
 THE ONE CUSTOMER OBJECT SAVE ITSELF TO DATABASE.

 FOR NEXT CUSTOMER, A NEW OBJECT IS CRATED AND PROCESS REPEATED.

 FORM HAS USER-INTERFACE LOGIC TO SET the Customer Information UI CONTROLS TEXT BOXES to READ-

ONLY. ONLY the CUSTOMER ID TEXT BOX will allow input from the user. The other controls are READ-ONLY.

 The Purchase ITEM Text Box will only activate when the CUSTOMER RECORD IS LOADED, all other times it is

DISABLED.

 View of new Retail Screen:

 12

7.3.5 Problem Statement

Single-Tier Client/Server

 The requirements for Sample program #1. are as follows:

Example #1 – Small Business Customer Retail Management Application Using MS ACCESS

Problem statement:
 Upgrade the Customer Management application from Lecture 3B Sample Program #5 by adding DATA ACCESS CODE using

ADO.NET

 The requirements are as follows:

Application Architecture – Programming Methodology
 Continue to implement the 3-tiered layer Application Architecture:

Client/Server Architecture – One-Tier Client/Server
 Maintain the 1-tiered client/server architecture:

Business Object Layer – Business Class & DLL Requirements
 Keep the DLL COMPONENT and Object Model and Business Rules

 Create the DATABASE CONNECTION STRING IN-LINE within THE CLASSES OR OBJECTS

 DELETE the FILE ACCESS CODE from the DataPortal_Fetch() & DataPortal_Save() methods in clsCustomerList

Presentation/UI Layer – Client Process requirements:
 Maintain the same Form/User Interface requirements

 No changes required

Data Service Layer – Database Requirements
 Create an access database to support the application

 Name the database smallbusinessapp.mdb

 Place the smallbusinessapp.mdb file in the User-Interface Client Application BIN\DEBUG FOLDER

Presentation Layer/UI
- Forms & Module
- User Interface Code Only

Business Object Layer
- Business Logic
- Processing Code
- Validation
- Data Access Code

Database Services Layer
(Flat-File Access Database)

Client Workstation

Presentation Layer/UI

Business Logic Objects

Database Layer (Flat File)

 13

HOW IT'S DONE:

Data Service Layer (Microsoft Access Database 2003)

Part I – Create The MS Access Database:

Step 1: Open Microsoft Access 2003 & Create the Database

 Open MS Access 2003 and create a Database named SmallBusinessApp.

 This was done as follows:

Step 1: Create Blank Database in MS Access 2003:

a. Open MS Access 2003

b. Select File|New… to invoke the New File Window on the right-hand pane of MS Access & Select Blank Database..:

c. In the File New Database screen, name the database

d. Browse to the desire path & click Create:

Step c – Name Database

Step d – Browse to Database Path

Step b – Select Blank Database

 14

e. The SmallBusinessApp.mdb Database is ready:

f. File Structure:

 15

Step 2: Create the Database Table(s) and Enter Data

 In the Object Windows, Create the table(s) and enter test data. This was done as follows:

Step 1: Create the Customer Table:

a. Click the “Table” Objet and double-click the “Create table in Design View” icon:

b. In the Table Design View, enter the following columns & properties:

Column Name Data Type Properties Other Settings/Comments
Customer_ID Text Text size =Default = 50  Set as PRIMARY KEY

 Steps:

1. Enter the name & data type for the

column

2. Right-Click on row and in the drop-

down menu select Primary Key

Customer_Name Text Text size =Default = 50

Customer_SSNum Text Text size =Default = 50

Customer_BDate Date/Time Short Date

Customer_Address Text Text size =Default = 50

Customer_Phone Text Text size =Default = 50

Customer_TotalItems Integer

 16

c. The Table Design window should now looks as follows:

d. Save and Name the table: “Customer”. Table now appears in the main object window:

 17

Step 3: Add Test Data to the table:

a. Double-Click on the Customer icon in the object window to invoke the table‟s “Data View”:

b. Insert the cursor in the first row and begin typing in the data from your previous application CustomerData.txt file.

c. After all data entry has been completed, the “Data View” should look as follows:

d. Save & close the table

 18

Step 3: Create Queries & SQL Statements to test the database

 Now we create queries to test our database.

 NOTE! In my examples and screen shot, I will use the SQL VIEW of MS Access to simply write the SQL Statements instead of

using the GRAPHICAL DESIGNER.

 We will create the queries and SQL Statements required for the application. Once these queries are tested, we can COPY/PASTE

and modify them into our DO.NET code:

Step 1: Create & Test Query to Select a Customer by ID:

 Create and test the Query to return the record for a Customer by ID.

a. The query should have the following syntax and format:

 Syntax:

SELECT *

FROM Table

WHERE Column1 = <value>;

 Example:

 String values in Access must be enclosed in single-quotes and end in semicolon “;”

 Example:

SELECT * FROM Customer WHERE Customer_ID = ‘111’;

b. In the “Object Window” select the “Queries” Button:

c. Double-Click on the “Create Query in Design View” icon to invoke the Design View Window

d. The “Show Table” screen provides a listing of the available tables for you to select and add to the designer:

 19

e. Select the “Customer” table from the “Show Table” screen, and click the “Add” button.

f. Repeat this process until all tables you need for the query are entered. Click “Close” button to close the “Show Table”

screen.

g. The designer should now looks as follows:

h. Now switch to SQL VIEW. Select the “Designer” Windows, then in the menu bar, select “View|SQL View“, this will

invoke the query screen :

i. Now enter the query into the query window:

j. Execute, in the menu bar, select “Query|Run“ or simply click on the run icon :

 20

k. Save and name the query “Select Customer by ID”:

l. In the “Object Window” should now have an icon for the query :

Step 2: Create & Test the UPDATE SQL Statement:

 Create and test the Query update or modify a Customer‟s record on the database.

 Repeat the same steps used for the previous query “Select Customer by ID”

a. The query should have the following syntax and format:

 Syntax:
 UPDATE Table

 SET Column2=<value2>,

 Column3=<value3>,

 Column4=<value4>,

 Column5=<value5>

 Column6=<value6>,

 Column7=<value7>

 WHERE Column1=<value1>;

 THE UPDATE QUERY REQUIRED FOR OUR APPLICATION DOES NOT MODIFY THE SOCIAL SECURITY

NUMBER COLUMN BECAUSE SSNUM PROPERTY IN THE CUSTOMER HAS A WRITE-ONCE BUSINESS

RULE. THIS RULE STATES THAT THE SOCIAL SECURITY CAN ONLY BE WRITTEN ONCE, UPON THE

CREATION OF THE NEW CUSTOMER. THEREFORE THE UPDATE STATEMENT CANNOT HAVE AN

ENTRY TO MODIFY THE CUSTOMER_SSNUM COLUMN.
 Example:

UPDATE Customer

SET Customer_Name = 'Joe Smith',

 Customer_BDate = #5/23/1971#,

 Customer_Address = '111 Smith Street',

 Customer_Phone = '718 260-5000',

 Customer_TotalItems = 250

WHERE Customer_ID='111';

 21

b. In the “Object Window” select the “Queries” Button:

c. Double-Click on the “Create Query in Design View” icon to invoke the Design View Window

d. The “Show Table” screen provides a listing of the available tables for you to select and add to the designer:

e. Select the “Customer” table from the “Show Table” screen, and click the “Add” button.

f. Repeat this process until all tables you need for the query are entered. Click “Close” button to close the “Show Table”

screen.

g. The designer should now looks as follows:

h. Now switch to SQL VIEW. Select the “Designer” Windows, then in the menu bar, select “View|SQL View“

i. Now enter the query into the query window:

j. Execute query. You are prompted to modify a record, click yes:

k. Save and name the query “Update Customer “. Exit the “SQL Design” view

l. Since Action Queries DO NOT RETURN RECORDS, open the Customer Table in “Data View” to verify the UPDATE

was successfully done:

 22

m. In the “Object Window” should now have an icon for the UPDATE query :

Step 3: Create & Test the INSERT SQL Statement:

 Create and test the Query to INSERT a NEW Customer record to the database.

 Repeat the same steps used for the previous query “UPDATE Customer” query

a. The query should have the following syntax and format:

 Syntax:

INSERT INTO Table(Column1, Column2,Column3, Column4, Column5,Column6, Column7)

VALUES(<value1>,<value2>,<value3<value4>,<value5>,<value6>,<value7>);

 Example:

INSERT INTO Customer(Customer_ID,Customer_Name,

 Customer_SSNum,

 Customer_BDate,

 Customer_Address,

 Customer_Phone,

 Customer_TotalItems)

VALUES('777', 'Amanda Rodriguez','777-77-7777',#12/07/87#,'777 Madison Ave',

'212-777-7777',50);

b. Follow all the steps from previous query
c. Now switch to SQL VIEW. Select the “Designer” Windows, then in the menu bar, select “View|SQL View“

d. In “View|SQL View“ enter the query into the query window:

e. Execute query. You are prompted to modify a record, click yes:

 23

f. Save and name the query “INSERT Customer “. Exit the “SQL Design” view

g. Since Action Queries DO NOT RETURN RECORDS, open the Customer Table in “Data View” to verify the INSERT was

successfully done. Note that a new record has been inserted „777‟:

h. In the “Object Window” should now have an icon for the DELETE query :

 24

Step 4: Create & Test the DELETE SQL Statement:

 Create and test the Query to DELETE a Customer record from the database.

 Repeat the same steps used for the previous query query

a. The query should have the following syntax and format:

 Syntax:

DELETE

FROM Table

WHERE Column1 = <value1>;

 Example:

DELETE

FROM Customer

WHERE Customer_ID = '777';

b. Follow all the steps from previous query

c. Now switch to SQL VIEW. Select the “Designer” Windows, then in the menu bar, select “View|SQL View“

d. In “View|SQL View“ enter the query into the query window:

e. Execute query. You are prompted to modify a record, click yes:

f. Save and name the query “DELETE Customer “. Exit the “SQL Design” view

g. Since Action Queries DO NOT RETURN RECORDS, open the Customer Table in “Data View” to verify the INSERT was

successfully done. Note the record whose ID is „777‟ has been deleted:

h. In the “Object Window” should now have an icon for the INSERT query :

 25

Step 5: Create & Test the SELECT ALL SQL Statement:

 Create and test the Query to SELECT ALL Customer records from the database.

 Repeat the same steps used for the previous query.

a. The query should have the following syntax and format:

 Syntax:

SELECT *

FROM Table

 Example:

SELECT *

FROM Customer

b. Follow all the steps from previous query

c. Now switch to SQL VIEW. Select the “Designer” Windows, then in the menu bar, select “View|SQL View“

d. In “View|SQL View“ enter the query into the query window:

e. Execute query:

f. Save and name the query “SELECT ALL Customers “. Exit the “SQL Design” view

g. In the “Object Window” should now have an icon for the SELECT ALL query :

 AT THIS POINT WE HAVE CREATED OUR DATA SERVICE LAYER USING MS ACCESS

 AND SUCCESSFULLY TESTED THE POSSIBLE QUERIES THAT WE MAY NEED.

 AT THIS POINT WE ARE READY TO PROCEED TO CREATE OUR APPLICATION

 26

Business Object Layer

ADD ADO.NET Code to Data Access Methods in Business Objects

 We are now ready to add the ADO.NET CODE TO OUR DATA ACCESS METHODS OF THE BUSINESS OBJECTS.

 At this point, the Customer Management Application has been upgraded to contain all the Business Logic, Validation & Data

Access methods based on the rules imposed by the BusinessBase & BusinessCollectionBase classes.

 Now we need to do the following:

 Remove the File Access Code from the Collection Class. Going forward we will use the Access Database we just

created

 Add the ADO.NET code inside the Data Access Methods

 Test the application

Step 1: Open the Customer Management Application with Business Rules & Logic Applied

 Open the last version of the Customer Management Retail Application.

 This version contains all the Business Rules, Validation, Data Access methods, and File Access Code to continue to save and load

from a file.

 When you open the application, the application will contain the DLL & Windows Client Projects as follows:

 27

Step 2: Add Data Access Code to clsCustomer class

 Now we focus on the Data Access code to the clsCustomer class. We are referring to the DataPortal_XXX methods that are

intended to carry out the Data Access.

 In the previous example or version, we left these methods empty for the customer class

 Now we will add ADO.NET code to carry out the Data Access.

 Once again, the diagram below illustrates the current structure of the clsCustomer class. If we designed our Business Class

correctly, we should only need to work with the section labeled “Protected Data Access Code”.

 Nevertheless, we will add a NEW Private Region and we will declare the Connection String global within the class as a private

member therefore the new structure will look as follow with one additional region

 28

Step 1: Add Connection String in the General Class declaration and Private data Section:

 A requirement to the application is that the database Connection String need be embedded to each Business Object.

 Also the decision was made to OPEN & CLOSE the database connection during each DATA ACCESS PROCESS. This

means that each DATA ACCESS METHOD WILL OPEN THE CONNECTION, PERFORM THE DATA ACCESS AND

THEN CLOSE THE CONNECTION.

 We will create a Class-Level Connection String variable declaration so ALL DATA ACCESS METHOD CAN USE THIS

CONNECTION STRING. MORE IMPORTANT WE CAN CHANGE IT ONLY IN ONE LOCATION INSIDE THE

BUSINESS OBJECT

 IMPORTANT! NOTE THAT IF THE PATH OF THE DATABASE IS NOT PROVIDED IN Connection String,
THE IT MUST RESIDE IN THE DEBUG\BIN FOLDER:

Step 2: ADD ADO.NET code to DataPortal_Create(): (OPTIONAL NOT IMPLEMENTED IN THIS PROGRAM)

 If our Business Objects required DEFAULT DATA from the database we can place that code here.

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class clsCustomer

 Inherits clsPerson

#Region "Connection String Declaration"

 'Data Access Connection string. If FULL PATHh is provide, database must

 'Be located in the Bin\Debug folder of application

 Private Const strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;" & _

 "Data Source=SmallBusinessApp.mdb"

#End Region

#Region "Protected Data Access Methods"

 '***

 ''' <summary>

 ''' Data Access Code for Creating a New Business Object with

 ''' DEFAULT DATA from database

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Create()

 'Create object and assign default values from database etc.

 'ADD DATA ACCESS CODE HERE USING ADO.NET

 'At the end, set New flag to True a new object is created

 MyBase.MarkNew()

 End Sub

 29

Step 3: Open the DataPortal_Fetch(Key) method and add ADO.NET Data Access Code:

 We will use the ADO.NET Connection, Command, Parameters and DataReader objects to carry out the Data Access.

 '***

 Protected Overrides Sub DataPortal_Fetch(ByVal Key As Object)

 'Step 1-Create Connection, assign Connection to string

 Dim objConn As New OleDbConnection(strConn)

 'Step A-Start Error Trapping

 Try

 'Step 2-Open connection

 objConn.Open()

 'Step 3-Create SQL string

 Dim strSQL As String = "SELECT * FROM Customer WHERE Customer_ID = ?"

 'Step 4&5-Create Command object, pass query/connection & Add paramters

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = Key

 'Step 6-Create DATAREADER object & Execute Query

 Dim objDR As OleDbDataReader = objCmd.ExecuteReader

 'Step 7-Test to make sure there is data in the DataReader Object

 If objDR.HasRows Then

 'Step 8a-Call Read() Method to point and read the first record

 objDR.Read()

 'Step 8b-Extract data from a row & Populate Yourself.

 Me.CustomerID = CStr(objDR.Item(0))

 Me.Name = CStr(objDR.Item(1))

 Me.SocialSecurity = CStr(objDR.Item(2))

 Me.BirthDate = CDate(objDR.Item(3))

 Me.Address = CStr(objDR.Item(4))

 Me.Phone = CStr(objDR.Item(5))

 Me.TotalItemsPurchased = CInt(objDR.Item(6))

 Else

 'Step 9-No data returned, Record not found!

 Throw New System.ApplicationException("Load Error! Record Not Found")

 End If

 'Step 10-Terminate ADO Objects

 objDR.Close()

 objDR = Nothing

 objCmd.Dispose()

 objCmd = Nothing

 'Step B-Trap for BO, App & General Exceptions

 Catch objBOEx As NotSupportedException

 Throw New System.NotSupportedException(objBOEx.Message)

 Catch objA As ApplicationException

 Throw New System.ApplicationException(objA.Message)

 Catch objEx As Exception

 Throw New System.Exception("Load Error: " & objEx.Message)

 Finally

 'Step 11-Terminate connection

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 End Try

 'At the end, set New flag to False. NOT Dirty since found in database

 MyBase.MarkOld()

 End Sub

 30

Step 4: Open DataPortal_Update Method and add data access code:

 We will use the ADO.NET Connection, Command, Parameters and DataReader objects to carry out the Data Access.

 '***

 Protected Overrides Sub DataPortal_Update()

 'Step 1-Create Connection, assign Connection to string

 Dim objConn As New OleDbConnection(strConn)

 'Step A-Start Error Trapping

 Try

 'Step 2-Open connection

 objConn.Open()

 'Step 3-Create Query, Command Object & initialize

 Dim strSQL As String

 strSQL = "UPDATE(Customer)" _

 & "SET Customer_Name = ?," _

 & "Customer_BDate = ?," _

 & "Customer_Address = ?," _

 & "Customer_Phone = ?," _

 & "Customer_TotalItems = ?" _

 & "WHERE Customer_ID= ?"

 'Step 4-Create Command object, pass string and connection object as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 5-Add Parameter to Collection & Set Value
 objCmd.Parameters.Add("@Customer_Name", OleDbType.VarChar).Value = Me.Name

 objCmd.Parameters.Add("@Customer_BDate", OleDbType.Date).Value = Me.BirthDate

 objCmd.Parameters.Add("@Customer_Address", OleDbType.VarChar).Value = Me.Address

 objCmd.Parameters.Add("@Customer_Phone", OleDbType.VarChar).Value = Me.Phone

 objCmd.Parameters.Add("@Customer_TotalItems", OleDbType.Integer).Value = Me.TotalItemsPurchased

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = Me.CustomerID

 'Step 6-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Integer = objCmd.ExecuteNonQuery()

 If intRecordsAffected <> 1 Then

 Throw New System.ApplicationException("UPDATE Query Failed")

 End If

 'Step 7-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step B-Trap for BO, App & General Exceptions

 Catch objBOEx As NotSupportedException

 Throw New System.NotSupportedException(objBOEx.Message)

 Catch objA As ApplicationException

 Throw New System.ApplicationException(objA.Message)

 Catch objEx As Exception

 Throw New System.Exception("Update Error: " & objEx.Message)

 Finally

 'Step 8-Terminate connection

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 End Try

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

 31

Step 5: Open Database DataPortal_Insert() and Add Data Access code to Insert a Record into the Database

 '***

 'Data Access Code to insert a new object to database

 Protected Overrides Sub DataPortal_Insert()

 'Step 1-Create Connection, assign Connection to string

 Dim objConn As New OleDbConnection(strConn)

 'Step A-Start Error Trapping

 Try

 'Step 2-Open connection

 objConn.Open()

 'Step 3-Create Command, Query, assing query, and assign connection

 Dim strSQL As String

 strSQL = "INSERT INTO Customer (Customer_ID,Customer_Name," _

 & "Customer_SSNum,Customer_BDate,Customer_Address," _

 & "Customer_Phone,Customer_TotalItems)" _

 & "VALUES (?, ?, ?, ?, ?, ?, ?)"

 'Step 4-Create Command object, pass connection info as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 5-Add Paramter to Pareameters Collection
 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = Me.CustomerID

 objCmd.Parameters.Add("@Name", OleDbType.VarChar).Value = Me.Name

 objCmd.Parameters.Add("@SSNum", OleDbType.VarChar).Value = Me.SocialSecurity

 objCmd.Parameters.Add("@BirthDate", OleDbType.Date).Value = Me.BirthDate

 objCmd.Parameters.Add("@Address", OleDbType.VarChar).Value = Me.Address

 objCmd.Parameters.Add("@PhoneNumber", OleDbType.VarChar).Value = Me.Phone

 objCmd.Parameters.Add("@Customer_TotalItems", OleDbType.Integer).Value = Me.TotalItemsPurchased

 'Step 6-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Integer = objCmd.ExecuteNonQuery()

 If intRecordsAffected <> 1 Then

 Throw New System.ApplicationException("INSERT Query Failed")

 End If

 'Step 7-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step B-Trap for BO, App & General Exceptions

 Catch objBO As NotSupportedException

 Throw New System.NotSupportedException(objBO.Message)

 Catch objA As ApplicationException

 Throw New System.ApplicationException(objA.Message)

 Catch objEx As Exception

 Throw New System.Exception("Insert Error: " & objEx.Message)

 Finally

 'Step 8-Terminate connection

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 End Try

 'Set New flag to False since exist in database/and is Not dirty any longer

 MyBase.MarkOld()

 End Sub

 32

Step 6: Open Database DataPortal_DeleteObject() and Add Data Access code to delete a Record from the Database

 '***

 'Data Access Code to immediatly delete an object from database.

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'ADO.NET Queries for deleting (Delete/From/Where) or Stored Procedures

 'Step 1-Create Connection, assign Connection to string

 Dim objConn As New OleDbConnection(strConn)

 'Step A-Start Error Trapping

 Try

 'Step 2-Open connection

 objConn.Open()

 'Step 3-Create Command, Query, assing query, and assign connection

 Dim strSQL As String = "DELETE FROM Customer WHERE Customer_ID = ?"

 'Step 4-Create Command object, pass string and connection object as arguments

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 5-Add Parameter to Collection & Set Value

 objCmd.Parameters.Add("@Customer_ID", OleDbType.VarChar).Value = Key

 'Step 6-Execute Non-Row Query Test result and throw exception if failed

 Dim intRecordsAffected As Integer = objCmd.ExecuteNonQuery()

 If intRecordsAffected <> 1 Then

 Throw New System.ApplicationException("DELETE Query Failed")

 End If

 'Step 7-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 'Step A-Trap for BO, App & General Exceptions

 Catch objBO As NotSupportedException

 Throw New System.NotSupportedException(objBO.Message)

 Catch objA As ApplicationException

 Throw New System.ApplicationException(objA.Message)

 Catch objEx As Exception

 Throw New System.Exception("Delete Error: " & objEx.Message)

 Finally

 'Step 8-Terminate connection

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 End Try

 'Object no longer in database, therefore reset our status to be a new object

 MyBase.MarkNew()

 End Sub

#End Region

 33

Step 3: Add Data Access Code to the clsCustomerList Collection Class

Data Access Requirements
 Now we focus on the Data Access code to the clsCustomerList Collection Business Class. We are referring to the

DataPortal_Fetch(), DataPortal_Save() and DataPortal_DeleteObject() methods that are intended to carry out the Data

Access.

 In the previous example or version, we used FILE ACCESS CODE to simulate the database, now we will REMOVE THE FILE

ACCESS CODE AND ADD ADO.NET code to carry out the true Data Access.

 Once again, the diagram below illustrates the current structure of the clsCustomeList class. If we designed our Business Class

correctly, we should only need to work with the section labeled “Protected Data Access Code”.

 Nevertheless, we will add a Private Region and we will declare the Connection String global within the class as a private member

therefore the new structure will look as follow with one additional region:

 34

Step 1: General Class declaration:

 We continue to derive the class from BusinessCollectionBase and adding the Data Access Library declarations.

 In addition we add a region and declaration for the connection string.

 IMPORTANT! NOTE THAT IF THE PATH OF THE DATABASE IS NOT PROVIDED IN Connection String,

THE IT MUST RESIDE IN THE DEBUG\BIN FOLDER

Step 2: ADD ADO.NET code to DataPortal_Create(): (OPTIONAL NOT IMPLEMENTED IN THIS PROGRAM)

 If our Business Objects required DEFAULT DATA from the database we can place that code here.

Option Explicit On

Option Strict On

Imports System.IO 'File/IO

Imports System.Data 'Data Access (DataSet)

Imports System.Data.OleDb 'OLEDB Provider

Imports System.Configuration 'Configuration File for DB

Connection

'Keep commented. will be configure later

'Imports System.Runtime.Serialization.Formatters.Binary 'Serialization Library

'Imports System.Runtime.Remoting 'Remoting

'Imports System.Runtime.Remoting.Channels 'Remoting

'Imports System.Runtime.Remoting.Channels.Http 'Remoting

<Serializable()> _

Public Class clsCustomerList

 Inherits BusinessCollectionBase

#Region "Connection String Declaration"

 'Data Access Connection string. If no path is provide, database must

 'Be located in the Bin\Debug folder of application

 Private Const strConn As String = "Provider=Microsoft.Jet.OleDB.4.0;" & _

 "Data Source=SmallBusinessApp.mdb"

#End Region

#Region "Protected Data Access Methods"

 '**

 ''' <summary>

 ''' Data Access or other Code for Creating a New Business COLLECTION Object

 ''' Used when object requires data from db upon creation

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Create()

 'Create COLLECTION object and assign default values from database etc.

 End Sub

 35

Explanation of FETCH() Emplementation

 We CANNOT IMPLEMENT the FETCH method in the Collection Class using the same ALGORITHM used in the FILE

ACCESS CODE

 In the FILE ACCESS CODE, the algorithm was as follows.

1. Load or READ a LINE from FILE

2. CREATE A NEW OBJECT

3. PARSED LINE (using SPLIT() method)

4. POPULATE THE OBJECT WITH THE DATA FROM THE PARSED LINE SETTING ITS PROPERTIES!!!:

5. ADD THE OBJECT TO THE COLLECTION
6. REPEAT

 We CANNOT TAKE THIS APPROACH WITH OUR DATA ACCESS CODE USING THE BUSINESS OBJECTS DUE TO

THE FOLLOWING REASONS:

 CREATING a NEW OBJECT SETS the NEW FLAG to TRUE

 IN THE FILE ACCESS CODE, NOTE THAT WE ARE SETTING THE OBJECT VIA THE PROPERTIES which has the

following affect to the BUSINESS OBJECT:

- IN THE BUSINESS OBJECT THIS WILL MAKE THE OBJECT DIRTY

- TRIGGER ANY VALIDATION CODE. This is NO PROBLEM, since we simply TRY/CATCH A

NotSupportedException

 So what we have is a NEW & DIRTY OBJECT:

- LOADING A BUSINESS OBJECT MEANS IT EXISTS IN THE DATABASE AND IS OLD (NOT NEW).

- SO AN OBJECT AFTER BEING LOADED CANNOT BE DIRTY & NEW, IT SHOULD BE DIRTY & OLD!!!!!

- THE ONLY METHOD OF MARKING AN OBJECT AS OLD (NEW = FALSE) IS VIA THE DATA ACCESS
METHODS, of the BUSINESS OBJECT ITSELF.

 In summary, WE CANNOT SIMPLY GET DATA FROM THE DATABASE AND POPULATE THE OBJECT VIA THE

PROPERTIES AS WE DID WITH THE FILE ACCESS CODE!

 WE NEED TO LET THE OBJECT LOAD ITSELF BY CALLING:

objCustomer.Load(KEY)

 BUT THE PROBLEM IS THAT WE NEED TO KNOW THE KEY OF EACH OBJECT BEFORE HAND! SO WE NEED

TO QUERY THE DATABASE FOR ALL THE KEYS FIRST, THEN CALL LOAD() FOR EACH OF THE KEYS.

 FETCH ALGORITHM:

1. USING ADO.NET, Query the TABLE for ALL KEYS

2. LOOP

3. CREATE a NEW CUSTOMER OBJECT

4. EXTRACT THE NEXT KEY FROM DATAREADER

5. Call OBJECT.Load(KEY)

6. ADD THE OBJECT TO THE COLLECTION

7. REPEAT

 36

Step 3: Add Data Access code to the Method DataPortal_Fetch()

 We now delete the FILE ACCESS Code and replace with ADO.NET Data Access code.

 '**

 Protected Overrides Sub DataPortal_Fetch()

 'Step 1-Create Connection, assign Connection to string

 Dim objConn As New OleDbConnection(strConn)

 'Step A-Start Error Trapping

 Try

 'Step 2-Open connection

 objConn.Open()

 'Step 3-Create SQL string to get all Primary Keys of Customers

 Dim strSQL As String = "SELECT Customer_ID FROM Customer"

 'Step 4-Create Command object

 Dim objCmd As New OleDbCommand(strSQL, objConn)

 'Step 5-Create DATAREADER object & Execute Query

 Dim objDR As OleDbDataReader = objCmd.ExecuteReader

 'Step 6-Test to make sure there is data in the DataReader Object

 If objDR.HasRows Then

 'Step 7-Iterate through DataReader one record at a time.

 Do While objDR.Read

 'Step 8-Create Customer Object

 Dim objItem As New clsCustomer

 'Step 9-Get Key from DataReader record

 Dim strKey As String = objDR.GetString(0)

 'Step 10-ITEM will load itself based on key.

 objItem.Load(strKey)

 'Step 11-Add object to collection

 Me.Add(objItem.CustomerID, objItem)

 'Step 12-Terminate new object

 objItem = Nothing

 Loop

 Else

 'Step 13-No data returned, Record not found.

 Throw New System.ApplicationException("Load Error! Record Not Found")

 End If

 'Step 14-Terminate Command Object

 objCmd.Dispose()

 objCmd = Nothing

 objDR.Close()

 objDR = Nothing

 'Step 15-Trap for Business Object, OleDB, Record not found & general Exceptions

 Catch objBOEx As NotSupportedException

 Throw New System.NotSupportedException(objBOEx.Message)

 Catch objA As ApplicationException

 Throw New System.ApplicationException(objA.Message)

 Catch objEx As Exception

 Throw New System.Exception("Load Error: " & objEx.Message)

 Finally

 'Step 16-Terminate connection

 objConn.Close()

 objConn.Dispose()

 objConn = Nothing

 End Try

 End Sub

 37

Step 4: Data Access code for Method DataPortal_Save()

 We now DELETE the FILE ACCESS Code.

 The MAIN logic here is that there is NO DATA ACCESS CODE REQUIRED!

 We simply iterate through the Collection and ask each Object to Save themselves. Thus the ROOT or PARENT collection is

simply telling its children to handle their own DATA ACCESS.

 '**

 ''' <summary>

 ''' SAVES all objects from database by Iterating through Collection, and

 ''' calling Each ITEM object SAVE() method so each Item saves itself

 ''' </summary>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_Save()

 'Iterates through Collection, Calling Each CHILD object.Save() method

 'CHILD Objects save themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objChild As clsCustomer

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objChild = CType(objDictionaryEntry.Value, clsCustomer)

 'Step 4-Call Child to Save itself

 objChild.Save()

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Save Error! " & objE.Message)

 End Try

 End Sub

 38

Step 5: Add Data Access Code to DataPortal_DeleteObject

 This method implements the immediate DELETE of an Object from the Collection and Database.

 The MAIN logic here is that there is NO DATA ACCESS CODE REQUIRED!

 We simply iterate through the Collection, searching for the Object whose key is passed into this method.

 Once the object is found, the method calls it‟ DeleteObject(KEY) method to carry out the task. The object deletes itself.

 '**

 ''' <summary>

 ''' DELETES AN OBJECT BY ID from database by Iterating through Collection

 ''' and calling Each ITEM object DELETE(ID) method so each Item delete itself

 ''' </summary>

 ''' <param name="Key"></param>

 ''' <remarks></remarks>

 Protected Overrides Sub DataPortal_DeleteObject(ByVal Key As Object)

 'Iterates through Collection, Calling Each CHILD object.Delete() method

 'CHILD Objects Delete themselves

 'Step A- Begin Error trapping

 Try

 'Step 1-Step 1-Create Temporary Person and Dictionary object POINTERS

 Dim objDictionaryEntry As DictionaryEntry

 Dim objItem As clsCustomer

 'Step 2-Use For..Each loop to iterate through Collection

 For Each objDictionaryEntry In MyBase.Dictionary

 'Step 3-Convert DictionaryEntry pointer returned to Type Person

 objItem = CType(objDictionaryEntry.Value, clsCustomer)

 'Step 4-Find target object based on key

 'YOU WILL NEED TO SELECT THE CORRECT PROPERTY

 'FOR objItem.Property, ALSO YOU NEED TO CONVERT THE

 'KEY PARAMETER USING CSTR OR CINT ETC. DEPENDING

 'ON THE DATATYPE OF THE objItem.Property

 If objItem.CustomerID = CStr(Key) Then

 'Step 5-Object deletes itself

 objItem.DeleteObject(Key)

 ''Step 6-[OPTIONAL] Remove Object From Collection

 ''since no longer in DB

 'MyBase.Dictionary.Remove(Key)

 End If

 Next

 'Step B-Traps for general exceptions.

 Catch objE As Exception

 'Step C-Throw an general exceptions

 Throw New System.Exception("Delete Error! " & objE.Message)

 End Try

 End Sub

#End Region

 39

Presentation/User-Interface Layer

Step 3: Modify the Code in the Module

 NO CHANGES REQUIRED IN THE MODULE.

Step 4: Modify the User-Interface Customer Management Form!

Customer Management Form

 The Customer Management Form looks as follows:

 The requirements stated that ONLY ONE MODIFICATION IS REQUIRED, and that is MODIFY THE DELETE PROCESSESS

TO DELETE THE OBJECT IN THE COLLECTION FROM DATABASE AND THEN THE COLLECTION:

 40

Step 1: Delete_Click() event-handler – ADD CALL TO DELETE OBJECT FROM DATABASE & THEN FROM

COLLECTION

 DELETE BOTH OBJECT FROM DATABASE & THEN COLLECTION.

'**

 ''' <summary>

 ''' Name: Event-Handler for btnDelete button

 ''' Purpose: To delete an object from the collection base on ID or Key

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnDelete.Click

 'Step A- Begin Error trapping

 Try

 Dim bolResults As Boolean

 'Step 1-Calls DATA ACCESS METHOD TO DELETE OBJECT FROM DB

 objCustomerList.DeleteObject(txtIDNumber.Text.Trim)

 'Step 2-Calls Remove() method to REMOVE OBJECT FROM COLLECTION

 bolResults = objCustomerList.Remove(txtIDNumber.Text.Trim)

 'Step 3-Clear all controls

 txtIDNumber.Text = ""

 txtSSNum.Text = ""

 txtName.Text = ""

 txtBirthDate.Text = ""

 txtAddress.Text = ""

 txtPhone.Text = ""

 'Step 4-If not found display Message & clear all controls

 If bolResults <> True Then

 MessageBox.Show("Customer Not Found")

 End If

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for ArgumentNullException when key is Nothing or null.

 Catch objX As ArgumentNullException

 'Step D-Inform User

 MessageBox.Show(objX.Message)

 'Step E-Traps for general exceptions.

 Catch objE As Exception

 'Step F-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 41

Step 5: Modify the User-Interface Retail Management Form!

Retail Management Form

 As per the requirements we need to do the following:

1. DO NOT LOAD THE COLLECTION ANYMORE. ONLY LOAD THE ONE CUSTOMER WHICH IS SHOPPING

2. DO NOT SAVE THE COLLECTION ANYMORE. ONLY SAVE THE ONE CUSTOMER SHOPPING

3. WITH THE EXCEPTION OF THE CUSTOMER ID TEXTBOX, SET ALL OTHER TEXTBOXES TO READ-ONLY

4. ENABLE THE Items TEXTBOX ONLY WHEN THE CUSTOMER IS LOADED, OTHER TIMES DISABLE IT

 The Retail Management Form looks as follows:

 Let‟s begin the modifications.

Step 1: NO CHANGES IN THE Form Level Object declaration

 NO CHANGES REQUIRED HERE:

 '**

 ' FORM-LEVEL VARIABLES & OBJECT DECLARATIONS SECTION

 '**

 'Module-level Object POINTER Declaration

 Private WithEvents objCustomer As BusinessObjectsDLL.clsCustomer

 42

Step 2: MODIFY THE FORM_LOAD() event-handler

 The modifications required here are :

1. WITH THE EXCEPTION OF CUSTOMER ID, DISABLE ALL OTHER TEXT BOXES

 '**

 ''' <summary>

 ''' Form_Load event. Create object and popoulate Form controls

 ''' With object's default values. Also Sets text box to Read-only

 ''' in MODULE

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub frmRetailManagement_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Set Text boxes to Read-only

 txtName.ReadOnly = True

 txtBirthDate.ReadOnly = True

 txtAddress.ReadOnly = True

 txtPhone.ReadOnly = True

 'Step 2-Clear Items textbox

 txtTotalPurchases.ReadOnly = True

 txtItems.Enabled = False

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 43

Step 3: Get_Click() event-handler – Load Customer Record from DB & Populate Form

 Now we NO LONGER LOAD THE COLLECTION, ONLY THE ONE CUSTOMER WHICH IS SHOPPING.

 NOTE! A NEW CUSTOMER OBJECT NEEDS TO BE CREATED EVERY TIME WE LOAD A CUSTOMER

 '**

 ''' <summary>

 ''' Calls CUSTOMER.LOAD method RETRIEVE CUSTOMER RECORD FROM database

 ''' whose ID is passed as argument. EXTRACT THE OBJECT'S DATA AND

 ''' found, else returns a Nothing.

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnGet_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnGet.Click

 'Step A-Begins Exeception handling.

 Try

 'Step 1-RE-CREATE THE Form-Level Object

 'OBJECT MUST BE NEW EVERY TIME BEFORE WE CAN LOAD()

 objCustomer = New BusinessObjectsDLL.clsCustomer

 'Step 2-Call OBJECT.LOAD() To load object with data from DB

 objCustomer.Load(txtIDNumber.Text.Trim)

 'Step 3-populate text boxes with customer data

 With objCustomer

 txtName.Text = .Name

 txtIDNumber.Text = .CustomerID

 txtBirthDate.Text = CStr(.BirthDate)

 txtAddress.Text = .Address

 txtPhone.Text = .Phone

 'Set total purchases

 txtTotalPurchases.Text = CStr(.TotalItemsPurchased)

 End With

 'Step 4-Enable the Items text box

 txtItems.Enabled = True

 'Step B-Traps for ApplicationException generated

 'by Customer.Load() method when record not found

 Catch objAppEx As ApplicationException

 MessageBox.Show("Customer Not Found! " & objAppEx.Message)

 'Step 5-Clear all controls

 txtName.Text = ""

 txtIDNumber.Text = ""

 txtBirthDate.Text = ""

 txtAddress.Text = ""

 txtPhone.Text = ""

 'Step C-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step D-Traps for general exceptions.

 Catch objE As Exception

 'Step E-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 44

Step 4: SHOP_Click() event-handler – SHOP & SAVE

 Tells Customer to SHOP the number of ITEMS.

 TELLS CUSTOMER OBJECT TO SAVE ITSELF TO DATABASE

 '**

 ''' <summary>

 ''' Calls customer object Shop() method to purchase items and cleas text box.

 ''' Also displays total purchases of customer and SAVES CUSTOMER TO DATABASE

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub btnShop_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnShop.Click

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Call the Shop Method of the Object to shop and trigger event

 objCustomer.Shop(CInt(txtItems.Text.Trim))

 'Step 2-Clear Items textbox

 txtItems.Text = ""

 'Step 3-Set total purchases

 txtTotalPurchases.Text = CStr(objCustomer.TotalItemsPurchased)

 'Step 4-SAVE OBJECT

 objCustomer.Save()

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 45

Step 5: The FORM_CLOSE() event-handler

 IN THIS METHOD SIMPLY DESTROYS THE FORM-LEVEL CUSTOMER OBJECT.

 NO OTHER CODE REQUIRED, WE NO LONGER NEED TO SAVE THE COLLECTION BECAUSE WE DON‟T NEED A

COLLECTION TO GET OUR OBJECTS. THE OBJECTS LOAD AND SAVE THEMSELVES

Step 6: EXIT, PRINT & ONSHOPPING event-handler REQUIRE NO MODIFICATIONS

 NO MODIFICATION REQUIRED FOR THE REMAINING EVENT HANDLERS

'***

 ''' <summary>

 '''Name: Event-Handler Form_Close()

 '''Purpose:Destroys Form-level object pointer when form closes

 '''Saves Collection objects to file and clears the collection

 ''' </summary>

 ''' <param name="sender"></param>

 ''' <param name="e"></param>

 ''' <remarks></remarks>

 Private Sub frmRetailManagement_FormClosed(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 'Step A-Begins Exeception handling.

 Try

 'Step 1-Destroy Form-Level Objects

 objCustomer = Nothing

 'Step B-Traps for Business Rule violations

 Catch objNSE As NotSupportedException

 MessageBox.Show("Business Rule violation! " & objNSE.Message)

 'Step C-Traps for general exceptions.

 Catch objE As Exception

 'Step D-Inform User

 MessageBox.Show(objE.Message)

 End Try

 End Sub

 46

Step 4: Build & Execute Project

Step 1: Compile and Build the project.

Step 2: Execute the application.

Step 3: RETAIL FORM

 Display Retail Form, SHOP for 50 ITEMS & AUTOMATICALLY SAVE CUSTOMER TO DATABASE:

 47

Database Layer

VIEW OF FINAL ACCESS DATABASE CUSTOMER TABLE

 The Customer table should reflect the Insertions & updates. Note the

 The MS ACCESS database file smallbusinessapp.mdb is located in the BIN\DEBUG folder of the solution

 I DELETED THE CustomerData.txt file since we don‟t need it any more:

