

�����������������	
����
�
�������	
����
�
�������	
����
�
�������	
����
�
������

Visual Basic.NET Programming

Object-Oriented Programming

Collections Review

(Part I of II)

(Lecture Notes 2A)

Prof. Abel Angel Rodriguez

 2

CHAPTER 1� SYSTEM.COLLECTIONS NAMESPACE .. 3�

1.0 Introduction to the System.Collections Namespace .. 3�
1.1 System.Collections Overview .. 3�
1.2 Using Collections in a Nut Shell .. 3�
1.3 The Concept of Key and Index .. 5�
1.4 Data Type Conversions using Collections ... 6�
1.5 The For..Each..Next Loop .. 7�
1.6 Collections & Exception Handling... 8�
1.6 The System.Collection NameSpace ... 9�

2.0 ArrayList .. 11�
2.1 ArrayList Overview .. 11�
2.2 ArrayList Properties & Methods .. 11�
2.3 Using For..Each..Next Loop in ArrayList .. 12�
2.4 ArrayList Application Sample Program #1 .. 13�

Example 2.1 - Module-Driven Window Application – ArrayList & Customer Objects Example ... 13�

 3

����
�������
�������
�������
����������� ���
�� ������	
�����
�� ����	����
�� ������	
�����
�� ����	����
�� ������	
�����
�� ����	����
�� ������	
�����
�� ����	�����

1.0 Introduction to the System.Collections Namespace

1.1 System.Collections Overview
� Collections are a list of classes available in the System Namespace to handle a list of Objects without having to use arrays.
� Arrays are used to store a list of items of a specific VB data type, such as integer, string, date, etc.
� Arrays can also be used to store a list of user-defined Objects or Objects we create. This is known as an array of Objects. Using

arrays is a powerful and efficient way to store Objects. We have used arrays of object in our examples and projects, but such
implementation can result in messy, less maintainable code when coding real-world applications that usually require that the array
size varied and not have a fixed size limitation. Even if we are using dynamic arrays, we would need to use and keep track of the
size of the array in order to make the array dynamic. In short array programming can be complex.

� Visual Basic.NET provides a better way to store a list of Objects without the use of arrays. This mechanism is called a Collection.
� The .NET framework namespace offers the System.Collections library which contains a number of Collection Classes we can use.
� The System.Collection Classes are build-in classes that are ready for you to use and each Collection Class provides built-in

Properties & Methods (procedures/functions), which allows you store, delete, search or organize the Objects on the list.
� The items or members of a collection don’t have to be of the same data type unlike arrays.
� The Collection Classes are a useful alternative to storing Objects in arrays since they provide a mechanism for writing clean and

maintainable code. But keep in mind that there is a price paid to use collections, and that is the overhead required.
� Before I list the some of the various Collection Classes available in the library, I would like to first review and discuss few

concepts.

1.2 Using Collections in a Nut Shell
Collection Object
� Since the Collections in the Visual Basic.NET Library are classes, as with any class we follow are three step process to creating

OOP programs, and that is:

� But since the Classes are already created by Microsoft or within VB.NET, we don’t have to perform the first step, but only the last

two as follows:

� Note that Creating an Object of the System.Collection Classes is known as a Collection Object or Object of the Collection.

I. Create the Class specification
� Private Data/ Properties/Methods

II. Create Object of the Class

III. Use the Object of the Class

� Write the program to manipulate, access or modify the properties & Call
Methods

I. Create Object of the Collection Class from the library (Collection Object)

II. Use the Object of the Class

� Write the program to manipulate, access or modify the properties & Call
Methods

 4

Custom Collection Class and Inheritance (BEST PRACTICE)
Strong-Typed Collection
� Creating an Object of the System.Collection Classes or Collection Object is simple and common, but there are some

disadvantages to this. In an application the Collection Object contains the data, but this data is now accessible to the entire
program, which can cause a security risk or can be corrupted/deleted by unauthorized code.

� Another and most important issue is that a Collection Object will accept any type of data. That is if we create a Collection
Object to store say Employee Objects, there is nothing to stop unauthorized code from adding say a VideoTape Object
into the collection or a date or integer etc.

� A better implementation is to encapsulate the Collection Object inside a custom Class that we create. In other words, make the
Collection Object a private member to a custom class that we create to protect the Collection Object. This is known as a Strong-
Typed Collection.

� These custom classes that protect the collection are called Custom Collection Classes
� Don’t get the terminology confused, the Collection Object is an object created from the System.Collections namespace, while the

Custom Collection Class is a class we create to encapsulate the Collection Object.

Implementing Custom Collection Classes using Inheritance
� Enclosing the Collection Object inside a class or Collection Class is a good idea. VB.NET has the capabilities of inheritance,

you can simply derive a Collection Class or Sub-Class directly from the System.Collections Namespace.
� This class that we inherit, will inherit all the power and capability (properties/methods) of the Base class in the library. In

addition, we can Overload and Override any of the properties or methods.
� Therefore we can also have the following steps added to the Collection Class:

Summary
� We can use the System.Collections class library in our OOP programs using any of the following three methods:

1. Create Collection Objects from the System.Collections and use the Object by calling properties/methods of the
Collection Object

2. Create Collection Classes, create and use a Collection Object from the System.Collections as a private member.

Create Object of the Class (Collection Class Object), use the object by calling properties/methods of the objects

3. (Best Practice!) Inherit Collection Class from the System.Collections, Create Object of the Class (Collection Class
Object), use the object by calling properties/methods of the objects

I. Derive a Sub-Class from the System.Collection Namespace (Custom Collection Class)

� Properties/Methods
1. Call the inherited Properties/Methods. Overload/Override properties/methods as necessary.

II. Create Object of the Class (Collection Class Object)

III. Use the Object of the Class

� Write the program to manipulate, access or modify the properties & Call Methods

 5

1.3 The Concept of Key and Index
� Before learning how to use the Collections, we need to understand the concept of Keys and Index. These mechanisms are needed

in order to be able to add, delete or retrieve data from the Collection.
Keys
� Some collection store Key/Item pairs. That is the object you add will have an associated key.
� The KEY is a UNIQUE value that you define and is used to identify and associate each item on the list when the item is added to

the list
� What that means is that when you add an item to the list with a given key, the key is the unique value used to identify the object in

the list
� In .NET, the key is of type Object, as you recall, the Object data type is an internal data type of VB.NET. All classes created are

decedent of Object, including the String Class.
� So a Key can be of type Object, but most popular is of type string.
� The key value must be a unique string. It can be a name, a driver's license number, a social security number
� Remember, that the key should be string; if you decide to use an Integer value or some other value, you must convert it to a String

or type Object first, and then use it as a key.
� In OOP, a common use of keys is to use a unique data value of the Object you plan to add to the list, as the key that is used to store

and identify that object. For example if we write a Customer class, and we create a Customer Object, the key can be the Object’s
CustomerID or AccountNumber data member, which are usually unique for each Customer.

Index
� An Index is an integer value used which identifies a cell on the list. This is similar to the index in an array.
� Index are usually used to iterate or search through the Collection without having to worry about the object or key.

Zero-Based and One-Based Collections
� If the Collection starts with an index = 0, than the collection is a Zero-Based Collection.
� If the Collection starts with an index = 1, than the collection is a One-Based Collection

Summary
� Some Collections in the namespace are based on Keys or Index or a combination of both.
� A key must be string and an index an integer.
� In a collection that stores keys, you can use a unique string as the key, or use a unique string within the object as a key as well.
� The figure below illustrates the concept of keys & Index. It assumes a list that stores Bank Customer Objects. Each Object has a

name, Customer ID (Used as the key when objects were added), savings & checking accounts balances:

Joe
Smith
“222”
100.30
100.00

Collection

Brown
333
“100”
100.00
0.00

John
Red
“444”
100.00
100.00

Tom
Jones
“111”
500.00
200.00

John
Doe
“555”
1200.50
550.35

1 2 3 4 5

Key

Index

 6

1.4 Data Type Conversions using Collections
� Objects stored in collections are converted and stored using a different class type than that of the original object being stored.
� That is if you store Customer object in a collections, it is converted and stored as a different type inside the collection.
� For example, collections that stored items via index, are known as ILIST collections and stored the objects as type Object, which

is an internal storage class in VB.NET
� For example there are collections that store items via key, these collections are know as DICTIONARY type collections and store

objects as type of the class DictionaryEntry.
� What this means is that in some cases you cannot use the objects returned from the collection as is, you need to convert them back

to the data type in which they were originally.
� You can use the CType() or DirectCast Functions to perform the conversion:

MyNewDatatype = CType(ObjectInCollection, ClassType)

MyNewDatatype = DirectCast(ObjectInCollection, ClassType)

� For example:

� For example, assuming we like to convert an object of the type Object to type clsCustomer:

Dim objAnObject As New Object
Dim objCustomer As New clsCustomer

‘Convert DictionaryEntry object to type Customer using CType()
 objCustomer = CType(objAnObject, clsCustomer)

‘Convert DictionaryEntry object to type Customer using DirectCast()
 objCustomer = DirectCast(objAnObject, clsCustomer)

� CType() and DirectCast() perform the same operations. DirectCast() can only be used when there is an Inheritance relationship

exists between the source (object to convert) and destination (converted object)
� DirectCast() is faster and has better performance when called from a loop that executes a very large number of times.

Data Conversion & Option Strict ON/OFF
� When using Collections, this conversion is NOT necessary in most cases. How do we know when to do this?
� That depends if we have in our code Option Strict set to ON or OFF:

Option Strict On

Option Strict Off

� The rules for most of the INDEX or LIST based Collections is as follows:

� Option Strict ON – If we have Option Strict set to ON, we need to convert the object store in the collection every time we
access the object stored in the collection.

� Option Strict OFF – If we have Option Strict set to OFF, we DON’T need to convert the object store in the collection every
time we access the object.

� The rules for most of the KEY or DICTIONARY based Collections is as follows:

� Option Strict ON – If we have Option Strict set to ON, we need to convert the object store in the collection every time we
access the object stored in the collection.

 7

� Option Strict OFF – If we have Option Strict set to OFF, we DON’T need to convert the object store in the collection every

time we access the object, with the exception of the FOR-EACH LOOP! For these types of Collections, we need to convert
using CType() when using the FOR-EACH LOOP.

� We will see examples of this in later lectures.

1.5 The For..Each..Next Loop
Introduction
� The For ..Each..Next is a loop supported by the Collections Classes in the Collections library.
� The For ..Each..Next loop allows you to iterate through a loop without having to know how many objects are in the Collection.

In other words using a For ..Each..Next loop you don’t need to use the collection Count or Item properties in order to iterate
through the loop like you would have to do in a regular For..Next..Loop

� This For ..Each..Next loop is a more efficient way of iterating through a collection than using a standard For..Next.
� The syntax to the For Each...Next loop is as follows:

For Each Object In Collection

[Statements]
[Exit For]
[Statemenst]

Next [Object]

o Object – Object variable that will store the object retrieved by the For ..Each..Next loop.
o Collection – The Collection Object you are searching
o Statements – VB Code the will manipulate the Object returned by the For ..Each..Next loop.

How does the For…Each…Next Loop Work
� The For Each...Next loop is entered if there is at least one element in the Collection. This is important to keep in mind for

troubleshooting. If the For Each..Next Statement does not run, it is because the Collection is empty.
� Once the loop has been entered, the statements are executed for the first element in the Collection. A copy of this element is

assigned to an object which you must create.
� If there are more elements in the Collection, the statements in the loop continue to execute for each element.
� When there are no more elements, the loop is terminated and execution continues with the statement following the Next statement

Using the For…Each…Next Loop
� To use the For Each...Next loop, create an object or element that will hold the value returned by the loop, and apply what ever

operation you desire on this object
� For example:

� For example, assuming we like to retrieve the elements of the Collection colCustomerList using the For..Each..Next the
syntax will be as follows:

Dim objCustomer As New clsCustomer
….
For Each objCustomer In colCustomerList

‘do here what ever you want, retrieve/set object, property, invoke Methods
etc.
 objCustomer.Print()
 ……

Next objCustomer

 8

Data Type Conversions when using For…Each…Next Loop (Important)
� As stated earlier, for some Collections, the objects stored in these collections may be converted and stored using a different class

type than that of the original object.
� You may need to convert these objects using the CType() method back to the original data type when retrieving from Collections.
� This also applies to using the For..Each..Next loop. The object used as part of the syntax to retrieve the data in the For

Each...Next loop must be of the data type used to stored the object in the collection.
� So this object needs to be declared of the type used to stored object in the collection.
� For example:

� For example, assuming we like to retrieve the elements of a ILIST Type Collection which stores objects using the Object
class from the Collection colCustomerList using the For..Each..Next the syntax will be as follows:

‘Object needed for storing objects returned from collection
Dim objTempObject As New Object()

‘Object needed for using objects returned from collection
Dim objCustomer As New clsCustomer
….
For Each objTempObject In colCustomerList

‘Convert data type
 objCustomer = CType(objTempObject, clsCustomer)

‘do here what ever you want, retrieve/set object, property, invoke Methods etc.
 objCustomer.Print()
 ……
Next objCustomer

1.6 Collections & Exception Handling
General Errors
� The Collection also generate exceptions when an error occurs
� As always when working with exceptions, it is the responsibility of the programmer to trap for these exceptions when using a

collection.

Collection Specific Errors
� Unfortunately in most cases when you attempt to do something with a collection and the operations is not supported, or the

Collection sends us a response or message, this response is in the form of an Exception.
� Let me explain this further, for example if we search for an object inside a collection, and it does not exist in the collection,

instead of the collection returning a 0 or 1 or Nothing, it simply throws an exception. This exception is NOT a general exception
but specific type of exception listed in the Collection Class description.

� For example, lets look at some exceptions generated by collections:

� NotSupportedException – When array is read-only
� ArgumentOutOfRangeException – When index = -1
� ArgumentException – KEY already exist or DUPLICATE KEY
� ArgumentNullException – Key is a NULL or NOTHING

� Again, it is the job of the programmer to trap for these exceptions. The programmer needs to read the class descriptions

where these exceptions are listed and handle them accordingly!

 9

1.6 The System.Collection NameSpace
� Now that we have a basic understanding of the basic concepts lets look at some of the Collections offered in the namespace.
� The VB.NET System.Collection Namespace contains quite a number of Collections available for many uses. Since our time is

limited in this course we will only show and cover a few.
� The following table is a snapshot of a few of the Collection Classes available in the System.Collection Namespace:

Class Description
ArrayList � Implements a LIST similar to using an array whose size is dynamically increased as

required.
� Elements in the list are stored based on an integer index value, just like a standard array.
� You can simply create object from these class and use the properties and methods.

CollectionBase � Provides an abstract MustInherit base class for a strongly typed collection.
� Implements a LIST base on index as with ArrayList.
� This is a MustInherit Base Class that we MUST derived our own Collection Class. We

cannot create object from this class, we must first derive our own sub Collection Class
and then create object of the derived class.

SortedList � Implements a LIST whose size is dynamically increased, but is based on a collection of a

string key-and-value pairs.
� This Collection is sorted by the keys and is accessible by key and by index.
� Note that you must manipulate this Collection via the string Key, but you can access the

objects via the key or index.
� You can simply create object from these class and use the properties and methods.
� This Collection is of the type Dictionary that use Key-Value pair, which means that the

DictionaryEntry object is used to stored the objects inside the collection
� In some cases, when using the properties and methods, type conversion is required using

the CType() method.

DictionaryBase � Provides an abstract MustInherit base class for a strongly typed collection.
� Implements a LIST base on key as with the SortedList.
� This is a MustInherit Base Class that we MUST derived our own Collection Class. We

cannot create object from this class, we must first derive our own sub Collection Class
and then create object of the derived class.

� This Collection is of the type Dictionary that use Key-Value pair, which means that the
DictionaryEntry object is used to stored the objects inside the collection

� In some cases, when using the properties and methods, type conversion is required using
the CType() method.

Hashtable � Represents a collection of key-and-value pairs that are organized based on the hash code

of the key.
� Implements a LIST base on key as with the SortedList but the key must be generated

base on a Hast Code.
� You can simply create object from these class and use the properties and methods.

Queue � Represents a first-in, first-out collection of objects.

Stack � Represents a simple last-in-first-out collection of objects.

 10

Selecting a Collection Class
� Choose a Collection Class carefully, otherwise choosing the wrong collection can restrict your use of the collection or make

programming the application more difficult than necessary.
� Consider the following guidelines:

1. Do you need to add, delete or manage elements by index?
���� ArrayList
���� Collection Base
���� Others not listed in this document

2. Do you need to add, delete or manage elements by key?

���� SortedList
���� Dictionary Base
���� HashTable
���� Others not listed in this document

3. Do you need to access elements by index? The following Collections support access by index:

���� ArrayList
���� Collection Base
���� SortedList – Access only
���� Dictionary Base– Access only
���� Others not listed in this document

4. Do you need to sort the elements differently from how they were entered?

���� SortedList
���� Dictionary Base
���� HashTable
���� Others not listed in this document

5. Do you need fast search?

���� SortedList
���� Dictionary Base
���� Others not listed in this document

6. Do you need a sequential list where the elements can be discarded after its value in retrieved?

���� Use Queue
���� Use Stack

7. Do you need to access elements in a certain order, such as first-in-first-out or last-in-last-out or randomly?

���� Use Queue
���� Use Stack

Exceptions in Collection Classes
� Unfortunately when a Collection cannot find an object in the collection the collection does not return a value but simply raises

exceptions.
� Also when something goes wrong with the usage of a collection an exception is raised.
� Therefore it is your responsibility to add Try/Catch statements to the code when using collection to trap these exceptions and take

the appropriate action or display any messages to the user.
� Consider the following guidelines:

 11

2.0 ArrayList

2.1 ArrayList Overview
� The ArrayList Class is an index based Collection. It has the following description:

Class Description
ArrayList � Implements a LIST similar to using an array whose size is dynamically increased

as required.
� Elements in the list are stored based on an integer index value, just like a

standard array.
� You can simply create object from these class and use the properties and

methods.

� Use an ArrayList when the objects we need to store can be access, added, deleted based on an index.
� Keep the following information in mind when working with ArrayLists:

� In an application, knowledge of the index must be known or obtained when searching for objects. If the index is readily
available when we need to search, than the ArrayList is a good choice for implementing the application.

� On the other hand, if the index is not available, then we need to write more code to obtain the index before finding the object
we seek.

� If the application requires retrieval of the objects base based on another value that is NOT the index, than the ArrayList is
NOT a good choice, choose another Collection such as SortedList.

2.2 ArrayList Properties & Methods
� Since using the ArrayList Collection really involves calling methods and properties of the Collection Object, we simply need to

look at the list of properties and methods available to us.
� The following tables illustrate some of the basic properties and methods of the ArrayList Collection:

Public Properties

Property Syntax Description & Exception Raised
Capacity colObject.Capacity Returns or gets or sets the number of elements that the ArrayList

can contain at startup.
Count colObject.Count Gets the number of elements actually contained in the ArrayList.
Item Get:

Object = colObject.Item(index)

Set:
colObject.Item(index) = Object

Gets or sets the element at the specified index.

Exceptions raised:
ArgumentOutOfRangeException – when index is negative or less
than Count Property

 12

Public Methods

Method Syntax Description & Exception Raised
Add colObject.Add(Object) Adds an object to the end of the ArrayList

� Return Value: index of location where object inserted.
� Exceptions raised:
NotSupportedException – When array is read-only

Clear colObject.Clear Removes all elements from the ArrayList..
Contains colObject.Contains(Object)

Determines whether an element is in the ArrayList..
� Return Value: Boolean (True if exists, False otherwise).

IndexOf colObject.IndexOf(Object)

Returns the zero-based index of the first occurrence of the object in
the ArrayList
� Return Value: index of location where object resides.

Insert colObject.Insert(Index, Object)

Inserts an Object into the ArrayList at the specified index.
� Exceptions raised:
ArgumentOutOfRangeException – When index = -1 or index >
Count
NotSupportedException– When array is read-only

Remove colObject.Remove(Object) Removes the first occurrence of a specific Object from the ArrayList.
� Exceptions raised:
NotSupportedException – When array is read-only

RemoveAt colObject.RemoveAt(Index) Removes the element at the specified index of the ArrayList.
� Exceptions raised:
ArgumentOutOfRangeException – When index = -1 or index >
Count
NotSupportedException– When array is read-only

Reverse colObject.Reverse() Reverses the order of the elements in the ArrayList
� Exceptions raised:
NotSupportedException – When array is read-only

2.3 Data Type Conversions: CType() or DirectCast()
� This Class is of LIST Type or index collection. The objects stored in the collection are of type OBJECCT. We need to perform

data type conversions or Casting when using objects retrieved from the collection in some cases.

Item Property & For Each ..Next Loop
� You may need to convert the data in the following cases.
� Rule:

� If Option Strict is set to OFF, no conversion needed.
� If Option Strict is set to ON, you must convert the data type of object in collection using CType() or DirectCast()

 13

Presentation Layer (UI)

Business Object Layer

Database Services Layer

2.4 ArrayList Application Sample Program #1
� In this section we create a Customer Management example. In the previous examples we used an Array to store and manage

Customer Object. A Customer Form was used to Add, Retrieve, Delete and Modify objects stored in the Array.
� In this example, we will replace the Array with an ArrayList to demonstrate the advantages of using an ArrayList instead of a

regular array.
� We will also demonstrate some of the disadvantages to using an ArrayList as to other Collections such as SortedList.

Example 2.1 - Module-Driven Window Application – ArrayList & Customer Objects Example

Problem statement:
� Create a Module-Driven Windows Application (Startup Object = Sub Main()) as in the previous examples.
� Upgrade the application as follows:

Object Management:
� Replace the Array with an ArrayList Collection. Use the ArrayList Properties and Methods to retrieve, add, edit and

delete Customer Objects.
� Use the clsPeson Class with the same requirements from previous example to create Customer Objects.
� No user interaction or UI code should exist in the objects. The PrintCustomer() method should write the object’s data to

a text file name file name CustomerPrinter.txt.
� Add exception handling to trap the various Collection errors and situations.
� Set Option Strict ON, to see how we must convert data types using CType() in order to use objects retrieved from

collections.

Form Requirements:

� Upgrade the Customer Form from previous example which only retrieved and edited customer objects to be able to add
and delete as well.

� Add a Print feature to the form via a button control. When the button is clicked the customer whose ID is on the Form
will be printed to the text file PersonPrinter.txt. Printing is to be done by the Customer object Print() method.

� Maintain the Customer Purchase feature using the purchase button and events features of the previous example.

Other Requirements:

� The application should be design with network expansion in mind; the design should use an application architecture using
Object-Oriented-Programming Technology that will enable such growth. Implement this application with the three-tier
application architecture described in class in mind:

� Therefore, all UI interaction code should reside in the Presentation layer of Forms. All processing should be done in the
objects as best as possible. Note that for the moment, we will write most of the processing in the Module. For now this
is OK since in the future we can easily moving some of the code inside the classes. But for now, try to keep the UI with
as less processing code as possible.

 14

HOW IT'S DONE:

Part I – Create The Application:

Step 1: Start a new Windows Application project:

Step 2: Add a Form to the project and set its properties as previous example:

Step 3: Add a Standard Module set its properties as previous example:

Step 4: Set the Project’s properties to behave as a Module-Driven Windows Application:

Object Property Value
Project Name CustomerFormWinApp
 Startup Object Sub Main()

 15

Business Object Layer – Class Objects

Step 5: Add A NEW Class to the Project

1. In the Project Menu, select Add New Item…
2. Name the class clsPerson.vb File and click OK
3. The class is now part of the project and ready to be used!

Step 6 & 7: Modify the Class as follows:
 - Add declaration for importing the System.IO library needed for File Access Code
 - Class Module keep private data section and Event declaration as is:

Option Strict On

'Impoted Libraries
Imports System.IO 'For file access code
Public Class clsPerson
 '***
 Private m_Name As String
 Private m_IDNumber As String
 Private m_BirthDate As Date
 Private m_strAddress As String
 Private m_Phone As String

 16

Step 8: Leave the Property Procedure as is:

 '***
 'Property Procedures
 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal Value As String)
 m_Name = Value
 End Set
 End Property

 Public Property IDNumber() As String
 Get
 Return m_IDNumber
 End Get
 Set(ByVal Value As String)
 m_IDNumber = Value
 End Set
 End Property

 Public Property BirthDate() As Date
 Get
 Return m_BirthDate
 End Get
 Set(ByVal Value As Date)
 m_BirthDate = Value
 End Set
 End Property

 Public Property Address() As String
 Get
 Return m_strAddress
 End Get
 Set(ByVal Value As String)
 m_strAddress = Value
 End Set
 End Property

 Public Property Phone() As String
 Get
 Return m_Phone
 End Get
 Set(ByVal Value As String)
 m_Phone = Value
 End Set
 End Property

 17

Step 9: In the Class Module code window keep the code for the Constructor Methods:

Step 10: Modify PrintPerson() Method as follows:

 '***
 'Class Constructor Methods

 'Default Constructor
 Public Sub New()
 'Note that private data members are being initialized
 m_Name = ""
 m_IDNumber = ""
 m_BirthDate = #1/1/1900#
 m_strAddress = ""
 m_Phone = "(000)-000-0000"
 End Sub

 'Parameterized Constructor
 Public Sub New(ByVal N As String, ByVal SSNum As String, ByVal BDate As Date, _
 ByVal Adr As String, ByVal Ph As String)
 'Note that Property Procedures are being set via the constructor

 Me.Name = N
 Me.IDNumber = SSNum
 Me.BirthDate = BDate
 Me.Address = Adr
 Me.Phone = Ph

 End Sub

 '***
 'Regular Class Methods

 'Author of base class allows sub classes to overide Print()
 'If they want to, it is not mandatory
 Public Overridable Sub Print()
 'Create StreamWriter Object for append to file listed
 Dim objPrinter As New StreamWriter("PersonPrinter.txt", True)

 'Call StreamWriter Object WriteLine method to write the string to file
 objPrinter.WriteLine(m_Name & ", " & m_IDNumber & ", " & _
 m_BirthDate & ", " & m_strAddress & ", " & m_Phone)

 'Close StreamWriter Object
 objPrinter.Close()

 End Sub

 18

Presentation Layer (UI) – Module & Forms

Part II – Module
Overview
� The module will contain all global code and control of the program via Sub Main()
� In addition we will place all code required to manage the Collections such as Add, Remove, Edit, GetItem, PrintCustomer etc.
� By doing this, we only place code in the Form for displaying and retrieving data from the user.
� In the future we can move all code that manages the list from the module into classes.

Step 11: In the Module Add the Following Code:

� Code any Global & Private Variable declarations and Sub Main()

1. Set Option Explicit to ON and Strict to Off for this example. Note that Option Strict Off is default.
2. Import the System.Collections Library
3. Remove Array Declaration and add Global ArrayList Collection Object declaration
4. Declare Global Customer Form Object

Step 12: Create Sub Main as follows:

Option Explicit On
Option Strict On
Imports System.Collections

Module modMainModule

 'Declare Public Array of Person Objects
 Public CustomerList As New ArrayList()

 'Declare Form Object
 Public objCustomerForm As frmCustomerForm = New frmCustomerForm()

 '***
 ''' <summary>
 ''' Name: Main()
 ''' Main routine that controls flow of program
 ''' Step 1-Calls the InitializeList() method to perform any required Initialization
 ''' Step 2-Calls Customer Form object to display itself
 ''' </summary>
 ''' <remarks></remarks>
 Public Sub Main()
 'Initialize the list, if required
 InitializeList()

 'Display Customer Form
 objCustomerForm.ShowDialog()

 End Sub

 19

Step 13: Create IntializeList() Method as follows:

Step 15: Implement the GetItem method to manage the retrieval of objects from the list BASED on the INDEX:

 '***
 ''' <summary>
 ''' Name: InitializeList() Method
 ''' Populates Collection object with an object
 ''' Step 1-Creates temp object populated with data
 ''' Step 2-Calls CollectionObject.Add(Object) Method to Add object.
 ''' </summary>
 ''' <remarks></remarks>
 Public Sub InitializeList()
 'Create a Person Object
 Dim objDefaultCustomer As New clsPerson("Joe Smith", "111", #1/23/1971#, _
 "333 Jay Street", "718 260-5000")

 'Add object to ArrayList
 CustomerList.Add(objDefaultCustomer)

 End Sub

'***
 ''' <summary>
 ''' Name: Function - GetItem(Index)Function
 ''' Purpose: Retrieves item from collection
 ''' Return Type: Returns POINTER to object at the specified index location
 ''' Step A-Begins Exeception handling
 ''' Step 1-Calls Collection.Item(Index) Method to get object from collection
 ''' Use CType() function to convert object retrieved from list to clsPerson
 ''' Step B-Traps for Collection Outofrange exceptions when index is invalid
 ''' Step C-Throw ArgumentOutOfRangeException. Throw must be trapped in Form
 ''' Step D-Traps for general exceptions
 ''' </summary>
 ''' <param name="index"></param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Function GetItem(ByVal index As Integer) As clsPerson
 'Step A- Begin Error trapping
 Try

 'Step 1-Calls Collection.Item(Index) Method to get object from collection
 'Use CType() function to convert object retrieved from list to clsPerson
 Return CType(CustomerList.Item(index), clsPerson)

 'Step B-Traps for ArgumentOutofrange exceptions when index is invalid or negative.
 Catch objX As ArgumentOutOfRangeException
 'Step C-Throw Collection ArgumentOutOfRangeException
 Throw New System.ArgumentOutOfRangeException("GetItem Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("GetItem ID Error: " & objE.Message)
 End Try
 End Function

 20

Discussion

� Is important that you understand that the GetItem Function returns a copy of the pointer CustomerList(INDEX) pointing to the
object in the Collection whose index is INDEX

� The diagram below should make this clear.

Step 14: Implement ANOTHER VERSION of GetItem method. This one will search based on IDNUMBER of Customer and
return the object from the Collection:

Discussion

� Objective of this method is also to retrieve the object in the collection. This method is OVERLOADED version of works
differently because we search for an object based on it’s internal ID NUMBER NOT THE INDEX!!

� Normally in a program of this type where we need to search for a customer, we usually give the program the ID number of the
customer. Transaction based programs DO NOT SEARCH ON INDEX. Would you ask a Customer walking into your store
for Business for their INDEX NUMBER TO THE LIST OR DATABASAE? Of course NOT!

� So we are forced to provide a method to get a Customer based on the ID NUMBER.

0 1 2

CustomerList

“Joe”
111

1/23/1978 “Angel”
222

12/12/1972

“Mary”
444

5/10/1969

Properties:
Count
Item

Methods:
Add()
Remove()
RemoveAt()
Clear()

Copy of these pointers are returned by
Collection.Item(index)

 21

'***
 ''' <summary>
 ''' Name:OVERLOADED GetItem(IDNum)Function
 ''' Purpose: Retrieves item from collection BASE ON IDNUMBER OF OBJECT
 ''' Return Type: Returns POINTER to object with IDNumber
 ''' </summary>
 ''' <param name="strIDNum"></param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Function GetItem(ByVal strIDNum As String) As clsPerson
 'Step A- Begin Error trapping
 Try
 'Step 1-Create Temporary OBJECT POINTER!!!!
 Dim objItem As clsPerson

 'Step 2-Iterates through Collection based on Collection.Count property.
 'Temp Pointer points to each object during every iteration.
 For Each objItem In CustomerList
 'Step 3-Verifies if object.ID is the one being searched, if so return object
 If objItem.IDNumber = strIDNum Then
 'Step 4-Found therefore return object pointer & Exit
 Return objItem
 End If
 Next

 'Step 5-Return Nothing since not found & Exit
 Return Nothing

 'Step B-Traps for general exceptions.
 Catch objE As Exception
 'Step C-Throw an general exceptions
 Throw New System.Exception("GetItem ID Error: " & objE.Message)
 End Try
 End Function

0 1 2

CustomerList

“Joe”
111

1/23/1978 “Angel”
222

12/12/1972

“Mary”
444

5/10/1969

Properties:
Count
Item

Methods:
Add()
Remove()
RemoveAt()
Clear()

objItem

During each For Each Loop iteration
 the objItem Pointer points to each of the Objects in
the Collection and returned by the For Each loop.

 22

Step 15: Implement a method named GetIndexByOfItemByID. This one will search based on IDNUMBER of Customer and
return the INDEX or LOCATION of object in the Collection:

Discussion

� Objective of this method is also to retrieve the INDEX of the Customer in the collection BASED ON THE ID NUMBER.
This method is necessary because most of the METHODS provided by the ArrayList work based INDEX, NOT ID
NUMBER!!

� So, in order to perform Deletes, Edits etc. we need the INDEX of the OBJECT in the Collection, therefore this method will
return the INDEX if you give it the ID NUMBER of a Customer!

� Once we have the INDEX, we can then perform some of the functionality on the objects such as Remove, Edit etc.
� So we are forced to provide a method to get the INDEX of a Customer in the array based on the ID NUMBER.
� In this example we also use a regular FOR LOOP instead of the FOR EACH, to give you example of using another loop.

'**
 ''' <summary>
 ''' Name: GetIndexOfItemByID(IDNum)Function
 ''' Purpose: Retrieves INDEX of Object in collection BASE ON IDNUMBER OF OBJECT
 ''' Return Type: Returns Object found in list
 ''' </summary>
 ''' <param name="strIDNum"></param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Public Function GetIndexOfItemByID(ByVal strIDNum As String) As Integer
 'Step A- Begin Error trapping
 Try
 Dim i As Integer
 'Step 1-Create Temporary OBJECT POINTER!!!!
 Dim objItem As clsPerson

 'Step 2-Iterates through Collection based on Collection.Count property.
 For i = 0 To CustomerList.Count - 1
 'Step 3-Calls Collection.Item(Index) to get pointer to object in collection
 'Use CType() function to convert object retrieved from list to clsPerson
 objItem = CType(CustomerList.Item(i), clsPerson)
 'Step 4-Verifies if object.ID is the one being searched
 If objItem.IDNumber = strIDNum Then
 'Step 5-Found therefore return Index to location of object
 Return i
 End If
 Next

 'Step 6-Destroy temp object
 objItem = Nothing

 'Step 7-Return a -1 object not found
 Return -1

 'Step B-Traps for ArgumentOutofrange when index is invalid or negative.
 Catch objX As ArgumentOutOfRangeException
 'Step C-Throw Collection ArgumentOutOfRangeException
 Throw New System.ArgumentOutOfRangeException("GetIndexOfItem Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("GetIndexOfItem Error: " & objE.Message)
 End Try
 End Function

 23

Step 16: Implement the Add method to manage the addition of objects into the list:

Discussion

� The objective of this method is to ADD a NEW object to the collection.
� I will show two different implementation of ADD. This will be VERSION 1
� In this case, passed as argument is the NEW OBJECT to be added

'**
 ''' <summary>
 ''' Name: Add(object)Function
 ''' Purpose: Adds new object to the Collection
 ''' </summary>
 ''' <param name="objItem"></param>
 ''' <remarks></remarks>
 Public Sub Add(ByVal objItem As clsPerson)
 'Step A- Begin Error trapping
 Try

 'Step 1-Calls Collection.Add(Object) Method to Add object passed as argument
 CustomerList.Add(objItem)

 'Step B-Traps for Collection Object NotSupportedException exceptions.
 Catch objX As NotSupportedException
 'Step C-Throw an NotSupportedException
 Throw New System.NotSupportedException("Add Method Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("Add Method Error: " & objE.Message)
 End Try
 End Sub

 24

Step 17: Implement the SECOND VERSION or OVERLOADED Add method to Add objects to the list

� Objective of this method is also to ADD object to the collection. This method is OVERLOADED version of Add().
� This version 2 performs the same functionality of version1, which is to add the object; the main difference here is that the

individual values or properties are being passed as argument. THE NEW OBJECT IS CREATED inside the method and
POPULATED with the values passed as arguments.

'***
 ''' <summary>
 ''' Name: Overloaded Add(value1, value2..)Method
 ''' Purpose: Adds new object to the Collection
 ''' </summary>
 ''' <param name="strName"></param>
 ''' <param name="strIDNum"></param>
 ''' <param name="dBDate"></param>
 ''' <param name="strAddress"></param>
 ''' <param name="strPhone"></param>
 ''' <remarks></remarks>
 Public Sub Add(ByVal strName As String, ByVal strIDNum As String, _
 ByVal dBDate As Date, ByVal strAddress As String, ByVal strPhone As String)
 'Step A- Begin Error trapping
 Try
 'Step 1-Creates Temp Object
 Dim objItem As New clsPerson

 'Step 2-Populates object it with data passed as argument
 With objItem
 .Name = strName
 .IDNumber = strIDNum
 .BirthDate = dBDate
 .Address = strAddress
 .Phone = strPhone
 End With

 'Step 3-Use Collection Add Method add Object to Collection
 CustomerList.Add(objItem)

 'Step B-Traps for Collection Object NotSupportedException exceptions.
 Catch objX As NotSupportedException
 'Step C-Throw an NotSupportedException
 Throw New System.NotSupportedException("Add Method Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("Add Method Error Error: " & objE.Message)
 End Try
 End Sub

 25

Step 18: Implement the EditItem method to manage the process of modifying objects in the list (VERSION 1):
Discussion

� The objective of this method is to modify the object in the collection.
� This version of the implementation REPLACES THE ORIGINAL OBJECT with the MODIFIED VERSION!!!
� Passed as argument is the index were the object is located, and the NEW OBJECT to replace the original

'**
 ''' <summary>
 ''' Name:EditItem(Index, object)Method
 ''' </summary>
 ''' <param name="index"></param>
 ''' <param name="objItem"></param>
 ''' <remarks></remarks>
 Public Sub EditItem(ByVal index As Integer, ByVal objItem As clsPerson)
 'Step A- Begin Error trapping
 Try

 'Step 1-Calls CollectionObject.Item(Key) = object syntax to perform the replacement
 CustomerList.Item(index) = objItem

 'Step B-Traps for Collection ArgumentOutofrange exceptions
 Catch objX As ArgumentOutOfRangeException
 'Step C-Throw an ArgumentOutOfRangeException
 Throw New System.ArgumentOutOfRangeException("EditItem Method Error: " & objX.Message)
 'Step C-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("EditItem Method Error: " & objE.Message)
 End Try
 End Sub

objItem

0 1 2

CustomerList Object

“Joe”
111

1/23/1978

“Angel”
222

12/12/1972

“Mary”
444

5/10/1969

Properties:
Count
Item

Methods:
Add()
Remove()
RemoveAt()
Clear()

These pointers are the object
manipulated by Collection.Item(index)

Step 2 - CustomerList.Item(index) = objItem means, the
collection object will set the item(i) pointer to point to the
NEW object objItem, thus modifying object in collection via
a new copy or replacement. “Angel

Rodriguez”
222

12/12/1972

Step 1 - This object looses its reference or
pointer so it will no longer exist.

 26

Step 19: Implement the SECOND VERSION of EditItem method to manage the process of modifying objects in the list:

Discussion

� Objective of this method is also to modify the object in the collection. This method is OVERLOADED version of edititem.
� This version 2 performs the same functionality of version1, which is to modify the object, the main difference here is that THE

ORIGINAL OBJECT IS BEING MODIFIED VIA ITS PROPERTIES, NOT A COPY OR NEW OBJECT!

Discussion

� This process of MODIFYING THE ORIGIANL OBJECT is important. Compared to version 1, which replaces with a COPY,
Is usually not desirable to replace with a NEW object because we may loose some of the data of the original, data which are
not set through properties but are internal to the original.

� In this version, passed as argument is the index were the object is located, and the individual values or properties to be
replaced in the ORIGINAL OBJECT!

'**
 ''' <summary>
 ''' EditItem(value1, value2..)Method
 ''' Purpose: Sets or overwrites object located at specified index in the Collection
 ''' </summary>
 ''' <param name="index"></param>
 ''' <param name="strName"></param>
 ''' <param name="strIDNum"></param>
 ''' <param name="dBDate"></param>
 ''' <param name="strAddress"></param>
 ''' <param name="strPhone"></param>
 ''' <remarks></remarks>
 Public Sub EditItem(ByVal index As Integer, ByVal strName As String, _
 ByVal strIDNum As String, ByVal dBDate As Date, ByVal strAddress As String, _
 ByVal strPhone As String)
 'Step A- Begin Error trapping
 Try
 'Step 1-Create temporary pointer
 Dim objItem As clsPerson

 'Step 2-Get a Reference of pointer to the actual object inside the collection.
 'Convert data type of object reference
 objItem = CType(CustomerList.Item(index), clsPerson)

 'Step 3-Sets individual properties of actual object inside the collection.
 objItem.Name = strName
 objItem.IDNumber = strIDNum
 objItem.BirthDate = dBDate
 objItem.Address = strAddress
 objItem.Phone = strPhone

 'Step B-Traps for Collection ArgumentOutofrange exceptions
 Catch objX As ArgumentOutOfRangeException
 'Step C-Throw an ArgumentOutOfRangeException to calling programs.
 Throw New System.ArgumentOutOfRangeException("EditItem Method Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("EditItem Method Error: " & objE.Message)
 End Try
 End Sub

 27

� This algorithm can be confusing if you don’t understand POINTERS!!
� We give the Collection the INDEX and it returns a POINTER to the object INSIDE THE COLLECTION. What ever we do to

the pointer, we are doing to the exiting OBJECT IN THE COLLECTION.

Step 20: Implement the Remove method to manage the removal of objects from the list:

 '**
 ''' <summary>
 ''' Name: Remove(IDNumber)Sub Method
 ''' Purpose: Remove object from collection based on CustomerID.
 ''' </summary>
 ''' <param name="Index"></param>
 ''' <remarks></remarks>
 Public Sub Remove(ByVal Index As Integer)
 'Step A- Begin Error trapping
 Try

 'Step 1-Calls CollectionObject.RemoveAt(Index) Method
 CustomerList.RemoveAt(Index)

 'Step B-Traps for Collection ArgumentOutofrange exceptions
 Catch objX As ArgumentOutOfRangeException
 'Step C-Throw an ArgumentOutOfRangeException to calling programs
 Throw New System.ArgumentOutOfRangeException("Remove Method Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("Remove Method Error: " & objE.Message)
 End Try
 End Sub

0 1 2

CustomerList

“Joe”
111

1/23/1978 “Angel”
222

12/12/1972

“Mary”
444

5/10/1969

Properties:
Count
Item

Methods:
Add()
Remove()
RemoveAt()
Clear()

These pointers are returned by
Collection.Item(index) and

objItem

objItem= CustomerList.Item(index) means objItem points to
where CustomerList.Item(index) pointer is pointing to,
which is the object we want to modify. What we do to
objItem we are doing to object inside the collection.

 28

Step 21: Implement the PrintCustomer method to manage the process of printing an objects to File:

Discussion

� Now we have an example of a executing a method of an object INSIDE THE COLLECTION.
� In this example, we give the Collection the INDEX and it returns a POINTER to the object INSIDE THE COLLECTION.

What ever we do to the pointer, we are doing to the exiting OBJECT IN THE COLLECTION, in this case calling a
METHOD().

 '**
 ''' <summary>
 ''' Name: PrintCustomer(index)Sub Method
 ''' Purpose: Prints object from collection to Printer File
 ''' </summary>
 ''' <param name="Index"></param>
 ''' <remarks></remarks>
 Public Sub PrintCustomer(ByVal Index As Integer)
 'Step A- Begin Error trapping
 Try
 'Step 1-Create temporary pointer
 Dim objItem As New clsPerson

 'Step 2-Get object in collection, convert & assing to temp pointer
 objItem = CType(CustomerList.Item(Index), clsPerson)

 'Step 3-Calls Temp Object.Print Method to print the object to file
 objItem.Print()

 'Step B-Trap collection ArgumentOutofrange exceptions
 Catch objX As ArgumentOutOfRangeException
 'Step C-Throw an ArgumentOutOfRangeException
 Throw New System.ArgumentOutOfRangeException("PrintCustomer Error: " & objX.Message)
 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("PrintCustomer Method Error: " & objE.Message)
 End Try
 End Sub

CustomerList

0 1 2

“Joe”
111

1/23/1978
Print() “Angel”

222
12/12/1972
Print()

“Mary”
444

5/10/1969
Print()

Properties:
Count
Item

Methods:
Add()
Remove()
RemoveAt()
Clear()

These pointers are returned by
Collection.Item(index) and

objItem

objItem= CustomerList.Item(index) means objItem points to
where CustomerList.Item(index) pointer is pointing to,
which is the object we want use. What we do to objItem
pointer we are doing to object inside the collection. In this
example we call the Print() method.

 29

Step 22: Implement the PrintAllCustomers method to print all the Customers in the list to File:

'***
 ''' <summary>
 ''' Name: PrintAllCustomers()Sub Method
 ''' Purpose: Prints object from collection to Printer File
 ''' </summary>
 ''' <remarks></remarks>
 Public Sub PrintAllCustomers()
 'Step A- Begin Error trapping
 Try
 'Step 1-Create temporary pointer
 Dim objItem As clsPerson

 'Step 2-Use For..Each loop to iterate through arraylist
 'Temp Pointer points to each object during every iteration.
 For Each objItem In CustomerList
 'Step 3-Calls Temp Object.PrintPerson Method to print the object to file
 objItem.Print()
 Next

 'Step D-Traps for general exceptions.
 Catch objE As Exception
 'Step E-Throw an general exceptions
 Throw New System.Exception("PrintAllCustomer Method Error: " & objE.Message)
 End Try
 End Sub

End Module

 30

Part III – User Interface Form
Overview
� We will reuse the Customer Form from the previous example.
� We will add buttons for the new Add, Delete and Print() functionalities.
� Note that the code in the Form will be keep minimal since most of the processing is done in the Module.

Step 24: Add the following Controls to the frmCustomerForm. Set their properties accordingly:

Object Property Value
Form1 Name frmCustomerForm
 Text Customer Form

� Note that the Form now includes a buttons for Adding, Editing, Deleting, retrieving, purchasing and printing the

Customer records.

Step 25: At this Point the Project should look as follows:

 31

Step 26: In the Form frmCustomerForm declare a Temp object to use in various Form operations and create it in the load
handler. Also destroy it in the Form.Close() handler:

Step 27: In the OK button event-handler simply Close the form:

Discussion
� Note how very little code is done in the OK button. We don’t want to add processing code on the OK event.

Option Explicit On
Option Strict On

Public Class frmCustomerForm
 Inherits System.Windows.Forms.Form

 'Declare Form Level Object
 Private objCustomer As clsPerson
 '**
 ''' <summary>
 '''Name: Event-Handler Form_Load
 '''Purpose:Nothing is done at this time
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub EditForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

End Sub
'**
 ''' <summary>
 '''Name: Event-Handler Form_Close()
 '''Purpose:Destroys Form-level object pointer when form closes
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub frmEditForm_Closed(ByVal sender As Object, ByVal e As System.EventArgs)
Handles MyBase.Closed
 'Destroy Form-Level Objects
 objCustomer = Nothing

End Sub

 '**
 ''' <summary>
 '''Name: Event-Handler for for Exit button
 '''Purpose:Close the Form
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click
 Me.Close()
End Sub

 32

Step 28: Modify the GetCustomer Event to use the ArrayList management methods in the Module:
Discussion
� The GetCustomer Click Event:

� In this Event-Handler we will call the search method of the module to search for the customer object in the array by ID
� Note that the OVERLOADED GetItem(IDNUM) method returns the object or Customer in the list.
� Also note that the result of the GetItem () can return a NULL POINTER OR NOTHINT if not found.
� From the results we either populate the text boxes with the customer data or display that the Customer was not found.
� In addition, we need to trap for the errors generated by the COLLECTION as well as GENARAL ERRORS.

 '**
 ''' <summary>
 ''' Name: Event-Handler for btnGetCustomer button
 ''' Purpose: To retrieve an POINTER TO object from the collection base on ID or Key
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnGetCustomer_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnGetCustomer.Click
 'Step A-Begins Exeception handling.
 Try

 'Step 1-Call Overloaded GetItem(ID) to search for object that match ID
 objCustomer = GetItem(txtIDNumber.Text)

 'Step 2-If result of search is Nothing, then display customer is not found
 If objCustomer Is Nothing Then
 MessageBox.Show("Customer Not Found")

 'Step 3-Clear all controls
 txtName.Text = ""
 txtIDNumber.Text = ""
 txtBirthDate.Text = ""
 txtAddress.Text = ""
 txtPhone.Text = ""
 Else
 'Step 4-Then Data is extracted from customer object & placed on textboxes
 With objCustomer
 txtName.Text = .Name
 txtIDNumber.Text = .IDNumber
 txtBirthDate.Text = CStr(.BirthDate)
 txtAddress.Text = .Address
 txtPhone.Text = .Phone
 End With
 End If

 'Step B-Traps for Overflow exceptions and displays appropriate messages
 Catch objX As ArgumentOutOfRangeException
 MessageBox.Show(objX.Message)
 'Step D-Traps for General exceptions and displays appropriate message
 Catch objE As Exception
 MessageBox.Show("Unexpected Error: " & objE.Message)
 End Try
End Sub

 33

Step 30: Implement an Add Event to use the ArrayList management methods in the Module to Add the new Customer:

Discussion
� The Add Click Event:

� In this Event-Handler call the OVERLOADED module’s Add(value1, value2, etc.) method to perform the operation.
� Data is passed as argument to this method
� We need to trap for the errors generated by the COLLECTION as well as GENARAL ERRORS.
� The user is also informed of the errors via message boxes

 '**
 ''' <summary>
 ''' Name: Event-Handler for btnAdd button
 ''' Purpose:To add new object to the collection
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnAdd.Click
 'Step A-Begins Exeception handling.
 Try

 'Step 1-Calls Add() method of module, object is passed as argument
 Add(txtName.Text, txtIDNumber.Text, CDate(txtBirthDate.Text), _
 txtAddress.Text, txtPhone.Text)

 'Step B-Traps for NotSupportedException exceptions and displays messages
 Catch objX As NotSupportedException
 MessageBox.Show(objX.Message)
 'Step D-Traps for General exceptions and displays appropriate message
 Catch objE As Exception
 MessageBox.Show("Unexpected Error: " & objE.Message)
 End Try
End Sub

 34

Step 31: Implement the EditCustomer Event to modify the customer in the ArrayList via method in the Module:

Discussion
� The EditCustomer Click Event:

� In this Event-Handler we modify an object in the list.
� Again we are forced to call the module’s GetIndexOfItemByID(ID) method to search for the object via it’s ID and get the

index of the object in the list.
� This is another indication why the ArrayList is not a good choice for this type of program.
� Once we have the index then we can call the module’s EditItem(Index, Value1, Value2…) method to perform the operation.
� We need to trap for the errors generated by the COLLECTION as well as GENARAL ERRORS.
� The user is also informed of the errors via message boxes

 '**
 ''' <summary>
 ''' Name: Event-Handler for btnEditCustomer button
 ''' Purpose: Initiate the Edit process to modify an object in the collection
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnEditCustomer_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnEditCustomer.Click
 Dim index As Integer
 'Step A-Begins Exeception handling.
 Try

 'Step 1-Call GetIndexOfItem(ID) to search for ID in list and return the index
 index = GetIndexOfItemByID(txtIDNumber.Text)

 'Step 2-If result of search is = -1, then display customer is not found
 If index = -1 Then
 MessageBox.Show("Customer Not Found")
 Else
 'Step 3-Call Module EditItem(index,x,y,z,...) method with textbox data
 EditItem(index, txtName.Text, txtIDNumber.Text, _
 CDate(txtBirthDate.Text), txtAddress.Text, txtPhone.Text)
 End If

 'Step B-Traps for ArgumentOutOfRangeException and displays message
 Catch objX As ArgumentOutOfRangeException
 MessageBox.Show(objX.Message)
 'Step D-Traps for General exceptions and displays appropriate message
 Catch objE As Exception
 MessageBox.Show("Unexpected Error: " & objE.Message)
 End Try
End Sub

 35

Step 32: Implement the Delete Event to delete the customer from the ArrayList via method in the Module:

Discussion
� The Delete Click Event:

� In this Event-Handler we delete an object from the list.
� Again we are forced to call the module’s GetIndexOfItem(ID) method to search for the object via it’s ID and get the index of

the object in the list.
� This is another indication why the ArrayList is not a good choice for this type of program.
� Once we have the index then we can call the module’s Remove(Index) method to perform the operation.
� We also trap for the errors generated by the COLLECTION as well as GENARAL ERRORS and prompt the user

'**
 ''' <summary>
 ''' Name: Event-Handler for btnDelete button
 ''' Purpose: To delete an object from the collection base on ID or Key
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnDelete.Click
 Dim Index As Integer
 'Step A-Begins Exeception handling.
 Try

 'Step 1-Call GetIndexOfItem(ID) to search for ID in list and return the index
 Index = GetIndexOfItemByID(txtIDNumber.Text)

 'Step 2-If result of search is = -1, then display customer is not found
 If Index = -1 Then
 MessageBox.Show("Customer Not Found")

 'Step 3-Clear all controls
 txtName.Text = ""
 txtIDNumber.Text = ""
 txtBirthDate.Text = ""
 txtAddress.Text = ""
 txtPhone.Text = ""
 Else
 'Step 4-Calls Remove() method of module
 Remove(Index)
 End If

 'Step B-Traps for ArgumentOutOfRangeException exceptions & displays messages
 Catch objX As ArgumentOutOfRangeException
 MessageBox.Show(objX.Message)
 'Step D-Traps for General exceptions and displays appropriate message
 Catch objE As Exception
 MessageBox.Show("Unexpected Error: " & objE.Message)
 End Try
End Sub

 36

Step 33: Implement the Print Event to print to file the customer via method in the Module:

Discussion
� The Print Click Event:

� In this Event-Handler we print an object in the list to file.
� Again we are forced to call the module’s GetIndexOfItemByID (ID) method to search for the object via it’s ID and get the

index of the object in the list.
� This is another indication why the ArrayList is not a good choice for this type of program.
� Once we have the index then we can call the module’s PrintCustomer(Index) method to perform the operation.
� We also trap for the errors generated by the COLLECTION as well as GENARAL ERRORS and prompt the user

 '**
 ''' <summary>
 ''' Name: Event-Handler for btnPrint button
 ''' Purpose: Prints Object in the list
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnPrint_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPrint.Click
 Dim Index As Integer
 'Step A-Begins Exeception handling.
 Try

 'Step 1-Call GetIndexOfItem(ID) to search for ID in list and return the index
 Index = GetIndexOfItemByID(txtIDNumber.Text)

 'Step 2-If result of search is = -1, then display customer is not found
 If Index = -1 Then
 MessageBox.Show("Customer Not Found")

 'Step 3-Clear all controls
 txtName.Text = ""
 txtIDNumber.Text = ""
 txtBirthDate.Text = ""
 txtAddress.Text = ""
 txtPhone.Text = ""
 Else
 'Step 4-Calls Remove() method of module. Index from search is passed as argument
 PrintCustomer(Index)
 End If

 'Step B-Traps for ArgumentOutOfRangeException exceptions & display message
 Catch objA As ArgumentOutOfRangeException
 MessageBox.Show(objA.Message)
 'Step D-Traps for General exceptions and displays appropriate message
 Catch objE As Exception
 MessageBox.Show("Unexpected Error: " & objE.Message)
 End Try

End Sub

 37

Step 34: Implement the PrintAll Event to print to file the customer via method in the Module:

Discussion
� The PrinAllCustomer Click Event:

� Call the module’s PrintAllCustomers() method to perform the operation.
� In the User-Interface, we need to trap for the errors generated by the COLLECTION as well as GENARAL ERRORS.
� The user is also informed of the errors via message boxes

'**
 ''' <summary>
 ''' Name: Event-Handler for btnPrintAllCustomers button
 ''' Purpose: Prints all Objects in the list
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
Private Sub btnPrintAll_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPrintAll.Click
 'Step A-Begins Exeception handling.
 Try

 'Step 1-Calls Remove() method of module. Index from search is passed as argument
 PrintAllCustomers()

 'Step B-Traps for ArgumentOutOfRangeException exceptions, display message
 Catch objX As ArgumentOutOfRangeException
 MessageBox.Show(objX.Message)
 'Step D-Traps for General exceptions and displays appropriate message
 Catch objE As Exception
 MessageBox.Show("Unexpected Error: " & objE.Message)
 End Try
End Sub

End Class

 38

Part IV – Output & Summary
Summary
� Run the program and you can then perform the necessary operations on the list.
� Also you can purchase and print customer information to file.
� As a final word, we notice that choosing the ArrayList for this application forced us to add additional code that normally we would

want the Collection to handle for us.
� In short, ArrayList was NOT the best choice of Collection for this transactional based application.

Form Output:

File Output:

