[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Homework 1 Queues
Unit 7 Data structures
		

Homework 1: Queues Answers
1.	A keyboard buffer on a computer’s operating system is implemented as a circular queue.
	(a)	Explain why a circular queue is an appropriate data structure choice. 	[2]
· Size can be preset to suit objectives of minimum memory or maximum capacity
· Space can be reused when items are removed from the queue
	(b)	A particular keyboard buffer consists of five cells in a circular queue. The queue kBuffer is initialised by setting a variable size (containing the number of items in the array) to 0, pointers front to 0 and rear to -1. A variable maxSize holds the maximum size of the queue.
		(i)	Complete the table to show the results after the following operations. 	 [4]
	
	kBuffer
	
	
	
	

	
	[0]
	[1]
	[2]
	[3]
	[4]
	
	size
	front
	rear

	Initial state
	
	
	
	
	
	
	0
	0
	-1

	Enqueue S
	S
	
	
	
	
	
	1
	0
	0

	Enqueue W
	S
	W
	
	
	
	
	2
	0
	1

	Dequeue
	S
	W
	
	
	
	
	1
	1
	1

	Enqueue E
	S
	W
	E
	
	
	
	2
	1
	2

· 1 mark for each correct row
		(ii)	Complete the table to show the results after the following operations. 	[3]
	
	kBuffer
	
	
	
	

	
	[0]
	[1]
	[2]
	[3]
	[4]
	
	size
	front
	rear

	Current state
	J
	U
	X
	L
	M
	
	3
	1
	3

	Enqueue T
	J
	U
	X
	L
	T
	
	4
	1
	4

	Enqueue R
	R
	U
	X
	L
	T
	
	5
	1
	0

	Dequeue
	R
	U
	X
	L
	T
	
	4
	2
	0

· 1 mark for each correct row
	(c)	Code for the keyboard buffer operations needs to be written.
[bookmark: _GoBack]		Use the variables defined in part (b): kBuffer, maxSize, size, front, and rear.
(i) Write the pseudocode for the isFull() operation, including function header.	[2]
			SUB isFull
				IF (size = maxSize) THEN
					RETURN true
				ELSE
					RETURN false
				ENDIF
	 					ENDSUB	

Alternative solution:

			SUB isFull
				RETURN (size = maxSize)	
	 				ENDSUB	

This will return True if size = maxSize, False otherwise
· 1 mark = workable solution
· 1 mark = RETURN statement

		(ii)	Write the pseudocode for the deQueue operation.	 [4]
		SUB deQueue
			IF (size = 0) THEN
				item = Null
			ELSE
				item kBuffer[front]
				front (front + 1) MOD maxSize
				size size - 1
			ENDIF
			RETURN (item)
		ENDSUB	

· 1 mark = checking and handling empty queue
· 1 mark = locating correct return item using front pointer
· 1 mark = adjusting front pointer AFTER removing item with correct use of MOD or alternative IF statement to set index to 0
· 1 mark = adjusting queue size
 (c)	(i)	Describe, with the aid of an example, the operation of a priority of a priority queue from the user’s point of view. 	[2]
	Priority:
· Gives preference to more important items
· Items are inserted in order of priority, joining the queue behind items of the same priority.
· Items are always removed from the front of the queue
· Example: Hospital accident and emergency, or other suitable example
	(ii)	Explain how the principles of data abstraction and encapsulation can be used to hide the details of implementation of a priority queue.	[3]
		Priority queue may be implemented as a circular queue using a static array, or as a dynamic data structure such as a list. Programmer using the ADT just has to know how to call routines to add an item with a given priority, remove an item from the queue, test for full and empty queue. Details of how these operations are done are hidden.
			Total 20 marks
2

image1.png

