[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Homework 3 Stacks
Unit 7 Data structures

Homework 3 Stacks Answers

1.	Describe why a stack is not a suitable data structure for holding client records at a call centre. Suggest a more suitable data structure and justify why it is suitable.	[3]
		
· A stack is a limited access data structure. Items can only be added at the top and removed from the top. At a call centre, records would have to be accessed randomly when the client calls.
· A list is a more suitable data structure.
· A list can be searched randomly to find a particular item.

2.	If a stack is implemented as a dynamic data structure, what bounds the number of items that can be pushed?	[1]
· The amount of memory available to grow the stack is the only limiting factor

3.	The operation peek() returns the top item of a stack without removing it from the stack. What should happen if a peek() is attempted on an empty stack? 	[1]
	An error message should be returned because the top pointer would be out of range, for example, -1

4.	Complete the following to show the state of a stack after the indicated operations. The stack can only hold 4 items in total.	[5]
[bookmark: _GoBack]	One mark for each 3 lines correct (one mark for last 4 lines)

	Instruction
	Stack
	Front
	Result

	stack new array(4)
	[]
	-1
	

	push(rabbit)
	[rabbit]
	0
	

	push(fox)
	[rabbit, fox]
	1
	

	push(mouse)
	[rabbit, fox, mouse]
	2
	

	peek()
	[rabbit, fox, mouse]
	
	mouse

	pop()
	[rabbit, fox]
	1
	mouse

	pop()
	[rabbit]
	0
	fox

	push(hedgehog)
	[rabbit, hedgehog]
	1
	

	push(magpie)
	[rabbit, hedgehog, magpie]
	2
	

	push(badger)
	[rabbit, hedgehog, magpie, badger]
	3
	

	isFull()
	[rabbit, hedgehog, magpie, badger]
	
	True

	peek()
	[rabbit, hedgehog, magpie, badger]
	
	badger

	pop()
	[rabbit, hedgehog, magpie]
	2
	badger

	pop()
	[rabbit, hedgehog]
	1
	magpie

	pop()
	[rabbit]
	0
	hedgehog

	pop()
	[]
	-1
	rabbit

	isEmpty()
	[]
	
	True

5.	(a)	Describe the role of the call stack and stack frame in relation to subroutine calls. 	[5]
		A stack frame is pushed onto the call stack when a subroutine call is executed. (1)	
		Each stack frame holds the return address and the parameters passed to a subroutine, and the local variables used in the subroutine. (3)
		A stack may hold many stack frames when subroutines are nested, one for each subroutine currently being executed. (1)
		The contents of a stack frame are popped when a subroutine completes, and execution resumes at the line after the call statement. (1)	
	(b)	Figure 1 shows the skeleton of a program containing several subroutine calls.	

			Figure 1					Figure 2

	100
	SUB subA(p1)

	101
	 subB (p1, 4)

	102
	 …

	199
	ENDSUB

	
	

	200
	SUB subB(p10)

	201
	 x 12

	202
	 subC (p10, x)

	203
	 …

	299
	ENDSUB

	
	

	300
	SUB subC (p1, p2)

	301
	 …

	399
	ENDSUB

	
	

	
	

	500
	main()

	501
	 p10 8

	502
	 subA(p10)

	503
	 …

	
	

	Line
	Stack
	Mark

	500
	
	

	501
	
	

	502
	[503]
	

	100
	
	

	101
	[503,102]
	(1)

	200
	
	

	201
	
	

	202
	[503,102,203]
	(1)

	300
	
	

	301
	
	

	399
	[503,102]
	(1)

	203
	
	

	299
	[503]
	(1)

	102
	
	

	199
	[]
	(1)

	503
	
	

		

Complete the table in Figure 2 to show the state of the stack during these subroutine calls, using the notation [return address1, return address2, ..]
Show only return addresses.
The state of the stack at line 502 is given in the table.	[5]
· Each correct line = 1 mark
[Total 20 Marks]
2

image1.png

