[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Worksheet 3 Stacks
Unit 7 Data structures

Worksheet 3 Stacks Answers
Task 1 Crushing cars

1.	(a)	Complete the following to show the operations implemented on a collection of burnt-out cars. The stack can hold a maximum of 6 items.

		Cars: Mondeo, Golf, Fiesta, Punto, Civic, Porsche
		
		Representation of the stack drawn both horizontally and vertically are shown. Show the state of the stack after each push and pop operation in both representations, and in the first table, show any results returned.

	

	Stack
	Result returned

	carStack Stack()
	[]
	

	carStack.push (Mondeo)
	[Mondeo]
	

	carStack.push (Golf)
	[Mondeo, Golf]
	

	carStack.isEmpty()
	
	False

	carStack.push(Fiesta)
	[Mondeo, Golf, Fiesta]
	

	carStack.push(Punto)
	[Mondeo, Golf, Fiesta, Punto]
	

	carStack.pop()
	[Mondeo, Golf, Fiesta]
	Punto

	carStack.push(Civic)
	[Mondeo, Golf, Fiesta, Civic]
	

	carStack.push(Porsche)
	[Mondeo, Golf, Fiesta, Civic, Porsche]
	

	carStack.isFull()
	
	False

	carStack.pop()
	[Mondeo, Golf, Fiesta,Civic]
	Porsche

	carStack.pop()
	[Mondeo, Golf, Fiesta]
	Fiesta

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Punto

	
	
	
	
	
	
	Fiesta
	
	Fiesta

	
	
	
	
	Golf
	
	Golf
	
	Golf

	
	
	Mondeo
	
	Mondeo
	
	Mondeo
	
	Mondeo

	
	
	
	
	
	
	
	
	

	
	
	
	
	Porsche
	
	
	
	

	
	
	Civic
	
	Civic
	
	Civic
	
	

	Fiesta
	
	Fiesta
	
	Fiesta
	
	Fiesta
	
	Fiesta

	Golf
	
	Golf
	
	Golf
	
	Golf
	
	Golf

	Mondeo
	
	Mondeo
	
	Mondeo
	
	Mondeo
	
	Mondeo

2.	Complete the pseudocode below for a program which uses a stack to test an input string to determine whether it is a palindrome (the same backwards and forwards, like “peep”)

	Assume that a class Stack implements the operations in the table in question 1.
	
OUTPUT “Please enter a word or phrase to be tested”)
INPUT myString
list1 list(myString) #convert myString to a list of characters
numChars len(list1)
s Stack()
#push each character onto the stack
FOR char in list1
	s.push(char)
ENDFOR

list2 = [] #create an empty list
#pop each character off the stack into a second list
FOR char = 0 to numChars - 1
	list2.append(s.pop())
ENDFOR

#compare the two lists, one is the reverse of the other
IF list1 == list2 THEN
 print("This is a palindrome")
ELSE
 print("This is not a palindrome")
ENDIF

(See Python program palindrome.py in folder Topic3 Python programs

Task 2 Subroutine snake

3.	(a)	Fill in the return addresses to show the state of the stack created during the execution of the progam beginning at main(). Each {stack frame} is indicated with curly brackets and contains parameters, local variables and return addresses.

	78
	SUB subA(p1)

	79
	 subB (p1, 4)

	80
	 …

	97
	ENDSUB

	
	

	99
	SUB subB(p10, y)

	100
	 x 12

	101
	 subC (p10, x)

	102
	 …

	110
	ENDSUB

	
	

	144
	SUB subC(p3, p4)

	145
	 …

	146
	 …

	151
	ENDSUB

	
	

	222
	main()

	223
	 subA(7)

	224
	 …

	Line
	Stack

	223
	{call subA: parameter = 7, return address = 224 }

	78
	

	79
	{call subA: p1 =7, return address = 224 } { call subB: p10 = 7, y =4, return address = 80 }

	99
	

	101
	{call subA: p1 =7, return address = 224 } {call subB: p10 = 7, y =4, x = 12, return address = 80 }{call subC: p3 = 7, p4 = 12, return address = 102 }

	144
	

	145
	

	151
	(pop the stack, go to the return address)

	102
	{call subA: 7, return address = 224 } {call subB: 7, 4, 12, return address = 80 }

	110
	(pop the stack, go to the return address)

	80
	{call subA: p1 =7, return address = 224 }

	97
	(pop the stack, go to the return address)

	224
	[bookmark: _GoBack]…

3

image1.png

