20

10 A graph can be drawn to represent a maze. In such a graph, each graph vertex
represents one of the following:

« the entrance to or exit from the maze

e a place where more than one path can be taken

e adeadend.

Edges connect the vertices according to the paths in the maze.

Figure 6 shows a maze and Figure 7 shows one possible representation of this maze.
Position 1 in Figure 6 corresponds to vertex 1 in Figure 7 and is the entrance to the
maze. Position 7 in Figure 6 is the exit to the maze and corresponds to vertex 7.
Dead ends have been represented by the symbol — in Figure 7.

Figure 8 shows a simplified undirected graph of this maze with dead ends omitted.

Figure 6
3
1 2 6
— 7
4 5 _

Figure 8

Figure 7

Graph representing maze
with dead ends omitted

Representation of maze
including dead ends

M/Jun12/COMP3

Do not write
outside the
box

Do not write
21 outside the
box

10 (a)

10 (b)

10 (c)

The graph in Figure 8 is a tree.

State one property of the graph in Figure 8 that makes it a tree.

(1 mark)
The graphs of some mazes are not trees.

Describe a feature of a maze that would result in its graph not being a tree.

(1 mark)

Complete the table below to show how the graph in Figure 8 would be stored using an
adjacency matrix.

(2 marks)

Question 10 continues on the next page

Turn over »

M/Jun12/COMP3

22

10 (d) (i)

10 (d) (ii) To enable the use of recursion a programming language must provide a stack.

10 (e)

What is a recursive routine?

(1 mark)

Explain what this stack will be used for and why a stack is appropriate.

(2 marks)

Figure 8 from page 20 is repeated here so that you can answer Question 10(e) without
having to turn back in the question booklet.

Figure 8 (repeated)

A recursive routine can be used to perform a depth-first search of the graph that
represents the maze to test if there is a route from the entrance (vertex 1) to the exit
(vertex 7).

The recursive routine in Figure 9 is to be used to explore the graph in Figure 8. It has
two parameters, V (the current vertex) and Endv (the exit vertex).

M/Jun12/COMP3

Do not write
outside the
box

Do not write
23 outside the

box
T
Figure 9

Procedure DFS(V, EndV)
Discovered V] <« True
If V = EndV Then Found « True
For each vertex U which is connected to V Do

|
|
|
|

If Discovered[U] = False Then DFS (U, Endv) V
EndFor ,
CompletelyExplored V] « True

EndProcedure

Complete the trace table below to show how the Discovered and
CompletelyExplored flag arrays and the variable Found are updated by the
algorithm when it is called using DFS (1, 7).

The details of each call and the values of the variables V, U and EndV have already
been entered into the table for you. The letter F has been used as an abbreviation for
False. You should use T as an abbreviation for True.

Discovered CompletelyExplored
Call |v|UEndv|[1]|[2]|[3]1([41|[51|[61([71|[11|[2] [31|[41][51 _”mL [7]1 | Found
e FIFIFIF|IFIFIF|F|F]F[F][F[F] F | F

DFS(1,7)[1|2| 7 | |
DFS(2,7)|2[1| 7 |
| 3| 7 B \‘ B 1 * o
DFS(3,7)|3[2| 7 .,
DFS(2,7)(2|4| 7
DFS(4,7)|4|2| 7

5 7
DFs(5,7)|5|4| 7

6 7
DFS(6,7)|6|5| 7
DFS(5,7)(5|7| 7
DFS(7,7)|7|5| 7
DFS(5,7)|5|-| 7 PR o S EEEE e
DFS(4,7)[4|-| 7
DFs(2,7)(2|-| 7
DFS(1,7)[1]-| 7 \A

(5 marks) 12

N

Turn over »

M/Jun12/COMP3

