Coastal systems geomorphological & coastal processes *3.1.3.2* **ANSWERS**

Q1	Match the terms with their process description		
А	Repeated heating & cooling of rock leading to expansion & contraction	Exfoliation	
В	Tree roots widening fissures at the top of a cliff	Biological action	
С	Cliff faces being chipped as storm waves fling material at rock faces	Corrasion/abrasion	
D	Smoothing, rounding & reducing of beach material by swash/backwash	Attrition	
Е	Powerful effervescence of compressed air as waves recede from joints Cavitation		
	Corrasion/abrasion cavitation attrition exfoliation biologic	al action	

Q2	Tick whether these involve Erosion or Weathering processes	Erosion	Weathering
А	Freeze thaw action		\checkmark
В	Hydraulic action	\checkmark	
С	Dissolving action by acid rain		\checkmark
D	Quarrying	\checkmark	
E	Attrition	\checkmark	
F	Corrasion	\checkmark	
G	Oxidation of ferrous minerals within coastal rocks		\checkmark

Q3	Tick the 2 factors out of each trio that will be most influential in the following processes			
A	Freeze-thaw action	Diurnal temp.	Predominant	Degree of
		range	wave direction	jointing of rock
		\checkmark		✓
Joi	ints & fractures are required for v	vater to penetrate (day), fre	eze (night) & expa	nd in to widen
В	Cliff slumping	Offshore currents	Nature of cliff	Intensity of
			material	rainfall
			✓	✓
	Softer cliff material that is mad	e heavier & lubricated by ra	infall is more likel	y to slump
С	Spit formation	Change in angle	Longshore drift	Concordant
		of coastline		coast
		\checkmark	\checkmark	
L/dr	ift provides the material that is de	posited as wave energy declin	es at changes of co	oast orientation.
lt car	n extend across a discordant coastl	ine irrespective of changes in	the rock type.	
D	Longshore drift	Predominant	Predominant	Tidal range
		wave direction	wind direction	
		\checkmark	✓	
Pr	edominant wind direction will driv	e the predominant wave dire	ction at an angle to	o the beach for
	swash to be drive	en up at an angle irrespective	of tidal range.	
E	Cliff retreat	Nature of cliff	High energy	Length of ocean
		material	coast	fetch
		✓	✓	
Cliffs	of softer material will retreat fast	er at a high energy coast. It's	not always the long	gest fetch that
creat	es high energy conditions; the N. S	ea has a shorter fetch than th	e Atlantic but the	Holderness coast
is the	e fastest eroding coast in the count	ry when high energy conditio	ns prevail.	

Coastal systems geomorphological & coastal processes 3.1.3.2 ANSWERS

Q4	How would geomorphological & coas	tal processes be different along the		
	Holderness coast if these variables were changed?			
Development of stacks		Retreat of the Holderness coast		
If the coastal rock at Flamborough Head was		If the boulder clay cliffs were twice the		
granite		height		
Unlikely that stacks would develop. The		Higher cliffs would slump a greater quantity		
hardness of granite compared with chalk		of material onto the beach in mass		
means it is far more resistant to erosion. The		movement. This needs removing by wave		
structure of granite lacks the fissures, joints		action before a new wave-cut notch can		
and bed	lding planes that facilitate the	develop in the new cliff position and lead to		
develop	ment of caves to erode into arches	further cliff slumping. The rate of retreat		
and sta	cks. The nature and structure of an	would slow down considerably, although it		
igneous	rock means far longer is required for	would continue.		
caves to	o develop and the landforms, if they			
did occu	ır, would take longer, and last longer.			
	Growth of Spurn Point	The East Yorkshire coastal landscape		
If coasta	al erosion protection methods were	If it was an entirely concordant coastline		
put in p	lace along the full Holderness coast	The Holderness coastal landscape is defined		
Spurn point requires a continuous		by its discordant nature: a chalk headland at		
provisioning of eroded material from upcoast		Flamborough and glacial deposits of boulder		
to be deposited along its length by longshore		clay along the majority of the coastline. This		
drift. It this supply was interrupted by coastal		gives rise to different processes and sediment		
protection, the spit would no longer grow		inputs into the sub-cell. If the coast was all		
southwards and it would begin to erode more		chalk, or all boulder clay the range of erosion		
rapidly at its vulnerable neck. A breach is		features would be reduced as would the		
more lik	ely and the entire spit could be rapidly	nature of depositional features.		
eroded as the balance of erosion/deposition is				
tipped in favour of sediment loss.				

Q5 **Compare and contrast the roles played by Weathering and Erosion processes at the coast.**

Weathering:

This causes the loss of internal coherence of solid rock and eventual disintegration in situ. The debris from weathering is often removed by agents of erosion. This may present a fresh rock surface for further weathering to take place. Similar to erosion, there are physical (mechanical), chemical and biological forms of weathering. However, t often takes place well above direct wave action, affecting rock that is not directly subject to erosion by marine erosional processes, but may take place all the way down to the sea bed.

Erosion:

This causes rock to break down and be removed from its location. Marine erosion is often confined to the intertidal zone between low and high tide, although wave action in storm conditions may affect cliff faces at some height above high tide. Erosion processes can operate on their own, or upon the results of weathering, removing rock debris and acting on weaknesses that weathering has initiated/exploited. Erosion involves transportation of rock debris, unlike weathering.