Topic: Estuarine and shoreline successions *3.1.3.3 Coastal systems and landscapes*

What you need to know				
Factors involved in sand dune formation				
Sand dune succession: psammosere development				
Mudflat/saltmarsh succession: halosere development				

Introduction:

Depositional features at the coast may be temporary (beach cusps) or longer-lasting (spits), but others are transformational; they undergo change from one form to another over relative short periods of time measured in decades. Environmental habitats at the coast alter as a result of plant succession, which cause changes to micro-climate features and soil states, and which – in turn – create more favourable conditions for new plant species to colonise a section of shoreline.

Sand dune development

Sand dunes are more likely to develop behind an active beach zone where:

- The gradient of the ground inland adjacent to a beach is relatively flat.
- Strong onshore winds provide the energy input to move sand inland from a beach.
- A beach is composed of fine sand particles rather than shingle, pebbles or rocks.
- A large area of beach is exposed at low tide.

As dry sand grains are blown inland by saltation (series of bounces) and rolling over the surface they are likely to accumulate against natural or human obstacles. Marram grass, being tolerant of very sandy conditions often colonises upper beach zones and begins to stabilize sand movement in a positive feedback cycle that accentuates the initial change:

Sand	Wind speed	Marram grass	Marram leaves	Microclimate
accumulates	drops behind	colonises	further reduce	and soil
against a	accumulation	embryo dunes	wind speed and	conditions
feature and	resulting in	stabilizing	capture more	change allowing
builds upper	more sand	further dune	blown sand.	colonisation by
beach height	deposition	migration	Decaying plants	additional
			add humus	species

Time

Topic: Estuarine and shoreline successions *3.1.3.3 Coastal systems and landscapes*

Psammosere development

Sand dunes may grow in front and behind initiating dunes. Over time a succession of plants colonises a dune system which also gives a longitudinal profile from upper beach extending inland. As new sand dunes evolve towards heath and pine woodland inland, the ecological succession is called a psammosere.

Embryo	Foredunes	Yellow	Grey dune	(Dune	Heath &
dune		dune		slack)	woodland
Upper	Colonisation	А	Fixed dunes	(May occur	Sandy soils
beach area.	by hardy	vegetation	where	in front of,	have
Mobile	species	mat	accumulating	or behind,	developed
dunes	tolerant of	develops on	humus	grey dune.)	that can
accumulate	aridity, salt,	the upper	changes sand	Depression	support
sand	wind and	and back	to develop a	where	scrub
	exposure	dune	soil horizon	water table	heaths of
	such as	surfaces	with more	is close to	willow and
	marram and	stabilising	moisture and	the surface	birch, pine
	sea	the dune	nutrients.	SO	trees and a
	sandwort	system	Plantains,	moisture-	climate
			wild thyme	loving	climax of
			and sea	plants	alder and
			buckthorn	colonise	oak trees.
			colonise.	such as flag	
				iris and	
				willow.	

Shore

Inland

Key ecosystem concepts:

Plant succession: dominant species colonising a habitat, changing the features of the habitat, and making it more conducive for other species to colonise and thrive.

Climatic climax community: The dominant plant species at the end of a phase of plant succession that reaches a state of ecological equilibrium appropriate to the climate experienced there.

Seral community: one or more of the intermediate stages of dominant vegetation stages on the way to a climatic climax community.

Psammosere: the characteristic plant succession that develops on a new sand dune ecosystem and achieves, or is on the way to achieving a climax community.

Topic: Estuarine and shoreline successions *3.1.3.3 Coastal systems and landscapes*

Estuarine/saltmarsh development

Mudflats at the edges of estuaries are frequently zones of net deposition of fine sediment. Over time these may evolve into saltmarsh ecosystems with colonisation by plants that can tolerate high salt conditions and frequent inundation at high tide and exposure at low tide.

A positive feedback loop operates, amplifying the initial deposition as submerged and semi-submerged plants trap more sediment and reduce water velocity leading to increased deposition. Plant life-cycles deposit decaying material on top of which new plants grow, gradually raising the height of the saltmarsh. As height increases, saline conditions reduce, inundation is less frequent and different seral stages occur towards a climax community. Plant succession occurring in conditions of water is termed a hydrosere. A sub-set occurring in salt (as opposed to fresh) water is known as a halosere.

Halosere succession

Submerged	Mudflat	Low	High	Climax
estuary shore	Saltmarsh	saltmarsh	saltmarsh	vegetation
	establishment	Saltmarsh	Saltmarsh	
		stabilisation	maturity	
Marine algae	Pioneer species	Colonisation by	Vegetation is	Deciduous
and sea lettuce	trap sediment	hardy grass	dominated by	woodland
are early	and calm tidal	species that	low-growing	develops that
colonizers of	waters flowing	can tolerate	flowering	shades and
nearly	amongst early	high saline and	plants such as	dominates
permanently	colonisers.	pH conditions	scurvy grass	competition.
submerged	Plants such as	such as	and sea	Species are
mudflat where	glasswort and	plantains, sea	lavender, with	non-halophytic
tidal water is	cordgrass	aster and thrift.	sedges and	(non-salt-
clear enough to	(spartina)	Max 4 hrs.	rushes in	tolerant) such
let high light	increasingly	submergence.	hollows and	as alder, birch
levels through.	raise the		creek banks.	and eventually,
They help	surface above			oak.
stabilize the	low tide.			
estuary mud.	Max. 4 hrs			
	exposure.			

Rates of succession

The rate at which ecosystems develop to a climatic climax from initial colonisation may be relatively rapid (measured in centuries) or take longer (over thousands of years) depending on growth rates and abundance of colonising species. But many environments are interrupted before attaining climax stability as conditions change. It may be a change in climate, sea level, or another key environmental factor.

Topic: Estuarine and shoreline successions *3.1.3.3 Coastal systems and landscapes*

Primary succession (prisere): uninterrupted development from first colonisation to climax vegetation.

Secondary succession: a succession that takes over once natural conditions have changed and replaces a primary succession sequence.

Plagioclimax: where human intervention has interrupted the natural succession that would have taken and delivered an alternative climax of vegetation by, for example, allowing sheep to graze a saltmarsh.