PHYSICS INDUCTION ASSIGNMENT

NAME

There is no time limit for this assignment, but it should be completed by the first day of lessons.

YOU ARE EXPECTED TO USE A BOOK OR WEBSITE TO LOOK UP RELEVANT MATERIAL

e.g. CGP Revision Guides

http://www.s-cool.co.uk/

http://www.bbc.co.uk/schools/gcsebitesize/science/

You should answer all the questions in the space provided.

The marks for questions are shown in brackets.

Set out your answers clearly, showing substitution into appropriate formulae – you will not gain full marks for a question if you only give the end answer.

Units should be given wherever appropriate.

You are expected to use a calculator where appropriate.

Select appropriate formulae from the list given.

Question	Mark	Out of
1	3.20020	3
2		8
3		
		6
4		9
5		6
6		16
7		11
8		7
9		6
TOTAL		72
%		

The following formulae may be useful:

ELECTRICITY

$$I = \frac{Q}{t}$$

$$I = \frac{Q}{t}$$
 $V = \frac{W}{Q}$ $R = \frac{V}{I}$

$$R = \frac{V}{I}$$

power.

$$P = VI = I^2 R = \frac{V^2}{R}$$

MECHANICS

$$v = \frac{s}{t}$$

$$v = \frac{s}{t}$$
 $a = \frac{\text{change in } v}{\text{time taken}}$

equations of motion
$$v = u + at$$
 $s = \frac{(u+v)}{2}t$

$$v = u + at$$

$$s = \frac{(u+v)}{2}$$

work, energy and power

$$E_{\rm K} = \frac{1}{2} \, m \, v^2 \qquad E_{\rm P} = mg \, h$$

$$E_P = mgh$$

$$P = \frac{W}{t}, P = Fv$$

$$efficiency = \frac{\text{useful output power}}{\text{input power}}$$

WAVES

wave speed
$$c = f\lambda$$
 period $T = \frac{1}{f}$

$$T = \frac{1}{f}$$

Where

I is current

Q is charge

t is time

P is power

V is potential difference (voltage)

R is resistance

v is velocity(final)

u is velocity(initial)

a is acceleration

W is work done/energy transferred

h is height

c is wave speed

f is frequency

T is period

1. In a motor vehicle, a relay is used to switch the 12 V, 60 W headlights on and off. The diagram shows the circuit.

(3	marks)
	••
Calculate the current in the relay coil when it is connected to a 12 V supply.	
The resistance of the relay coil is 150Ω .	

- 2. Sound waves are diffracted when they pass through a gap in a barrier.
 - (a) (i) Complete the diagrams below to show how diffraction depends on the size of the gap.

(ii)	What other factor affects the diffraction of a wave passing through a gap?

(b)		A typical frequency of sound used for speech is 1000 Hz. The speed of sound in air is 330 m/s.				
	(i)	Show that sound with a frequency of 1000 Hz has a wavelength of 0.33 m in a	ir.			
			(3 marks)			
3.	(i)	A cyclist and her cycle have a total mass of 85 kg. Calculate the combined kinetic energy of the cyclist and cycle when travelling speed of 12 m/s.	at a			
			(3 marks)			
	(ii)	The kinetic energy of the cyclist and cycle increases at an average rate of 180 joules per second. Calculate the time it takes to gain this energy.				
			(3 marks)			
(a)		electric motor is used to raise a mass of 1.5 kg through a vertical height of 1.2 m. load is raised at a steady speed.				
	(i)	Calculate the increase in gravitational potential energy of the load when it is rathrough 1.2 m. The gravitational field strength is 9.8 N/kg.	ised			
	(ii)	The time taken to raise the load is 4.0 s. Calculate the power output of the electric motor as it raises the load.	(3 marks)			
			(3 marks)			

4.

			Calculate the efficiency of the motor.	
				(2 marks)
	(b)	Sugg	gest a reason why the power given out by the motor is less than the power put in.	
				(1 mark)
5.	(a)	The g	graph shows how the output voltage of a bicycle dynamo changes with time.	
	Vol	tage in	3.0 2.0 1.0 0 0.01 0.02 0.03 0.04 0.05 Time -2.0 -3.0	in s
		(i)	How can you tell that the dynamo produces an alternating voltage?	
				(1 mark)
		(ii)	Use the graph to write down the values of	
			the amplitude of the voltage	
		(iii)	the period of the voltage Calculate the frequency of the alternating voltage.	(2 marks)
		(111)	Carculate the frequency of the alternating voltage.	
				(3 marks)
6.	Whe	n an atl	hlete attempts to jump over a horizontal hurdle he pushes down on the ground.	
	(a)	Descr	ribe the force that causes the athlete to move upwards.	
		•••••		
		••••		(2 marks)

(iii) The input power to the motor as it raises the load is 30W.

	(b) The g groun	graph shows how the upwards velocity of the athlete changes after leaving the nd.	
		4	
	Velocity in	m/s	
		2	
		Time Time	·
		0 0 2 0 0 0 0 0 8 1.0 Time	ın s
		-2	
<i>(</i> ;)		A from what time do not the othlets weak his manimum haished	
(i)		After what time does the athlete reach his maximum height?	
			(1 mark)
	(ii)	What height does the athlete reach?	
			(4 marks)
	(iii)	Calculate the acceleration of the athlete.	
	(111)	Calculate the acceleration of the atmete.	
			(3 marks)
	(iv)	What is the direction of the acceleration?	
	, ,	Explain how you can tell from the graph.	
			(2 marks)
			(2 marks)
	(v)	The mass of the athlete is 65 kg.	
		Calculate the force required to cause this acceleration.	
			(3 marks)
	<i>(</i> •)	Name the Court that access the athlete?	ŕ
	(vi)	Name the force that causes the athlete's acceleration.	

(1 mark)

7. The diagram shows the arrangement used for copper-plating an object. The electrolyte used is copper sulphate which when dissolved in water produces positive copper (Cu^{2+}) ions and negative sulphate (SO_4^{2-}) ions.

(a)	(i)	On the diagram, add arrows to show which way the ions move.	(1 mark)
	(ii)	Which meter reading shows that the ions are moving through the electrolyte? Explain your answer.	
			(2 marks)
(b)		electrolysis experiment, a voltage of 6 V produced a current of 0.5 A. The current of 5 minutes.	nt
	(i)	Calculate the charge passing through the electrolyte during this time.	
			(3 marks)
	(ii)	The charge on a copper ion (Cu^{2+}) is 3.2×10^{-19} coulombs. Calculate the total number of copper ions moving through the electrolyte in 5 minutes.	
			(2 marks)
	(iii)	How much energy is used in moving each copper ion through the electrolyte?	

(3 marks)

(

8. The table shows some information about the electromagnetic spectrum

Low frequency High fre							frequency	
	radio waves	micro- waves	infra-red	lig A	ght R	ultraviolet	X-rays	gamma rays
				А	D			_

(a) State tv	va abamaatamistisa	of oll	electromagnetic waves.
(a) State D	NO CHAFACTERISTICS	OI all	electromagnetic waves.

1	
2	

(2 marks)

((b)) (i) Wh	at is the	colour of	f the lig	ht at \mathbf{A} ?

	(1 mark)

(ii) What is the colour of the light at **B**?

(1 mark)

(c) (i) If the speed of light is 3.0×10^8 m/s, calculate the wavelength of an electromagnetic wave of frequency 4.0×10^{12} Hz

•••••	•••••

(3 marks)

9. The diagram shows two forces acting on a body. The diagonal (which is the hypotenuse of a right-angled triangle) represents the resultant (overall) force.

Calculate the resultant force, R.

θ \	
1200 N	
Calculate the angle θ	(3 marks)
	(3 marks)