Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2009

Physics A

PHYA1

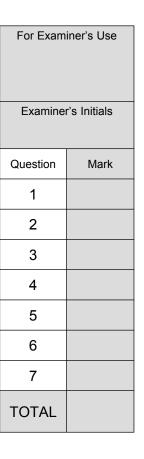
Unit 1 Particles, Quantum Phenomena and Electricity

Tuesday 13 January 2009 1.30 pm to 2.45 pm

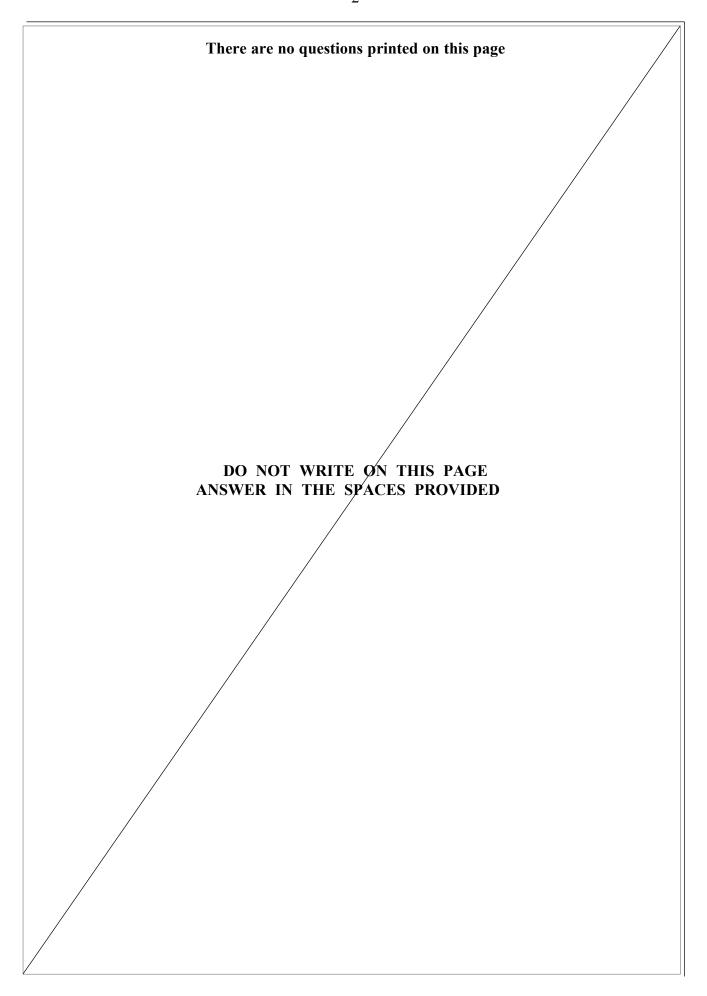
For this paper you must have:

- a pencil and a ruler
- a calculator
- a Data and Formulae book.

Time allowed


1 hour 15 minutes

Instructions


- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculater where appropriate.
- A Data and Formulae Book is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

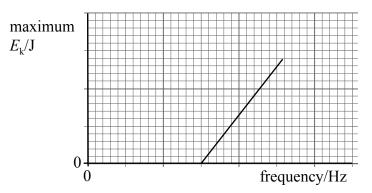
Answer all questions in the spaces provided.

1 Figure 1 shows part of an energy level diagram for a hydrogen atom.

Figure 1

1 (a) The level, n = 1, is the ground state of the atom. State the ionisation energy of the atom in eV.

- 1 (b) When an electron of energy 12.1 eV collides with the atom, photons of three different energies are emitted.
- 1 (b) (i) On **Figure 1** show with arrows the transitions responsible for these photons. (3 marks)
- 1 (b) (ii) Calculate the wavelength of the photon with the smallest energy. Give your answer to an appropriate number of significant figures.


9

2		en light of a certain frequency is shone on a particular metal surface, electrons are emitted a range of kinetic energies.					
2	(a)	 Explain in terms of photons why electrons are released from the metal surface, and why the kinetic energy of the emitted electrons varies upto a maximum value 					
		The quality of your written communication will be assessed in this question.					
		(6 marks)					
		(* 					

2 (b) The graph below shows how the maximum kinetic energy of the electrons varies with the frequency of the light shining on the metal surface.

2 (b) (i) On the graph mark the *threshold frequency* and label it f_0 .

(1 mark)

2 (b) (ii) On the graph draw a line for a metal which has a higher threshold frequency.

(2 marks)

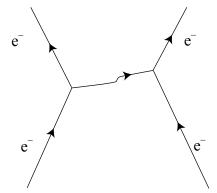
2 (b) (iii) State what is represented by the gradient of the graph.

(1 m qub)

(1 mark)

2 (c) The threshold frequency of a particular metal surface is 5.6×10^{14} Hz. Calculate the maximum kinetic energy of emitted electrons if the frequency of the light striking the metal surface is double the threshold frequency.

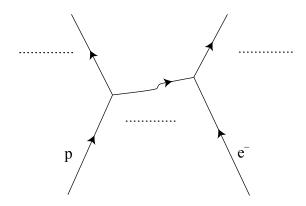
 $answer = \dots \qquad \qquad J$


(3 marks)

13

3 (a) Figure 2 shows the Feynman diagram for a particular interaction.

Figure 2


3	(a)	(i)	State the type of interaction involved and name the exchange particle.
			(2 marks)
3	(a)	(ii)	State two quantities other than energy and momentum, that are conserved in this interaction.

(2 marks)

3 (b) Figure 3 shows the Feynman diagram for another type of interaction.

Figure 3

- 3 (b) (i) Complete the diagram to show the two particles formed in the interaction and the exchange particle. (3 marks)
- 3 (b) (ii) Name the type of interaction responsible for this exchange particle.

	(1 mark)

3 (b) (iii) Energy and momentum are conserved in this interaction.

State **two** other quantities that must be conserved and show that they are conserved in this interaction.

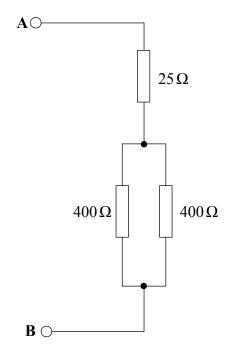
(4 marks)

3 (b) (iv) The exchange particle in this interaction was discovered by experiment with a rest mass that had been predicted. Why is it important to test by experiment the prediction of a scientific theory?

• • • • • • • • • • • • • • • • • • • •		 	
	• • • • • • • • • • • • • • • • • • • •	 •	

(2 marks)

4	(a)	State what is meant by the wave-particle duality of electrons.			
			(1 mark)		
4	(b)		trons of wavelength 1.2×10^{-10} m are required to investigate the spacing between es of atoms in a crystal.		
4	(b)	(i)	Calculate the momentum of an electron of this wavelength stating an appropriate unit.		
			momentum of electron =		
			(3 marks)		
4	(b)	(ii)	Calculate the speed of such an electron.		
			speed of electron =		
4	(b)	(iii)	Calculate the kinetic energy of such an electron.		
			kinetic energy of electron =		


8

5	(a)	Som	e materials exhibit the property of <i>superconductivity</i> under certain conditions.
		•	State what is meant by superconductivity. Explain the required conditions for the material to become superconducting.
			(3 marks)
5	(b)	_	are 4 shows the cross-section of a cable consisting of parallel filaments that can be esuperconducting, embedded in a cylinder of copper.
			Figure 4 copper cylinder
			filament
5	(b)	(i)	The cross-sectional area of the copper in the cable is $2.28 \times 10^{-7} \text{m}^2$. The resistance of the copper in a 1.0m length of the cable is 0.075Ω . Calculate the resistivity of the copper, stating an appropriate unit.
			answer =(3 marks)
5	(b)	(ii)	State and explain what happens to the resistance of the cable when the embedded filaments of wire are made superconducting.
			(3 marks)

6 Figure 5 shows an arrangement of resistors.

Figure 5

6 (a) Calculate the total resistance between terminals A and B.

answer = Ω (2 marks)

6	(b)	A potential difference is applied between the two terminals, A and B , and the power dissipated in each of the 400Ω resistors is $1.0\mathrm{W}$.		
6	(b)	(i)	Calculate the potential difference across the 400Ω resistors.	
			answer =V	
6	(b)	(ii)	Calculate the current through the 25Ω resistor.	
			answer =A	
6	(b)	(iii)	Calculate the potential difference applied to terminals A and B .	
			answer =V	
			(6 marks)	
			Turn over for the next question	

7	A ca	r batte	ery has an <i>emf</i> of 12V and an <i>internal resistance</i> of $5.0 \times 10^{-3} \Omega$.
7	(a)	(i)	Explain what is meant by the emf of the battery.
			(1 mark)
7	(a)	(ii)	Explain what is meant by the internal resistance of the battery.
			(1 mark)
7	(b)	The	battery is used to provide the starting motor of a car with a current of 800 A.
7	(b)	(i)	Calculate the potential difference across the terminals of the battery.
			answer =V
			(2 marks)
7	(b)	(ii)	Calculate the rate of dissipation of energy due to its internal resistance stating an appropriate unit.
			answer =(3 marks)
7	(c)	State	e and explain the effect of attempting to use a battery with a much higher internal
,	(c)		tance to start the car.
		•••••	
			END OF QUESTIONS (2 marks)
Copyrig	ght © 20	009 AQA	and its licensors. All rights reserved.

9