Physics A

PHYA2

Unit 2 Mechanics, Materials and Waves

Data and Formulae Booklet

DATA FUNDAMENTAL CONSTANTS AND VALUES

Ou mustice.	Sumb al	Value	· Units
Quantity	Symbol	3.00×10^8	m s ⁻¹
speed of light in vacuo	c		
permeability of free space	$\mu_{ m o}$	$4\pi \times 10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_{o}	8.85×10^{-12}	$F m^{-1}$
charge of electron	e	-1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$N\ m^2\ kg^{-2}$
the Avogadro constant	$N_{ m A}$	6.02×10^{23}	\mathbf{mol}^{-1}
molar gas constant	R	8.31	$J \ K^{-l} \ mol^{-l}$
the Boltzmann constant	k	1.38×10^{-23}	$J K^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W\ m^{-2}\ K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$e/m_{ m e}$	1.76×10^{11}	$\mathrm{C}\ \mathrm{kg}^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3)\times10^{-27}$	kg
proton charge/mass ratio	$e/m_{ m p}$	9.58×10^{7}	$\mathrm{C}\ \mathrm{kg}^{-\mathrm{l}}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5)\times10^{-27}$	kg
gravitational field strength	g	9.81	$N kg^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m}~\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.3 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^6

GEOMETRICAL EQUATIONS

~ 1	
arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$=2\pi rh$
volume of cylinder	$=\pi r^2 h$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

This insert page should **not** be sent to the examiner

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

		T	T
class	name	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	$v_{\rm e}$	0
		v_{μ}	0
	electron	v_{μ} e^{\pm}	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	$\pi^{\frac{\pm}{2}}$	139.576
		π^0	134.972
	K meson	Κ [±]	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of Leptons

	Lepton number
particles: e^- , v_e ; μ^- , v_μ	+1
antiparticles: $e^+, \overline{\nu_e}$; $\mu^+, \overline{\nu_\mu}$	-1

Photons and Energy Levels

 $E = hf = hc / \lambda$ $photoelectricity \qquad hf = \phi + E_{K \text{ (max)}}$ $energy \ levels \qquad hf = E_1 - E_2$ $de \ Broglie \ Wavelength \qquad \lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

current and $I = \frac{\Delta Q}{\Delta t}$ $V = \frac{W}{Q}$ $R = \frac{V}{I}$ emf $\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R+r)$

resistors in series $R = R_1 + R_2 + R_3 + \dots$

resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

resistivity $\rho = \frac{RA}{L}$

power $P = VI = I^{2}R = \frac{V^{2}}{R}$

alternating current $I_{\text{rms}} = \frac{I_0}{\sqrt{2}}$ $V_{\text{rms}} = \frac{V_0}{\sqrt{2}}$

MECHANICS

moments moment = Fd

velocity and $v = \frac{\Delta s}{\Delta t} \qquad a = \frac{\Delta v}{\Delta t}$

equations of motion v = u + at $s = \frac{(u+v)}{2}t$

 $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$

force F = ma

work, energy and $W = F s \cos \theta$ power $E_K = \frac{1}{2} m v^2$

 $E_{K} = \frac{1}{2} m v^{2} \qquad \Delta E_{P} = mg\Delta h$ $P = \frac{\Delta W}{\Delta t}, P = Fv$

 $efficiency = \frac{\text{useful output power}}{\text{input power}}$

MATERIALS

density $\rho = \frac{m}{V}$ Hooke's law $F = k \Delta L$

Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$ tensile stress = $\frac{F}{A}$

nergy $E = \frac{1}{2}F\Delta L$ tensile strain = $\frac{\Delta L}{L}$

WAVES

wave speed $c = f\lambda$ period $T = \frac{1}{f}$ fringe spacing $w = \frac{\lambda D}{c}$ diffraction $d \sin \theta = n\lambda$ grating

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

critical angle $\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ for } n_1 > n_2$