

Pure 7 – Double Angle and $Rsin(x+\alpha)$

Please <u>complete</u> this homework by _____. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

1. Given $y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4$, x > 0

find the value of $\frac{dy}{dx}$ when x = 8, writing your answer in the form $a\sqrt{2}$, where *a* is a rational number.

2. Joan brings a cup of hot tea into a room and places the cup on a table. At time *t* minutes after Joan places the cup on the table, the temperature, θ °C, of the tea is modelled by the equation

$$\theta = 20 + A e^{-kt},$$

where A and k are positive constants.

Given that the initial temperature of the tea was 90 °C,

(a) find the value of A.

The tea takes 5 minutes to decrease in temperature from 90 °C to 55 °C.

- (b) Show that $k = \frac{1}{5} \ln 2$.
- **3.** The curve C_1 has equation

$$y = x^2(x+2).$$

- (a) Find $\frac{dy}{dx}$.
- (b) Sketch C_1 , showing the coordinates of the points where C_1 meets the x-axis.

(c) Find the gradient of C_1 at each point where C_1 meets the x-axis.

The curve C_2 has equation

$$y = (x - k)^2(x - k + 2),$$

where k is a constant and k > 2.

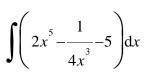
(d) Sketch C_2 , showing the coordinates of the points where C_2 meets the x and y axes.

4. Find, giving your answer to 3 significant figures where appropriate, the value of *x* for which

(a) $5^x = 10$, (b) $\log_3 (x - 2) = -1$.

- 5. Given that $2 \log_2 (x + 15) \log_2 x = 6$,
 - (a) show that $x^2 34x + 225 = 0$.
 - (b) Hence, or otherwise, solve the equation $2 \log_2(x + 15) \log_2 x = 6$.

6. Find



giving each term in its simplest form.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions. (Total 60 marks)

- 1. a) Express $3\cos\theta + 4\sin\theta$ in the form $R\cos(\theta \alpha)$. (3)
 - b) Solve $3\cos\theta + 4\sin\theta = 1$ for $0^{\circ} < \theta < 360^{\circ}$. (3)
 - c) Find the minimum value of $3\cos\theta + 4\sin\theta$.

2. a) Given that
$$\tan x \neq 1$$
, show that $\frac{\cos 2x}{\cos x - \sin x} \equiv \cos x + \sin x$ (3)

b) By expressing $\cos x + \sin x$ in the form $Rsin(x + \alpha)$, solve, for $0^{\circ} \le x \le 360^{\circ}$,

$$\frac{\cos 2x}{\cos x - \sin x} = \frac{1}{2} \tag{6}$$

3. Prove that
$$\frac{2\tan x}{1+\tan^2 x} \equiv \sin 2x$$
 (4)

4. (a) Express sin $x + \sqrt{3} \cos x$ in the form $R \sin (x + \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$.

(1)

(b) Show that the equation sec $x + \sqrt{3}$ cosec x = 4 can be written in the form

$$\sin x + \sqrt{3} \cos x = 2 \sin 2x. \tag{3}$$

- (c) Deduce from parts (a) and (b) that $\sec x + \sqrt{3} \csc x = 4$ can be written in the form $\sin 2x - \sin (x + 60^\circ) = 0$ (1)
- 5. Find all the solutions of

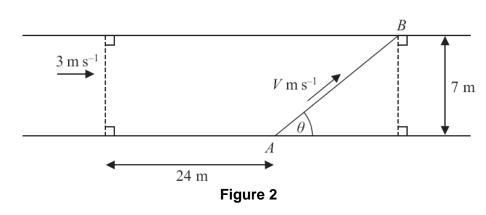
$$2\cos 2\theta = 1 - 2\sin \theta$$

$$\theta < 360^{\circ}.$$
 (6)

in the interval $0 \le \theta < 360^{\circ}$.

6. (a) Express 6 cos θ + 8 sin θ in the form $R \cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the value of α to 3 decimal places. (4)

	(<i>b</i>) p(θ) Calcu	$=\frac{4}{12+6\cos\theta+8\sin\theta}, 0 \le \theta \le 2\pi.$	
	(i)	the maximum value of $p(\theta)$,	
	(ii)	the value of θ at which the maximum occurs.	(4)
7.	(i) You m	Without using a calculator, find the exact value of (sin 22.5° + cos 22.5°) ² . hust show each stage of your working.	(5)
	(ii) (<i>a</i>)	Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form	
	() ()	$k \sin^2 \theta - \sin \theta = 0$, stating the value of k.	(2)
	(<i>b</i>)	Hence solve, for $0 \le \theta < 360^\circ$, the equation	(=)
	(D)	· · · · ·	
		$\cos 2\theta + \sin \theta = 1.$	(4)



Kate crosses a road, of constant width 7 m, in order to take a photograph of a marathon runner, John, approaching at 3 m s⁻¹.

Kate is 24 m ahead of John when she starts to cross the road from the fixed point A.

John passes her as she reaches the other side of the road at a variable point *B*, as shown in Figure 2.

Kate's speed is $V \text{ m s}^{-1}$ and she moves in a straight line, which makes an angle θ , $0 < \theta < 150^{\circ}$, with the edge of the road, as shown in Figure 2.

You may assume that *V* is given by the formula

$$V = \frac{21}{24\sin\theta + 7\cos\theta}, \qquad 0 < \theta < 150^\circ$$

(a) Express 24sin θ + 7cos θ in the form $R \cos(\theta - \alpha)$, where R and α are constants and where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(3)

Godalming

ollege

Given that θ varies,

8.

(b) find the minimum value of V.

Given that Kate's speed has the value found in part (*b*), (*c*) find the distance *AB*.

(3)

(2)