

Pure 10 – Differentiation: Chain Rule, Product & Quotient Rules

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please complete all questions.

- 1. Find the equation of the normal to the curve $y = x^2 \frac{8}{\sqrt{x}}$ at the point (4,12).
- 2. Find the values of x for which $f(x) = 3x^2 + 8x + 2$ is an increasing function.
- 3. Given that $y = 3x^5 + \frac{4}{x^2}$, find $\frac{d^2y}{dx^2}$.
- **4.** $f(x) = px^3 3px^2 + x^2 4$. When x = 2, f''(x) = -1. Find the value of p.
- 5. For the function $f(x) = 2x^3 15x^2 + 24x + 6$, find:
 - a) The coordinates of the stationary points
 - b) The nature of these stationary points (ie whether they are minimum or maximum points)
- **6.** Given that $x \neq 0$ find the set of values for which $5 > \frac{4}{x}$. Give your answer using set notation.
- 7. The equation $kx^2 2kx + 3 = 0$ where k is a constant has no real roots. Prove that k satisfies the inequality $0 \le k < 3$.
- **8.** A straight line passes through the points (a, 4) and (3a, 3). Its equation is x + 6y + c = 0. Find the values of a and c.
- 9. A line is perpendicular to the line 3x + 8y 11 = 0 and passes through the point (0, -8). What is the equation of the line in the form ay + bx + c = 0?
- 10. A point P lies on the line with equation y = 4 3x. The point P is a distance $\sqrt{34}$ from the origin. Find the two possible positions of point P.

Pure 13 1

Section 2 – Consolidation of this week's topic. Please complete all questions.

1)	Differentiate	with respond	ect to x and	d simplify	where	possible

a)
$$y = e^{x^2}$$

$$f(x) = \sin^2 x$$

c)
$$v = e^{2 \sin x}$$

a)
$$y = e^{x^2}$$
 b) $f(x) = \sin^2 x$ c) $y = e^{2\sin x}$
d) $f(x) = \sin(\sqrt{x}) + \sqrt{\sin x}$ e) $y = 2\ln(3x)$

e)
$$y = 2\ln(3x + 5)$$

[6]

2) Differentiate with respect to x and simplify where possible:

a)
$$y = 5x(3x^2 + 1)^3$$
 b) $f(x) = \sin 4x \cos 5x$ c) $y = \ln 2x \sin 3x$

b)
$$f(x) = \sin 4x \cos 5x$$

c)
$$v = \ln 2x \sin 3x$$

[7]

3) Differentiate with respect to x and simplify where possible:

a)
$$y = \frac{x}{x^2 - 1}$$

a)
$$y = \frac{x}{x^2 - 1}$$
 b) $f(x) = \frac{e^x}{\cos x}$ c) $y = \frac{\sqrt{x}}{\sqrt{x} + 1}$

c)
$$y = \frac{\sqrt{x}}{\sqrt{x+1}}$$

[5]

4) Differentiate with respect to x and simplify where possible:

a)
$$v = x^2 e^{-3x}$$

b)
$$f(x) = \sqrt{x} \ln 3x$$

a)
$$y = x^2 e^{-3x}$$
 b) $f(x) = \sqrt{x} \ln 3x$ c) $y = x \ln \left(\frac{x-1}{x+1}\right)$

d)
$$f(x) = \ln(\cos x)$$

[11]

5) A curve has the equation
$$y = xe^{x^2}$$
.

[8]

- a) Find the equation of the tangent to the curve at x = 1.
- b) Find the coordinates of the points where the tangent cuts the x and y axes.
- c) Find the area of the triangle bounded by this tangent and the x and y axes.
- 6) The curve $y = (x + 3)(x 1)^3$ crosses the x axis at 2 points P and Q and has a turning point at R. Given that the x coordinate of P is less than the x coordinate of Q, write down the coordinates of P and Q and find the coordinates of R, stating whether it is a minimum or maximum. [11]

7)
$$f(x) = x\sqrt{2x + 12}, x \ge -6.$$

[13]

- a) Find f'(x)
- b) Show that $f''(x) = \frac{3(x+8)}{(2x+12)^{\frac{3}{2}}}$.
- c) Find the turning point of the curve and determine its nature.

Total: 61 Marks

Pure 13 2