

Pure 13 – Integration: Standard Integrals

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

- 1. Find $\int \left(\frac{2}{x^3} 3\sqrt{x}\right) dx$
- 2. Find $\int \left((2x)^2 + \frac{\sqrt{x+5}}{x^2} \right) dx$
- 3. The curve with equation f(x) passes through the point (-1, 0). Given that $f'(x) = 9x^2 + 4x 3$, find f(x).
- **4.** Evaluate $\int_1^3 \frac{x^3 + 2x^2}{x} dx$
- 5. Evaluate $\int_{1}^{4} \frac{2+\sqrt{x}}{x^2} dx$
- 6. Given that $\int_{1}^{k} \frac{1}{\sqrt{x}} dx = 3$, find the value of the constant k.
- 7. Find the area enclosed by the curve $y = 4 3x x^2$ and the x axis.
- 8. Find the roots of the curve $y = x^3 5x^2 + 6x$. Find the total area enclosed by the curve and the x axis.
- 9. The curve $y = x^2 3x + 4$ is intersected by the line y = x + 1 at two points. Find the coordinates of the two points and the area enclosed by the curve and the line.
- 10. The curve $y = 2 x x^2$ has a tangent at the point where it crosses the y axis. Show that the area enclosed by the curve, the tangent to the curve and the x axis is $\frac{5}{6}$.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1) Integrate:

- a) $\int e^{x} dx$ b) $\int \frac{1}{x} dx$ c) $\int \cos x dx$ d) $\int \sec^{2} x dx$ e) $\int \csc x \cot x dx$ [5]
- 2) Integrate:

a)
$$\int \left(5 - \frac{3}{x}\right) dx$$

b) $\int \frac{2e^{x} + 1}{5} dx$
c) $\int \frac{3x + 1}{x} dx$
d) $\int \frac{\sin x}{\cos^2 x} dx$
e) $\int \frac{\cos x}{\sin^2 x}$
[10]

3) Integrate: a) $\int (x-2)^7 dx$ b) $\int (2x+5)^3 dx$ c) $\int \sqrt{4x-1} dx$ d) $\int \left(\frac{x}{4}-2\right)^5 dx$ e) $\int \frac{5}{(3-2x)^2} dx$

[10]

- 4) Integrate: a) $\int \frac{1}{2x-1} dx$ b) $\int \frac{2}{3x+5} dx$ c) $\int \frac{3}{2-7x} dx$ [6]
- 5) Integrate: a) $\int (\cos(5x-2) + 2e^{x+3})dx$

b)
$$\int (e^{5-2x} + \sec^2 3x) dx$$

c) $\int \left(5\sin(2x+3) + \frac{3}{5x-1} + (e^{2x}+1)^2 \right) dx$ [13]

6) The area between the curve $y = x^2 - 4x + 5$, the x-axis and the lines x = 2 and x = 5 is estimated by finding the areas of four rectangles of equal width, δx , as shown below

(a)	Write down the value of δx	(1)
(b)	Calculate the area of the largest rectangle	(2)
(c)	If the height of rectangle n is y_n , explain what is meant by $\lim_{\delta x \to 0} \sum y_n \times \delta x$	(2)
(d)	Calculate the exact value of $\lim_{\delta x \to 0} \sum y_n \times \delta x$	(3)

Total: 52 Marks