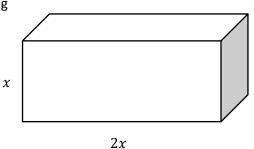


## Pure 14 – Integration: Substitution

Please <u>complete</u> this homework by \_\_\_\_\_\_. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.


## Section 1 – Review of previous topics. Please <u>complete</u> all questions.

1) a) Solve the inequalities. You must show your working.

i) 
$$3x - 5 < 11 - x$$

ii) 
$$x^2 - 6x + 5 \le 0$$

- b) Show on a graph the set of values of x that satisfy both 3x-5<11-x and  $x^2-6x+5\leq 0$
- 2) The graph of  $y = ab^x$  passes through the points (0,5) and (2,1.25)
  - a) Find exact values for a and b
  - b) Sketch the curve
- 3) Use proof by contradiction to prove that, if n is an integer, and  $n^n$  is odd, then n is odd.
- 4) The second term of a geometric series is 120 and the fifth term is 15. Work out
  - a) The common ratio of the series
  - b) The first term of the series
  - c) The sum to infinity of the series
- 5) Show that the curve with Cartesian equation  $\frac{x^2}{25} \frac{y^2}{9} = 1$  has parametric equations  $x = 5 \sec \theta$ ,  $y = 3 \tan \theta$
- **6)** A cuboid has length twice its width as shown The volume of the cuboid is 192 cm<sup>3</sup>
  - a) Show that the surface area of the cuboid, S, is given by  $S = 4x^2 + \frac{k}{x}$ , where k is a constant to be found
  - b) Find the minimum value of *S*, showing your working
  - c) Use calculus to justify that this is a minumum





## Section 2 – Consolidation of this week's topic. Please complete all questions.

## 1) Using the given substitution, find:

a) 
$$\int x(2x-1)^4 dx$$
  $u = 2x-1$  b)  $\int x\sqrt{1-x} dx$   $u = 1-x$   
c)  $\int \frac{1}{(1-x^2)^{\frac{3}{2}}} dx$   $x = \sin u$  d)  $\int \frac{1}{\sqrt{x-1}} dx$   $x = u^2$   
e)  $\int (x+1)(2x+3)^3 dx$   $u = 2x+3$  f)  $\int \frac{x^2}{\sqrt{x-2}} dx$   $u^2 = x-2$  [18]

e) 
$$\int (x+1)(2x+3)^3 dx$$
  $u=2x+3$  f)  $\int \frac{x^2}{\sqrt{x-2}} dx$   $u^2=x-2$  [18]

2) Using the given substitution, evaluate:

a) 
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$
  $x = \sin u$  b)  $\int_0^2 x(2-x)^3 dx$   $x = 2-u$   
c)  $\int_0^1 \sqrt{4-x^2} dx$   $x = 2\sin u$  d)  $\int_0^3 \frac{x^2}{x^2+9} dx$   $x = 3\tan u$  [16]

3) Use the substitution  $u^2 = e^x - 2$  to show that  $\int_{\ln 3}^{\ln 4} \frac{e^{4x}}{e^x - 2} dx = \frac{a}{b} + c \ln d$ , where a, b, c and d are itegers to be found. [8]

4) Using a suitable trigonometric substitution for x , find 
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1-x^2} dx$$
 [8]

**Total: 50 Marks**