

Pure 15 – Integration: Trig and Reverse Chain Rule

Please complete this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please complete all questions.

- **1)** a) Express $x^2 + 6x + 13$ in the form $(x + a)^2 + b$
 - b) Hench sketch the curve $y = x^2 + 6x + 13$ and label the vertex, and the point where the curve cuts the y-axis.
- 2) A radioactive isotope has mass, M grams, at time t days given by the equation $M = 50e^{-0.3t}$
 - a) What is the initial mass of the isotope?
 - b) What is the half-life of the isotope?
- **3)** Functions f(x) and g(x) are defined by:
 - $f(x) = \frac{x}{x-3}, x \in \mathbb{R}, x \neq 3 \text{ and } g(x) = \frac{5x-2}{x}, x \in \mathbb{R}, x \neq 0$
 - a) Work out an expression for $f^{-1}(x)$
 - b) Work out an expression for gf(x)
 - c) Solve the equation $f^{-1(x)} = gf(x)$
- 4) A sequence of terms is defined by the recurrence relation $u_{n+1} = 4 ku_n$, where k is a constant. Given that $u_1 = 3$.
 - a) Work out an expression in terms of k for u_2
 - b) Work out an expression in terms of k for u_3 Given also that $u_1 + u_2 + u_3 = 9$
 - c) Calculate the possible values of k
- 5) a) i) Prove that $\frac{\cos x}{\sin x} \frac{\sin x}{1 \cos x} = -\csc x$ ii) For what values of x is this identity valid?
 - b) Solve the equation $\frac{\cos x}{\sin x} \frac{\sin x}{1 \cos x} = 3$ for $0 \le x \le 2\pi$
- 6) a) Differentiate these expressions with respect to x:

i) $\frac{x}{x+2}$ ii) $\frac{3x^2}{\cos x}$ iii) $(3x^3+5)e^x$ b) Show that the derivative of $\frac{x^2+3x}{x-5}$ can be written as $\frac{ax^2+bx+c}{(x-5)^2}$ where *a*, *b*, and *c* are constants to be found.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1) Integrate with respect to x:
b)
$$2\cos x$$
 b) $\sin 4x$ c) $3\sin(\frac{\pi}{3} - x)$ d) $\sec x \tan x$
e) $\csc^2 x$ f) $\csc \frac{1}{4}x \cot \frac{1}{4}x$ [6]

a)
$$\int_0^{\frac{\pi}{2}} \cos(2x - \frac{\pi}{3}) dx$$
 b) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 3x \, dx$ c) $\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \csc x \cot x \, dx$ [9]

3) a) Express
$$\tan^2 \theta$$
 in terms of $\sec \theta$
b) Show that $\int \tan^2 x \, dx = \tan x - x + c$ [4]

4) Find:
a)
$$\int \sin x \cos x \, dx$$
 b) $\int 4 \cos^2 3x \, dx$ c) $\int \csc 2x \cot x \, dx$ [9]

5) Integrate with respect to x:
a)
$$3x^{2}(x^{3}-2)^{3}$$
 b) $e^{\sin x} \cos x$ c) $\frac{x}{x^{2}+1}$
d) $\cot^{3}x \csc^{2}x$ e) $\frac{e^{x}}{1+e^{x}}$ f) $\frac{x^{3}}{(x^{4}-2)^{2}}$
g) $\frac{(\ln x)^{3}}{x}$ h) $x^{\frac{1}{2}}(1+x^{\frac{3}{2}})^{2}$ [16]

6) Evaluate:
a)
$$\int_{0}^{\frac{\pi}{2}} \sin x (1 + \cos x)^{2} dx$$
 b) $\int_{-1}^{0} \frac{e^{2x}}{2 - e^{2x}}$
c) $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cot x \csc^{4} x dx$ d) $\int_{2}^{4} \frac{x + 1}{x^{2} + 2x + 8} dx$ [16]

Total: 60 Marks