
## Pure 20 – Parametric Calculus

Please <u>complete</u> this homework by \_\_\_\_\_\_. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop-in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

1. Harry hits a ball from point A on a horizontal surface. The motion of the ball is modelled as that of a partical travelling with constant velocity  $(3i + 11j)ms^{-1}$ 

- a) Find the speed of the ball
- b) Find the distance of the ball from A after 7 seconds
- c) Comment on the validity of this model for large values of t.
- 2. In trangle ABC,  $\overrightarrow{AB} = -2i + 6j$  and  $\overrightarrow{AC} = 6i + 3j$ , find:
- a)  $\overrightarrow{BC}$
- b) *BÂC*
- c) the area of the triangle



3. Two forces  $F_1$  and  $F_2$ , are given by the vectors  $F_1 = (3i - 5j)N$  and  $F_2 = (pi + qj)N$ . The resultant force,  $R = F_1 + F_2$  acts in a direction which is parallel to the vector (5i - j)

- a) Find the angle between **R** and the vector *i*
- b) Show that 5q + p = 22
- c) Given that p = 7, find the magnitude of **R**.
- 4. Find the unit vector in the direction 2i + j 3k

5. Vectors **a** and **b** are defined by  $\boldsymbol{a} = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}$ 

- a) Find a b b) Find 2a 3b
- c) State with a reason whether any of the vectors from a) or b) are parallel to 3i + 3j 24k
- 6. The position vector of the point A is -3i + 6j + 4k and  $\overrightarrow{AB} = 7i 8j k$  and the coordinates of point C are (2, -2, -1)



Find in terms of **i**, **j** and **k**,

- a) the position vectors of B and C
- b)  $\overrightarrow{AC}$

Find the exact value of

- c) The distance between A and C
- d)  $\left| \overrightarrow{OC} \right|$

7. The vectors a and b are defined by 
$$\boldsymbol{a} = \begin{pmatrix} 2 \\ -5 \\ 6 \end{pmatrix}$$
 and  $\boldsymbol{b} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}$ 

Given that 
$$2\mathbf{a} - \mathbf{b} = \begin{pmatrix} 3 \\ -6 \\ 10 \end{pmatrix}$$
 find the values of *p*, *q* and *r*.

- 8. Given that a = 3ti 12tj + 4tk and that |a| = 39 find the possible values of t
- 9. Find the angles that the vector  $\overrightarrow{AB} = -2i + 5j 3k$  Makes with each of the positive coordinate axes to 1 d.p.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

1. Find 
$$\frac{dy}{dx}$$
 in terms of the parameter t:

- a)  $x = t^{3}$  y = t b) x = 3t 1  $y = 2 \frac{1}{t}$ c)  $x = \cos 2t$   $y = \sin t$  d)  $x = e^{t+1}$   $y = e^{2t-1}$  [7]
- 2. A curve is given by the parametric equations  $x = t + \frac{1}{t}$ ,  $y = t \frac{1}{t}$   $(t \neq 0)$ .
  - a) Find an equation for the tangent to the curve at the point P where t = 3.
  - b) Show that the Cartesian equation of the curve is  $x^2 y^2 = k$  where k is a constant to be found.
  - c) Show that the tangent to the curve at P does not meet the curve again. [10]
- 3.

The diagram shows part of the curve with parametric equations x = 2t - 4,  $y = \frac{1}{t}$ .

The shaded region is bounded by the curve, the coordinate axes and the line x = 2

- a) Find the value of the parameter t when x = 0 and when x = 2. (3 marks)
- b) Show that the area of the shaded region is given by  $\int_2^3 \frac{2}{t} dt$ . (4 marks)

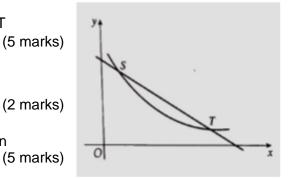
Godalming

- c) Hence, find the area of the shaded region.
- d) Verify your answer to part c) by first finding the cartesian equation for the curve (4 marks)
- 4.

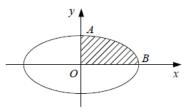
The diagram shows the ellipse with parametric equations  $x = 4\cos\theta$ ,  $y = 2\sin\theta$ ,  $0 \le \theta < 2\pi$ ,

which meets the positive coordinate axes at the points A and B.

- a) Find the value of the parameter  $\theta$  at the points A and B (2 marks)
- b) Show that the area of the shaded region bounded by the curve and the positive coordinate axes is given by  $\int_0^{\frac{\pi}{2}} 8sin^2\theta \ d\theta$ .
  - (4 marks)
- c) Hence, show that the area of the region enclosed by the ellipse is  $8\pi$ (4 marks)


5. The diagram shows a sketch of the curve with parametric equations x = at,  $y = \frac{4a}{t}$ , t > 0, and the line y = 5a - x, where a is a constant.

The line meets the curve at S and T.


a) Find, in terms of a, the co-ordinates of the points S and T

b) Show that 
$$\int y \frac{dx}{dt} dt = 4a^2 lnt + c$$
, where c is a constant.  
(2 marks)

c) Hence find, in terms of a, the exact area of the fiite region between the curve and the line. (5 marks)



Total: 53 marks



(3 marks)