

Mechanics 12 - Projectiles 2

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

1. The diagrams below show a light horizontal rod of length 60 cm resting in equilibrium. Find the forces and distances marked with letters.

- 2. A pole vaulter uses a uniform pole of length 4 m and mass 5 kg. He holds the pole horizontally by placing one hand at the end of the pole and the other 75 cm from that end. Find the vertical forces exerted on his hands.
- 3. A uniform bar AB of length 2.8 m and weight 80 N has loads of 20 N and 40 N attached at A and B respectively. If the bar balances in a horizontal position when smoothly supported at C, find the distance of C from A.
- 4. A particle of mass 100g is acted upon by three forces F_1 , F_2 and F_3 . $F_1 = 2\mathbf{i} 3\mathbf{j}$ N, $F_2 = 4\mathbf{i} + 5\mathbf{j}$ N and $F_3 = -3\mathbf{i} + 3\mathbf{j}$ N. Find the magnitude and direction of the resultant acceleration.
- 5. A systematic sample, using every 17th value, is taken from the daily rainfall figures of Jacksonville and Perth for May-October 2015. The means were calculated and found to be 8.71 and 18.12 respectively.
 - (a) Write down the expected size of each sample. Why may this not be the actual sample size?
 - (b) Using your knowledge of the large data set, comment on the mean values found and on their reliability.

Section 2 – Consolidation of this week's topic. Please complete all questions.

1. A particle is projected upwards from ground level at an angle of 30^{0} to the horizontal with an initial speed of $40~\rm{ms^{-1}}$. Find the horizontal distance travelled when the particle next hits the ground.

(5 marks)

2. A particle is projected with an initial speed of 20 ms⁻¹ from a point 2.5 m above ground level at an angle of elevation of 40 degrees. Find the time taken for the particle to hit the ground.

(4 marks)

- 3. Gina it standing in a sports hall at a distance of 30 m from the end wall. The ceiling is 10 m above the floor. She kicks a ball from the floor at 20ms^{-1} at an angle α above the horizontal.
 - (a) If the ball just brushes the ceiling, find the value of α . (3)
 - (b) How far up the wall does the ball strike it? (3) (6 marks)
- 4. A particle is projected upwards from a point with a speed of 28ms^{-1} at an angle of α to the horizontal. The particle moves freely under gravity such that when it has moved a horizontal distance of x metres from its point of projection its height above this point is y metres.
 - (a) Show that $y = x \tan \alpha \frac{x^2}{k \cos^2 \alpha}$ where k is an integer, stating the value of k.
 - (b) If the angle of elevation was 30 degrees, find the horizontal distance travelled when the particle is 2 metres above the point of projection.

(10 marks)

(continued overleaf)

5.

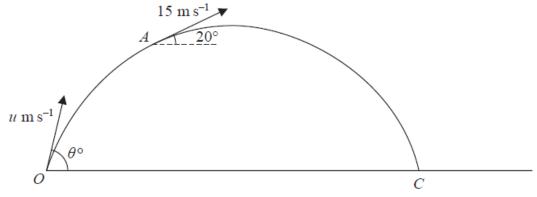


Figure 3

At time t = 0, a particle is projected from a fixed point O on horizontal ground with speed u m s⁻¹ at an angle θ ° to the horizontal. The particle moves freely under gravity and passes through the point A when t = 4 s. As it passes through A, the particle is moving upwards at 20° to the horizontal with speed 15 m s⁻¹, as shown in Figure 3.

(a) Find the value of u and the value of θ .

(7)

At the point *B* on its path the particle is moving downwards at 20° to the horizontal with speed 15 m s⁻¹.

(b) Find the time taken for the particle to move from A to B.

(2)

The particle reaches the ground at the point C.

(c) Find the distance OC.

(3)

6. [In this question, \mathbf{i} is a horizontal unit vector and \mathbf{j} is an upward vertical unit vector.]

A particle P is projected from a fixed origin O with velocity $(3\mathbf{i} + 4\mathbf{j})$ m s⁻¹. The particle moves freely under gravity and passes through the point A with position vector $\lambda(\mathbf{i} - \mathbf{j})$ m, where λ is a positive constant.

- (a) Find the value of λ . (6)
- (b) Find
- (i) the speed of P at the instant when it passes through A,
- (ii) the direction of motion of P at the instant when it passes through A. (7)

(13 marks)

Total: 50 Marks