

(5)

Mechanics 13 – suvat and projectiles with vectors

Please <u>complete</u> this homework by ______. Start it early. If you can't do a question you will then have time to ask your teacher for help or go to a drop in session.

Section 1 – Review of previous topics. Please <u>complete</u> all questions.

A ball is thrown from a point A at a target, which is on horizontal ground. The point A is 12 m above the point O on the ground. The ball is thrown from A with speed 25 m s⁻¹ at an angle of 30° below the horizontal. The ball is modelled as a particle and the target as a point T. The distance OT is 15 m. The ball misses the target and hits the ground at the point B, where OTB is a straight line, as shown in Figure 1. Find

(a)	the time taken by the ball to travel from A to B,	(5)
(b)	the distance TB.	(4)
The	point X is on the path of the ball vertically above T.	

(c) Find the speed of the ball at X.

1)

2) Zain wants to calculate the average daily mean windspeed in Hurn in 2015.

To do this, he takes a simple random sample of the daily mean windspeeds, v knots, on n days in Hurn in 2015 using the large data set. He converts his values for v into miles per hour. He calls the resulting values w.

Given that $\sum w$ =194.35 and \overline{v} =8.45, find the size of Zain's sample.

Section 2 – Consolidation of this week's topic. Please <u>complete</u> all questions.

- A particle is initially at the point with position vector r = (3i 2j) m and travelling with a velocity (5i j) ms⁻¹ when it undergoes an acceleration of (-i + 2j) ms⁻² for a period of 3 sec. Work out its position at the end of this period. (5)
- 2) A particle moving with velocity (-i + 2j) ms⁻¹ undergoes a constant acceleration of (2i + j) ms⁻² for 5 sec. Work out its speed and direction at the end of this period. (6)
- 3) A boat is moving with speed 2V10 ms⁻¹ in the direction of 3i + j. It undergoes an acceleration of (- i 7j) ms⁻² for 2 sec. Show that, at the end of that time, it is travelling in a direction perpendicular to its original direction and at twice the speed. (6)
- 5) A particle *P* is projected with velocity $(2u\mathbf{i} + 3u\mathbf{j}) \text{ m s}^{-1}$ from a point *O* on a horizontal plane, where \mathbf{i} and \mathbf{j} are horizontal and vertical unit vectors respectively. The particle *P* strikes the plane at the point *A* which is 735 m from *O*.
 - (a) Show that u = 24.5. (6)
 - (b) Find the time of flight from O to A. (2)

The particle *P* passes through a point *B* with speed 65 m s⁻¹.

(c) Find the height of *B* above the horizontal plane. (4)

[In this question, the unit vectors i and j are in a vertical plane, i being horizontal and j being vertical.]

A particle *P* is projected from the point *A* which has position vector 47.5**j** metres with respect to a fixed origin *O*. The velocity of projection of *P* is $(2u\mathbf{i} + 5u\mathbf{j}) \text{ m s}^{-1}$. The particle moves freely under gravity passing through the point *B* with position vector 30**i** metres, as shown in Figure 3.

(a)	Show that the time taken for <i>P</i> to move from <i>A</i> to <i>B</i> is 5 s.	(6)
(b)	Find the value of <i>u</i> .	(2)
(<i>c</i>)	Find the speed of <i>P</i> at <i>B</i> .	(5)

Total mark : 50