[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Worksheet 4 Assembly language
Unit 5 Computer organisation

Worksheet 4 Assembly language Answers

Task 1

1.	A positive number is held in memory location 201. Write assembly code instructions which put the negative of the number in location 202.

			MOV	R1, #0	;initialise R1 to zero
			LDR	R2, 201	;load value from location 201 into R2
			SUB 	R1, R1, R2	;subtract value from R1 (which is zero)
			STR	R1, 202	;store result in location 202
			

2.	Write assembly code instructions to take three numbers held in locations 201, 202 and 203 and store them back in the same locations in reverse order.

			LDR	R1, 201	;load first number into R1
			LDR	R3, 203	;load third number into R3
			STR	R1, 203	;store first number in third location
			STR	R3, 201	;store third number in first location

Could use any two registers. R1 and R3 used for easier reference.

3.	Three numbers are held in locations 201, 202 and 203. Write assembly code instructions to store the maximum of the three numbers in location 300.

			LDR	R1, 201	;load first number into R1
			LDR	R2, 202	;load second number into R2
			CMP	R1, R2	;compare value in R1 with second number
			BGT	label1	;branch if R1 > R2 label1
			MOV	R1, R2	;store larger number in R1
		label1:	
			LDR	R3, 203	;load the third number
			CMP	R1, R3	;compare value in R1 with third number
[bookmark: _GoBack]			BGT	label2	;branch if R1 > R3 to label2
			MOV 	R1, R3	;store larger number in R1 	
		label2:
			STR 	R1, 300	; store largest number in 300
		

4.	Assume that numbers can be input by a user into Register 0 using the instruction
INP R0
	(a)	Ten numbers are input by the user. Write assembly code instructions to add the ten numbers as they are input and store the result in location 300.
			MOV 	R1, #0	;initialise R1 to 0 to hold total
			MOV	R2, #0	;initialise R2 to hold count
	 LOOP
			INP	R0	;input a number
			ADD	R1, R1, R0	;add number to total
			ADD	R2, R2, #1	;increment count
			CMP	R2, #10	;have 10 numbers been input?
			BNE	LOOP	;if not, branch to LOOP
			STR	R1, 300	;if yes, store total in location 300

	(b)	Ten integers are input by the user. Write assembly code instructions to count the number of integers that are greater than or equal to 30. The result should be stored in location 301.
			MOV 	R1, #0	;initialise R1 to 0 to hold total>=30
			MOV	R2, #0	;initialise R2 to hold count
	 LOOP
			INP	R0	;input a number
			ADD	R2, R2, #1	;increment count
			CMP	R0, #30	;is the number in R0 < 30?
			BLT	label2	;yes, so skip the next instruction
			ADD	R1, R1, #1	;no, so add 1 to total of numbers >= 30
	 label2:
			CMP	R2, #10	;have 10 numbers been input?
			BNE	LOOP	;if not, branch to LOOP
			STR	R1, 301
			(continue)
	
Task 2

1.	Write assembly code instructions to find whether a number held in location 200 is odd or even. If the number is even, branch to label1, otherwise continue with the next statement.
	LDR 	R1, 200	;load the number from 200 into R1
	AND		R2, R1, #1	;AND the number with 00000001
	CMP		R2, #0	;compare the result of the AND with zero
	BEQ		label1	;if the number was even, R2 will be zero
	(continue)
label1:
	(continue)

2.	A bit pattern held in R0 represents 8 switches numbered 1 to 8 (left to right).

	(a)	Write assembly code instructions to initialise the switches to zero, and then turn on switches 1,3,5 and 7.
	MOV 	R0, #0	;move 0 to R0 to initialise switches
	ORR		R0, R0, #10101010B	;Turn on switches 1,3,5,7, store in R0
						;where B indicates a binary value
	
	

	(b)	Assume you do not know the state of the switches in R0. Write an assembly code instruction to turn off any switches that are on, and vice versa.

	MVN	 R0, R0; perform NOT operation on R0

or could use EOR:
	EOR	 R0, R0, #11111111B

3.	What will be the effect of performing an XOR operation on an operand with itself?	
		
	Give an example.	
	
		The result is zero.
		For example:	A	0101 1111
				A	0101 1111
		After XOR:	A	0000 0000

Task 3

1.	Assume R0 contains an 8-bit positive integer. Using logical shifts, compare and branch operations, write assembly code statements to branch to label1 if the integer represents an even number, otherwise continue to the next statement.

	Test your program by tracing the contents of R0 and any other registers used.
	
	
		MOV R1, R0	;copy R0 into R1
		LSR R1, R1, #1	;shift right one bit
		LSL R1, R1, #1	;shift left one bit
		CMP R1, R0	;compare the contents of R0 and R1
		BEQ label1	;if the number is even, the registers will be equal
		(continue)

		Trace table:
		
	R0
	R1
	

	11010011
	11010011
	Copy contents

	
	01101001
	Shift right

	
	11010010
	Shift left; R0 and R1 not equal so number in R0 is odd

		Can you think of another way of testing whether the number is even?
	
	You could use a mask of 00000001 and a logical OR, putting the result in R1. If the number in R0 is odd, R0 will equal R1. If the number is even, then R0 will not be equal to R1.

		OR R1, R0, #1	;test the rightmost bit
		CMP R0, R1	;compare the result with 0
		BNE label1	;the number is even	
2

image1.png

