

1

CPU Programming Model 1
A. Introduction

Objectives

At the end of this lab you should be able to:

▪ Use the CPU simulator to create basic CPU instructions
▪ Use the simulator to execute basic CPU instructions
▪ Use CPU instructions to move data to registers, compare values in registers,

push data to the stack, pop data from the stack, jump to address locations
and add values held in registers.

▪ Explain the function of the special CPU registers PC (Program Counter) and SR
(Status Register) and status flags OV, N and Z.

▪ Produce code for simple conditional statements and loops.

B. Processor (CPU) Simulators

The computer architecture tutorials are supported by simulators, which are created
to help underpin theoretical concepts normally covered during the lectures. The
simulators provide visual and animated representation of mechanisms involved and
enable the students to observe the hidden inner workings of systems, which would
be difficult or impossible to do otherwise. The added advantage of using simulators
is that they allow the students to experiment and explore different technological
aspects of systems without having to install and configure the real systems.

C. Basic Theory

The programming model of computer architecture defines those low-level
architectural components, which include the following

▪ CPU instruction set
▪ CPU registers
▪ Different ways of addressing data in instructions (i.e. addressing modes)

It also defines interactions between the above components. It is this low-level
programming model which makes programmed computations possible.

D. Simulator Details

This section includes basic information on the simulator enabling the students to use
the simulator. The tutor(s) will be available to help in case of difficulty in using the
simulator. The main window is composed of several views that represent different
functional parts of the simulated Central Processing Unit. These are shown in Image
1 below and are composed of

▪ CPU Instructions memory
▪ Special CPU registers
▪ CPU (general purpose) registers

2

▪ Program stack
▪ Program creation and program running features

Image 1 – CPU Simulator window

The parts of the simulator relevant to this lab are described below. Please read this
information carefully and try to identify the different parts on the real CPU Simulator
window BEFORE attempting the following exercises. Use this information in
conjunction with the exercises that follow.

CPU registers view

Program stack view

Special CPU
registers view

Program list view

CPU Instruction
memory view

“Add program
instructions” tab

“Create program“ tab

3

1. CPU instruction memory view

2. Special CPU registers view

Image2 - Instruction memory
view

This view contains the program
instructions. The instructions
are displayed as sequences of
low-level instruction
mnemonics (in assembler-level
format) and not as binary code.
This is done for clarity and
makes code more readable by
humans.

Each instruction is associated
with two addresses: the
physical address (PAdd) and the
logical address (LAdd). This
view also displays the base
address (Base) against each
instruction. The sequence of
instructions belonging to the
same program will have the
same base address.

This view shows the set of CPU registers,
which have pre-defined specialist functions:
PC: Program Counter contains the address
of the next instruction to be executed.
IR: Instruction Register contains the
instruction currently being executed.
SR: Status Register contains information
pertaining to the result of the last executed
instruction.
SP: Stack Pointer register points to the value
maintained at the top of the program stack
(see below).
BR: Base Register contains current base
address.
MAR: Memory Address Register contains
the memory address currently being
accessed.
Status bits: OV: Overflow; Z: Zero; N:
Negative

Image 3 - Special CPU
registers view

4

3. CPU registers view

The register set view shows the
contents of all the general-purpose
registers, which are used to maintain
temporary values as the program's
instructions are executed. Registers are
very fast memories that hold
temporary values while the CPU
executes instructions.

This architecture supports from 8 to 64
registers. These registers are often
used to hold values of a program's
variables as defined in high-level
languages.

Not all architectures have this many
registers. Some have more (e.g. 128
register) and some others have less
(e.g. 8 registers). In all cases, these
registers serve similar purposes.

This view displays each register's name
(Reg), its current value (Val) and some
additional values, which are reserved
for program debugging. It can also be
used to reset the individual register
values manually which is often useful
for advanced debugging. To manually
change a register’s content, first select
the register then enter the new value
in the text box, Reg Value, and click on
the CHANGE button in the Registers
tab.

Image 4 – CPU Registers view

5

4. Program stack view

5. Program list view

6. Program creation

Image 5 - Program stack view

The program stack is another area which
maintains temporary values as the
instructions are executed. The stack is a
LIFO (last-in-first-out) data structure. It is
also used for efficient interrupt handling
and sub-routine calls. Each program has
its own individual stack.

The CPU instructions PSH (push) and POP
are used to store values on top of stack
and pop values from top of stack
respectively.

Image 7 – Create program tab

Use the REMOVE PROGRAM button to
remove the selected program from the
list; use the REMOVE ALL PROGRAMS
button to remove all the programs from
the list. Note that when a program is
removed, its instructions are also
removed from the Instruction Memory
View.

Image 6 - Program List View

To create a new program enter its
name in the Program Name box
and its base address in the Base
Address box then click on the ADD
button. The new program’s name
will appear in the Program List view
(see Image 6).

6

E. Lab Exercises - Investigate and Explore

The lab exercises are a series of activities, which are carried out by the students
under basic guidelines. So, how is this tutorial conducted? The students are expected
to follow the instructions given in order to identify and locate the required
information, to act upon it and make notes of their observations. In order to be able
to do these activities you should consult the information in Section D above and also
frequently refer to the Appendix for information on various CPU instructions you will
be asked to create and use. Remember, you need to carefully read and understand
the instructions before you attempt each activity.

START HERE: Creating a program and adding instructions to it

Now, let us start. First you need to place some instructions in the Instruction
Memory View (see Image 2), representing the RAM in the real machine, before
executing any instructions. To do this, follow the steps below:

In the Program tab (see Image 7), first enter a Program Name, and then enter a Base
Address (this can be any number, but for this exercise use 100). Click on the ADD
button. A new program name will be entered in the Program List view (see Image 6).
By the way, you can use the SAVE… button to save instructions in a file. You can also
use the LOAD… button to load instructions from a file.

You are now ready to enter instructions into the CPU Simulator. You do this by
clicking on the ADD NEW… button in the Instructions tab (see Image 8). This will
display the Instructions: CPU0 window. You use this window to select and enter the
CPU instructions. Further information on this can be found on this module’s site.
Appendix lists the instructions you will need in this exercise.

Now, have a go at the following activities (enter your answers in the text boxes
provided). A word of caution: Regularly save your code in a file in case the simulator
crashes in which case you can restart the simulator and re-load your file.

Use ADD NEW… button to add a
new instruction; use EDIT…
button to edit the selected
instruction; use MOVE DOWN/
MOVE UP buttons to move the
selected instruction down or up;
use INSERT ABOVE…/INSERT
BELOW… buttons to insert a new
instruction above or below the
selected instruction respectively.

Image 8 – Add program
instructions tab

7

Part A: (Refer to the appendix for help with CPU instructions)

1. Create an instruction, which moves number 5 to register R00.

2. Execute the above instruction (You do this by double-clicking on the instruction).
Observe the result in the CPU Registers view (Image 4).

3. Create an instruction, which moves number 7 to register R01.

4. Execute it (You do this by double-clicking on the instruction)

5. Observe the contents of R00 and R01 in the CPU Registers view (Image 4).

6. Create an instruction, which adds the contents of R00 and R01.

7. Execute it.

8. Note down which register the result is put in.

9. Create an instruction, which pushes the value in the above register to the top of
the program stack, and then execute it. Observe the value in Program Stack
(Image 5).

10. Create an instruction to push number 2 on top of the program stack and execute
it. Observe the value in Program Stack (Image 5).

11. Create an instruction to unconditionally jump to the first instruction.

12. Execute it.

8

13. Observe the value in the PC register. This is the address of the next instruction to
be executed. Make a note of the instruction it is pointing to?

14. Create an instruction to pop the value on top of the Program Stack into register
R02.

15. Execute it.

16. Create an instruction to pop the value on top of the Program Stack into register
R03.

17. Execute it.

18. Execute the last instruction once again. What happened? Explain.

19. Create a compare instruction, which compares values in registers R04 and R05.

20. Manually insert two equal values in registers R04 and R05 (Image 4).

21. Execute the above compare instruction.

22. Which of the status flags OV/Z/N is set (i.e. box is checked)?

23. Manually insert a value in first register greater than that in second register.

24. Execute the compare instruction again.

25. Which of the status flags OV/Z/N is set?

26. Manually insert a value in first register smaller than that in second register.

9

27. Execute the compare instruction once again.

28. Which of the status flags OV/Z/N is set?

29. Create an instruction, which will jump to the first instruction if the values in
registers R04 and R05 are equal.

30. Test the above instruction by manually putting equal values in registers R04 and
R05, then first executing the compare instruction followed by executing the
jump instruction (Remember: You execute an instruction by double-clicking on
it). If it worked the first instruction should be highlighted.

31. Now that you have some understanding of basic CPU instructions and are able to
program the simulator here is a bit of challenge for you: preparing a little
program loop. Program loops are extremely useful and are very frequently used
by computer programs. Here’s what you have to do:

1. Create an instruction that moves number 0 into register R01
2. Create an instruction that adds number 1 to register R01
3. Create an instruction that compares number 10 and register R01
4. Create an instruction that jumps back to instruction 2 above if R01 is not

equal to number 10.
5. Create a HLT instruction.

Make a note of the instructions 1 to 5 you created above in the box below:

6. Starting from instruction 1 manually execute instructions 1 to 4 one after

the other. What happened when you executed instruction 4?

7. Now first click on the RESET PROGRAM button (see Program Control tab
in Image 1) and then highlight instruction 1 above. Next click on the RUN
button. Now observe the loop in action.

10

Part B: (Refer to the appendix for help with CPU instructions)

1. Produce the code for a conditional statement such that if the value in register
R02 is greater than (>) the value in register R01 then register R03 is set to 8. Test
it on the simulator.

2. Produce the code for a loop that repeats 5 times where the value of register R02
is incremented by 2 every time the loop repeats. Test it on the simulator.

3. The numbers 4, -3, 5 and -6 are manually pushed on top of stack in that order.
Produce the code for a routine that pops two numbers from top of stack
multiplies them and pushes the result back to top of stack. The routine repeats
this until there is only one number left on top of stack. Test the code on the
simulator.

*** End of Exercises ***

11

Appendix – CPU Simulator Instruction Sub-set

Instruction Description

Data transfer instructions

MOV

Move a number to register; move register to register

e.g.

MOV #2, R01 moves number 2 into register R01

MOV R01, R03 moves contents of register R01 into register R03

LDB Load a byte from memory to register

LDW Load a word (2 bytes) from memory to register

STB Store a byte from register to memory

STW Store a word (2 bytes) from register to memory

PSH

Push a number to top of program stack (TOS); push register to TOS

e.g.

PSH #6 pushes number 6 on top of the stack

PSH R03 pushes the contents of register R03 on top of the stack

POP

Pop data from top of program stack to register

e.g.

POP R05 pops contents of top of stack into register R05

Note: If you try to POP from an empty stack you will get the error
message “Stack underflow”.

Arithmetic instructions

ADD

Add a number to register; add register to register

e.g.

ADD #3, R02 adds number 3 to contents of register R02 and stores
the result in register R02.

ADD R00, R01 adds contents of register R00 to contents of register
R01 and stores the result in register R01.

SUB Subtract number from register; subtract register from register

MUL Multiply number with register; multiply register with register

DIV Divide number with register; divide register with register

Control transfer instructions

JMP Jump to given instruction address unconditionally

12

e.g.

JMP 100 unconditionally jumps to instruction address location 100

JLT Jump to instruction address if less than (after last comparison)

JGT Jump to instruction address if greater than (after last comparison)

JEQ

Jump to instruction address if equal (after last comparison instruction)

e.g.

JEQ 200 jumps to instruction address location 200 if the previous
comparison instruction result indicates that the two numbers are
equal, i.e. the Z status flag is set (the Z box will be checked in this
case).

JNE Jump to instruction address if not equal (after last comparison)

CAL Jump to subroutine address

RET Return from subroutine

SWI Software interrupt (used to request OS help)

HLT Halt simulation

Comparison instruction

CMP

Compare a number with register; compare register with register

e.g.

CMP #5, R02 compare number 5 with the contents of register R02

CMP R01, R03 compare the contents of registers R01 and R03

Note:

If R01 = R03 then the status flag Z will be set, i.e. the Z box is
checked.

If R01 < R03 then none of the status flags will be set, i.e. none of the
status flag boxes are checked.

If R01 > R03 then the status flag N will be set, i.e. the N status box is
checked.

Input, output instructions

IN Get input data (if available) from an external IO device

OUT Output data to an external IO device

