Comp1 Exam Preparation Pack
Secret Messages Program
Aim:
The aim of the document is to help YOU understand the preliminary code and prepare for the COMP1 Exam on 3rd June 2013. This pack specifically prepares you for sections C and D of the Exam
Section C
You are advised to spend no more than 20 minutes on this section. Questions will refer to the Preliminary Material and the Skeleton Program, but will not require programming.
Section D
You are advised to spend no more than 50 minutes on this section. Questions will use the Skeleton Program and the Preliminary Material
Instructions
You need to complete this document on the computer and add rows to the tables below. Feel free to make the document landscape if it helps. Make sure you have saved a copy into your user area BUT beware… I may add things to the tasks below as stuff gets spotted with the code.
1. Complete the table listing all Global variables
	Variable identifier

	Data type
	Line numbers where Used
	Sample data

	Ciphertext
	String
	146
	Khoor Zruog

	Plaintext
	String
	147
	Hello World

	Choice
	String
	148
	a

	StartPosition
	Integer
	149
	1

	EndPosition
	Integer
	150
	1000

	AmountToShift
	Integer
	164
	3

	SizeOfRailFence
	Integer
	169
	2

	N
	Integer
	184
	100

2. Complete the table listing all Local variables in the main program,
	Variable identifier

	Data type
	Sub routine Identifier
	Line numbers where used
	Sample data

	TextFromUser
	String
	GetTextFromUser
	31
	Hello

	CurrentFile
	File
	GetTextFromFile
	40
	file

	ByteFromFile
	Byte
	GetTextFromFile
	42
	b'n'

	TextFromFile
	String
	GetTextFromFile
	43
	abc

	Key
	Integer
	GetKeyForCaesarCipher
	51
	3

	ASCIICode
	Integer
	GetTypeOfCharacter
	55
	4

	TypeOfCharacter
	String
	GetTypeOfCharacter
	56
	Upper

	NewASCIICode
	Integer
	ApplyShiftToASCIICodeForCharacter
	67
	5

	ChangedText
	String
	UseCaesarCipher
	75
	abc

3. Complete the table listing all Procedures and functions
	Procedure / function Name and line number
	Brief description
	Value parameters
	Reference parameters

	DisplayMenu (L6)
	Print out the menu items available
	None
	None

	GetMenuChoice (L25)
	Gets user input of their menu choice
	None
	None

	GetTextFromUser (L30)
	Gets text input from user and return
	None
	None

	GetPositionsToUse (L34)
	Gets user input for start and end point to use in a file
	None
	None

	GetTextFromFile (L9)
	Opens a file and returns the content between defined start and end positions
	StartPosition, EndPosition
	None

	GetKeyForCaesarCipher (L50)
	Gets user input for the number of shifts to use for a Caesar cipher
	None
	None

	GetTypeOfCharacter (L54)
	Returns whether the passed character is an uppercase letter, lowercase letter or other character
	ASCIICode
	None

	ApplyShiftToASCIICodeForCharacter (L63)
	Shifts an ascii character code by a defined amount
	ASCIICode, AmountToShift
	None

	UseCaesarCipher (L74)
	Perform Caesar cipher on a given piece of text, based on given shift
	OriginalText, AmountToShift
	None

	GetSizeOfRailFence (L82)
	Gets user input for number of lines to use for a rail fence
	None
	None

	EncryptUsingRailFence (L86)
	Encrypt given text with railfence based on given number of lines
	OriginalText, SizeOfRailFence
	None

	DecryptUsingRailFence (L95)
	Decrypt railfence ciphertext based on size
	Ciphertext, SizeOfRailFence
	None

	GetValueForN (L123)
	Gets user input for n value
	None
	None

	EveryNthCharacterSteganography (L127)
	Retrieves hidden message using steganography
	StartPosition, EndPosition, N
	None

	DisplayPlaintext (L135)
	Prints out plaintext currently stored in the global variable
	TextToDisplay
	None

	DisplayCiphertext (L140)
	Prints out ciphertext currently stored in the global variable
	TextToDisplay
	None

4. Give examples of a variable identifier for each of the following “Variable Roles” .. The * shows that the role is given as an example in the textbook. This website also has good examples: http://cs.joensuu.fi/pages/saja/var_roles/stud_vers/stud_Python_eng.html
More info here:
https://en.wikibooks.org/wiki/A-level_Computing/AQA/Problem_Solving,_Programming,_Data_Representation_and_Practical_Exercise/Fundamentals_of_Programming/The_Role_of_Variables
	Role (see page 66 of book or follow links)
	Line numbers of examples… Copy and paste code Highlighting the variable being used in that role.

	fixed value *
	NoOfCiphertextCharacters (L97)

def DecryptUsingRailFence(Ciphertext, SizeOfRailFence):
 Plaintext = ''
 NoOfCiphertextCharacters = len(Ciphertext)# created/assigned
 ……. # used
 return Plaintext # destroyed

	stepper *
	Count (L41)
for Count in range(1, StartPosition):

	follower *
	Count2 (L89)
Count2 = Count1

	most-recent holder *
	ASCIICode (L77)
for Count in range(0, len(OriginalText)):
 ASCIICode = ord(OriginalText[Count])

	most-wanted holder *
	AmountToReduceNoOfColumnsTimesjBy += 1 (L114)

	gatherer *
	Ciphertext (L91)
Ciphertext += OriginalText[Count2]

	one-way flag
	None

	temporary *
	ByteFromFile (L45)
ByteFromFile = CurrentFile.read(1)
TextFromFile += ByteFromFile.decode('ASCII')

	organizer
	No examples of this role
(Plaintext and Ciphertext in function DecryptUsingRailFence act a little like an organizer)

	container
	No examples of this.
(Plainttext and Ciphertext are string datatypes but can also be thought of as data structures to which we add values/characters).

	walker
	No examples

5. Complete the table to list all of the selection statements in the code
	Line Number start
	Line Number End
	Type (IF/ ELIF / ELSE)

	Criteria
(treat elif as a separate line in this table)

	55
	56
	IF
	ASCIICode >= ord('A') and ASCIICode <= ord('Z')

	57
	58
	ELIF
	ASCIICode >= ord('a') and ASCIICode <= ord('z')

	59
	60
	ELSE
	N/A

	65
	69
	IF
	TypeOfCharacter != 'Other'

	66
	67
	IF
	TypeOfCharacter == 'Upper'

	68
	69
	ELSE
	N/A

	70
	71
	ELSE
	N/A

	112
	114
	IF
	LastFullRowNo != 0

	113
	114
	IF
	j > LastFullRowNo

	119
	120
	IF
	NoOfCiphertextCharactersProcessed <= NoOfCiphertextCharacters

	154
	155
	IF
	Choice == 'a'

	156
	157
	ELIF
	Choice == 'b'

	158
	159
	ELIF
	Choice == 'd'

	160
	161
	ELIF
	Choice == 'e'

	162
	166
	ELIF
	Choice == 'g'

	167
	171
	ELIF
	Choice == 'h'

	172
	176
	ELIF
	Choice == 'j'

	177
	181
	ELIF
	Choice == 'k'

	182
	186
	ELIF
	Choice == 'n'

	187
	188
	IF
	Choice != 'q'

6. Complete the table to list all of the iteration (looping) statements in the code
	Line Number start
	Line Number End
	Type
(For,
Do while,
Do until)
	Criteria for exit of loop.
Fixed state the number of loops or the stepper variable name
Logic state the Boolean expression to exit

	41
	42
	For
	Fixed: Stepper Count in range(1, StartPosition)

	44
	46
	For
	Fixed: Stepper Count in range(StartPosition, EndPosition + 1)

	76
	79
	For
	Fixed: Stepper Count in range(0, len(OriginalText))

	88
	92
	For
	Fixed: Stepper Count1 in range(0, SizeOfRailFence)

	90
	92
	While
	Fixed: Bool: Count2 < len(OriginalText)

	109
	120
	For
	Fixed: Stepper i in range (0, NoOfColumns)

	111
	120
	For
	Fixed: Stepper j in range (0, NoOfRows)

	130
	132
	While
	Fixed: CurrentPosition <= EndPosition

	151
	188
	While
	Logic: Choice != 'q'

7. List all of the BUILT-IN functions used in the code (not that many!!!)
	Line Number
	Function identifier
	Description of usage (include any parameter input and the expected output

	7
	Print
	Outputs text to shell/console. Single parameter representing this text.

	31
	input
	Gets text input from the user. Single parameter representing text to display as the input prompt.

	40
	open
	Opens a file. First parameter is filepath, second is mode to open in (read, write etc.)

	42
	read
	Returns byte from a file at specific position (indicated by single integer parameter).

	46
	decode
	Decodes a string based on specified encoding method. Returns the result.

	47
	close
	Closes a file to free up memory

	55
	ord
	Returns the Unicode integer representation from the single character parameter

	76
	range
	Creates an array of ascending integers between a start integer (parameter 1) and 1 less than end integer (parameter 2)

	76
	Len
	Returns the length of a string passed as the single parameter

	79
	chr
	Returns the string of a Unicode code integer, which is the single parameter

8. Complete the table to list all of the places a user has to INPUT a value: Include a description of valid data with examples and invalid data with the name of the error caused.
	Line Number
	User Input Description
	Valid data description with examples
	Invalid data description with the name of the error that will be caused

	26
	User must enter a letter representing a menu choice
	Any letter defined on the menu
(a,b,d)
	Z
Will not throw an error, but no menu item will be selected

	31
	Accepts text from a user
Range check is done of ascii (lines 55-60)
	String
(hello world)
	None

	35
	Asks user for an integer start position in file to find hidden message using stenography
	Any integer from 1 to number of characters in the file
(1,2,3)
	A string eg. “x” will cause a runtime error, as it cannot be converted to an integer. Need to do a type check.

	36
	Asks user for an integer end position in file to find hidden message using stenography
	Any integer from start position to number of characters in the file
(100, 200, 1000)
	^

	51
	Request shift key value to use in the Caesar cipher
	Between -25 and -1, and between 1 and 25
	^

	83
	Test number of lines in rail fence encryption
	A number between 1 and length of the plain text
	^

	124
	Test character position ‘jump’ value (N) in file for Stenography
	A number between 1 and difference between start and end position (10, 20)
	^

	188
	Hit enter to choose next menu option
	Enter key
	None

9. Complete the table to list all of the places that the code is performing a validation test. You will have already listed these lines in either the selection or loop statements)
	Line Number
	Validation Type (see pages 9698 in AS book)
	Description of Validation inc. criteria (paste code)

	
	
	NONE

	
	
	

10. Complete the table to produce a simple input test plan
Erroneous – is correct type, but out of range, not on the list etc..
Invalid – wrong type of data being entered.
Normal – Data the program would expect.
Boundary – Test the system around the start and end of the data range.
	INPUT Line Number
	Description of test
	Normal Data
	Erroneous Data
	Boundary Data
	Invalid Data

	26
	Test menu option choice
	‘a’, ‘b’, ‘d’, ‘e’, ‘g’, ‘h’, j’, ‘k’, ‘n’
	‘z’
	‘a’ and ‘n’. Not really appropriate as is not a strict range
	Number, date, boolean

	31
	Get text (plain text and cipher text)
	Alphanumeric text and punctuation.
	Non-printing characters
	A, z, 0, 9
	None

	35
	Test entry of start position in file for Stenography
	5
	-5, 2000
	1,1560
	Text, e.g. ‘x’

	36
	Test entry of end position in file for Stenography
	100
	-100, 2000
	1,1560
	Text, e.g. ‘x’

	51
	Test shift key values for the Caesar cipher
	10
	0
	-25, -1 and 1, 25
	Text, e.g. ‘x’

	83
	Test number of lines in rail fence encryption
	5
	-8, number greater than plaintext length
	1, number of characters in plain text
	Text, e.g. ‘x’

	124
	Test character position ‘jump’ value (N) in file for Stenography
	10
	-10, 2000
	1, number of characters
	Text, e.g. ‘x’

	188
	Test continue
	Enter key
	Any other key
	Enter Key
	N/A

11. Complete the table to list all of the places that the code where a validation test is either missing OR incomplete (i.e. the user could enter invalid data causing an error)
	Line number of input
	Validation Type missing
	Description of Validation inc. criteria NEEDED to be added (include code if you can)

	31
	Presence Check
	Get text (plain text and cipher text). Test that text has been entered by checking that the length of the string is greater than zero.

 valid = False
 while not valid:
 TextFromUser = input('Please enter the text to use: ')
 if len(TextFromUser) < 1:
 print('You must enter some text!')
 else:
 valid = True

	35
	Type check
Range check
	Test entry of start position in file for Stenography.
Use try/except to handle runtime error caused by character input (e.g. ‘x’).
Apply range check if int conversion succeeds.

 valid = False
 while not valid:
 try:
 StartPosition = int(input('Please enter the start position to use in the file: '))
 # Type check has succeeded so now do range check
 if StartPosition < 1 or StartPosition > 1560: # range check
 print('Start position must be between 1 and 1560')
 else:
 valid = True
 except:
 print('You must enter a numberic value!')

Notes:
1) better to get length of the file than hard-code 1560
2) could use isdigit() function to test for numeric input but it doesn’t handle negative numbers

	36
	^
	Test entry of end position in file for Stenography.
Similar to above. Note that range check print statement uses f’{variableName}’ syntax.

 valid = False
 while not valid:
 try:
 EndPosition = int(input('Please enter the end position to use in the file: '))
 # Type check has succeeded so now do range check
 if EndPosition < StartPosition or EndPosition > 1560:
 print(f'End position must be between {StartPosition} and 1560')
 else:
 valid = True
 except:
 print('You must enter a numeric value!')

	51
	^
	Test shift key values for the Caesar cipher
Note that isdigit() not a good option here as it doesn’t handle negative numbers:

 valid = False
 while not valid:
 try:
 Key = int(input('Enter the amount that shifts the plaintext alphabet to the ciphertext alphabet: '))
 if Key < -25 or Key == 0 or Key > 25 : # range check
 print('You must enter a number between -25 and -1 or between 1 and 25')
 else:
 valid = True
 except:
 print('You must enter a numeric value!')

	83
	^
	Test number of lines in rail fence encryption
Check that number of rail fences is not larger than the number of characters in the plain text.

 valid = False
 while not valid:
 try:
 SizeOfRailFence = int(input('Enter the number of lines in the rail fence: '))
 if SizeOfRailFence < 1 or SizeOfRailFence > len(Plaintext) : # range check
 print(f'You must enter a number between 1 and {len(Plaintext)} (length of the Plain Text)')
 else:
 valid = True
 except:
 print('You must enter a numeric value!')

	124
	^
	Test character position ‘jump’ value (N) in file for Stenography
Use isdigit() function to implement type check:
Check that jump is not larger than the difference between the start and end positions.

 valid = False
 while not valid:
 try:
 N = int(input('Enter the value of n: '))
 if N < 1 or N > (EndPosition - StartPosition) : # range check
 print(f'You must enter a number between 1 and the difference between the start and end positions ({EndPosition-StartPosition})')
 else:
 valid = True
 except:
 print('You must enter a numeric value!')

12. Complete the table to list all of the assignment statements in the code where processing occurs, try to explain/describe what is happening to the data during the execution of that line(s) (feel free to put a few lines together.

A selection of assignmenrt statements…
	Line Number
	Assignment Statement
	Explanation

	46
	TextFromFile+=ByteFromFile.decode('ASCII')
	Having read the last byte from the file, convert it to an ASCII string character and append it to the TextFromFile string variable.

	67
	NewASCIICode = ((26 + ASCIICode - ord('A') + AmountToShift) % 26) + ord('A')
	Applies the Caeser shift by the specified amount for upper case characters. Apply Modulus 26 to handle shift beyond ‘Z’ or before ‘A’.

	69
	NewASCIICode = ((26 + ASCIICode - ord('a') + AmountToShift) % 26) + ord('a')
	Applies the Caeser shift by the specified amount for lower case characters. Apply Modulus 26 to handle shift beyond ‘z’ or before ‘a’.

	77
	ASCIICode = ord(OriginalText[Count])
	Converts each character of the input text into ASCII code to be shifted

	79
	ChangedText += chr(ASCIICode)
	Creates the encrypted or decrypted text as each character of the input text is shifted using the ApplyShiftToASCIICodeForCharacter function

	91
	Ciphertext += OriginalText[Count2]
	In RailFence encryption, adds the character from the position stored in count2 (see next description)

	92
	Count2=Count2+SizeOfRailFence
	Increments count2 by the number of ‘fences’ in the rail fence to determine the position of the next character to add to the ciphertext.

	131
	HiddenMessage += GetTextFromFile(CurrentPosition, CurrentPosition)
	Gets character at position ‘CurrentPosition’ from the text file and concatenates it to the HiddenMessage variable

	132
	CurrentPosition = CurrentPosition + N
	Moves current position along by the input jump value, N.

	155
	Plaintext = GetTextFromUser()
	The variable Plaintext is set to the return from the GetTextFromUser function

	159
	Ciphertext = GetTextFromUser()
	^

	164
	AmountToShift = GetKeyForCaesarCipher()
	The variable amount to shift is set to the result from GetKeyForCeaserCipher()

	165
	Ciphertext = UseCaesarCipher(Plaintext, AmountToShift)
	The variable Ciphertext is set to the return from UseCeaserCipher() with the parameters Plaintext and amount to shift.

	
	
	

