Mark schemes

В

D

В [1]

В 2 [1]

В 3 [1]

В [1]

C [1]

С [1]

[1]

[1]

В [1]

10 [1]

18 (protons) (1) (a) 11 (37 - 18 gives) 19 (neutrons (1) 2

 $(charge) = 2^+ \text{ or } 2^- (1)$ (b) $Q = 2 \times 1.60 \times 10^{-19} = 3.2 \times 10^{-19}$ (C) (1) 2

neutron (1) (c) (i) electron (1) (ii)

(d) (%) = $\frac{16 \times 9.11 \times 10^{-31}}{1.67 \times 10^{-27} \times 37}$ (2) (for correct nuclear mass and substitution) $(= 2.36 \times 10^{-4}) = 2.36 \times 10^{-2} (\%) (1)$

> Godalming+College Page 2 of 6

2

3

[9]

					1	
	(b)	(i)	the γ ray must provide enough energy to provide for the (rest) mass (1) any extra energy will provide the particle(s) with kinetic energy (1)			
		(ii)	(0.511 + 0.511) = 1.022 (MeV) (1)		3	
	(c)	any p	pairing of a particle with its corresponding			
		antip	article (e.g. p + \bar{p}) (1)		1	[5]
13	(a)	(i)	moves between one object and another/carrier acting on two particles			
				B1		
			gives rise to the force between the particles			
				B1		
			gluon(s) (accept pions)			
				B1		
		(ii)	gluons lighter/(w) bosons more massive			
				B1		
		(iii)	gluons have longer range/(w) bosons have shorter range not distance			
				B1	5	
	(b)	1 1p				
				B1		
		0 - 0 ν	in either order			
				B1	2	
					-	

(a) pair production (1)

(c) baryon $0 \to 0 + 0 + 0$

B1

lepton $1 \to 1 + (-1) + 1$

B1

charge $-1 \to (-1) + 0 + 0$

В1

[10]

3

- (a) any two hadrons e.g. proton, neutron, pion, kaon, etc. (1)
- (b) any two antiparticle leptons e.g. e^+, μ^+ , anti-(electronic) neutrino etc (1)
- (c) $d\overline{d}$ (or $u\overline{u}$ or $\frac{1}{\sqrt{2}}(d\overline{d} + u\overline{u})$)

14

(d) usually created in pairs (*)

normally decays into combinations of π , p and n (*)

contains at least one strange quark (*)

usually decays via the weak interaction (*)

half - life is relatively long compared with half -life of typical particle decaying via strong interaction (*)

(*) any one (1)

[4]

(a) number of protons = number of electrons (e.g.14) (1)

number of protons + number of neutrons = 28 (1)

2

6

- (b) (i) nuclei with the same number of protons (1) but different number of neutrons/nucleons (1)
 - (ii) (137 55) = 82 (1)

(iii)
$$\frac{Q}{m} = \frac{92 \times 1.60 \times 10^{-19}}{236 \times 1.67 \times 10^{-27}}$$
 (1)

$$= 3.73 \times 10^7 \text{ (C kg}^{-1}) \text{ (1)}$$

(iv)
$$X = 236 - 137 - 4 = 95 (1)$$

[8]

18

(a) baryon qqq

antibaryon qqq

meson qq

two names (1) composition of each sub-group (1) (1)

3

(b) (i)
$$n \to p$$
 (1) $+ {}^0_{-1}\beta^-$ (1) $+^{\bar{\nu}}_{(e)}$ (1)

(ii) a down (d) quark changes to an up (u) quark [or udd changes to uud] (1)

4

[7]