The graph of neutron number against proton number shows three nuclei P, Q and R.

Which row identifies an isotope of P and the nucleon number of this isotope of P?

	Isotope of P	Nucleon number of isotope of P	
Α	Q	y + 1	0
В	Q	x + y + 1	0
С	R	x + y + 1	0
D	R	x + 1	0

(Total 1 mark)

2

A nucleus of a particular element decays, emitting a series of α and β ⁻ particles.

Which of the following series of emissions would result in an isotope of the original element?

- **A** 1 α and 1 β
- 0
- **B** 1 α and 2 β
- 0
- **C** 2 α and 1 β
- 0
- **D** 2 α and 2 β^-

0

The partially completed diagram represents electron capture.

Which row identifies the exchange particle **Q** and the quark structure of particle **R**?

	Particle Q	Quark structure of particle R	
Α	W-	uuu	0
В	W ⁺	dud	0
С	W ⁺	uuu	0
D	W-	dud	0

(Total 1 mark)

In a nuclear reaction ${}^{14}_{7}N$ is bombarded by neutrons. This results in the capture of one neutron and the emission of one proton by one nucleus of ${}^{14}_{7}N$. The resulting nucleus is

- A 13 N
- B 14 C
- C 12 C
- D 14 0

Fluoride ions are produced by the addition of a single electron to an atom of fluorine ${}^{19}_{9}F$.

What is the magnitude of specific charge of the fluoride ion?

- **A** $3.2 \times 10^{-26} \text{ C kg}^{-1}$
- 0
- **B** $8.4 \times 10^{-21} \text{ C kg}^{-1}$
- 0

C $5.0 \times 10^6 \text{ C kg}^{-1}$

0

D $4.5 \times 10^7 \,\mathrm{C \, kg^{-1}}$

0

(Total 1 mark)

6

Electron capture can be represented by the following equation.

$$p + e^- \rightarrow X + Y$$

Which row correctly identifies **X** and **Y**?

	х	Υ	
A	р	K-	0
В	e ⁻	e ⁺	0
С	n	V _e	0
D	n	π^{0}	0

(Total 1 mark)

7

Which equation shows the process of annihilation?

- $\mathbf{A} \qquad \qquad \pi^- + \pi \longrightarrow \gamma$
- 0
- $\mathsf{B} \qquad \mathsf{p} + \overline{\mathsf{p}} \to \gamma + \gamma$
- 0
- $\mathbf{C} \qquad \beta^- + \mathbf{p} \longrightarrow \gamma$
- 0
- $\mathbf{D} \qquad \qquad \gamma + \gamma \longrightarrow \beta^+ + \beta^-$
- 0

The decay of a neutral kaon K^0 is given by the equation

$$K^0 \rightarrow X + Y + \overline{v}_e$$

What are X and Y?

	X and Y	
Α	e ⁺ and e ⁻	0
В	μ⁺ and e⁻	0
С	$\pi^{\!+}$ and e^-	0
D	π^- and e^+	0

(Total 1 mark)

9 Which of the following is **not** made of quarks?

- **A** kaon
- 0
- **B** muon
- 0
- **C** neutron
- 0
- **D** pion

(Total 1 mark)

10 What is the quark structure for antiprotons?

- A ūd
- 0
- B dds
- 0
- C ddu
- 0
- D ūūd 🔾

tom of argon ³⁷ ₁₈ Ar is ionised by the removal of two orbiting electrons.	
How many protons and neutrons are there in this ion?	
protons	
neutrons	
What is the charge, in C, of this ion?	
Which constituent particle of this ion has	
(i) a zero charge per unit mass ratio,	
(ii) the largest charge per unit mass ratio?	
Calculate the percentage of the total mass of this ion that is accounted for by th its electrons.	e mass of
	·
	 (Total 9 ma
	How many protons and neutrons are there in this ion?

(a)		Wha	at is this process called?	_
	(b)	(i)	Explain why there is a minimum energy of the γ photon for this conversion to place and what happens when a γ photon has slightly more energy than this	
				-
		(ii)	Using values from the data sheet calculate this minimum energy in MeV.	_
				_ (3)
	(c)	an e	er suitable conditions, a γ photon may be converted into two other particles rathelectron and positron. e an example of the two other particles it could create.	ner than
13	(a)	(i)	Explain what is meant by an exchange particle.	_
				_
		(ii)	Name the exchange particle that mediates the strong force.	(2)
				- (1)

Under certain conditions a γ photon may be converted into an electron and a positron.

12

(iii)	The weak nuclear force acts over a much shorter distance than the strong force. Explain two differences between the relevant exchange particles that account for this.	
The f	following equation shows the β^- decay of a free neutron.	
	0 ¹ 1 \rightarrow X + 0 ₋₁ 1 1 1	
Ident	tify each of the particles X and Y .	
Shov	w the appropriate nucleon and proton number for each of the particles.	
x		
Υ		
	decay to be possible each of baryon number, lepton number and charge must be erved. Use these rules to show that the following decay is possible. $\mu^- \ \rightarrow \ e^- \ + \ \bar{\nu}_{\epsilon} \ + \ _{V\!\mu}$	
	conservation of baryon number:	
	conservation of lepton number:	
	conservation of lepton number: conservation of charge:	

1	4
-	

14	(a)	Name two hadrons.	
	(b)	Name two leptons which are also antiparticles.	
	(c)	State a possible quark structure of the pion π^0 . A table of the properties of quarks is given in the Data booklet.	
	(d)	A K ⁻ kaon is a strange particle. State one characteristic of a strange particle.	
			arks
15	(a)	A stable atom contains 28 nucleons. Write down a possible number of protons, neutrons and electrons contained in the atom. protons neutrons electrons	(2
	(b)	An unstable <i>isotope</i> of uranium may split into a caesium nucleus, a rubidium nucleus and four neutrons in the following process.	
		(ii) How many neutrons are there in the $^{137}_{55}$ Cs nucleus?	

(iv) Determine the value of X for the rubidium nucleus.	
X =	(6)
(То	otal 8 marks)
(a) (i) How do hadrons differ from all other subatomic particles?	
(ii) Give the quark composition of the following particles.	
neutron	
neutral pion	
(iii) Classify the following as either leptons, baryons or mesons.	
kaon	
muon	
	(5)
(b) Which is the most stable baryon?	
	(1)

(c) This table may be useful in answering the questions which follow.

particle	baryon number	lepton number	strangeness
π^-	0	0	0
р	1	0	0
p	-1	0	0
e ⁻	0	1	0
e ⁺	0	-1	0
$ar{v}_{e}$	0	-1	0

The particle X, which is a strange particle, decays in the following way:

$$X \rightarrow \pi^- + p$$

(i) State whether X is a meson, a baryon or a lepton.

(ii) Use conservation laws to decide whether each of the following decays of the π^- is possible. Give a reason for your answer.

(A)
$$\pi^- \rightarrow e^+ + v_e$$

Is this decay possible? _____

reason

(B)
$$\pi^- \! \to \bar{p} + e^- + e^+$$

17

Is this decay possible? _____

reason _____

(Total 11 marks)

(a) State whether or not each of the following properties of a baryon is conserved when it decays by the weak interaction.

oborgo

baryon number _____

strangeness _____

(2)

(5)

	(b)	Stat	te, with a reason, whether or not each of the following particle reactions is possible.	
		(i)	$p + \pi^- \rightarrow K^- + \pi^+$	
		(ii)	$p + \bar{v} \rightarrow n = e^+$	
			(Total 6 ma	(4) arks)
18	(a)	Nan	arks may be combined together in a number of ways to form sub-groups of hadrons. me two of these sub-groups and for each, state its quark composition. -group 1	
		sub	-group 2	
				(3)
	(b)	A fre	ee neutron is an unstable particle.	
		(i)	Complete the following to give an equation that represents the decay of a neutron. $\label{eq:normalization} n \rightarrow$	
		(ii)	Describe the change that occurs to the quark structure when a neutron decays.	
				(4)
			(Total 7 ma	arks)