

Leptons

The questions on this sheet are about reactions involving leptons. For each question, choose one of the responses A to E.

You may need to refer to the information in Table 1 at the end of this sheet. Note that you are not expected to memorize the information in this Table, so keep it for future reference.

Answers and notes are given on a separate sheet.

Section A

Q1 How many leptons are there in a neutral atom of beryllium ${}_{4}^{9}$ Be?

A 0

B 4

C 5

D 9

E 13

Q2 How many leptons are there in the *nucleus* of an atom of uranium $_{92}^{238}$ U?

A 0

B 92

C 235

D 238

E 330

Section B

In any particle reaction, the number of leptons of each type (electron-type or muon-type) minus the number of antileptons of the same type remains unchanged. If each lepton is assigned a **lepton number** L=1, and each antilepton has a lepton number L=-1, then the sum of lepton numbers is unchanged in any reaction. In other words, lepton number is always *conserved*.

Use the law of conservation of lepton number to help you answer the questions in this Section.

Q3 This question refers to the following reaction:

$$X + n \longrightarrow p + e^{-}$$

Which one of statements A to E correctly describes particle X?

A X is a positron

B X is a neutrino

C X is an antineutrino

D X is a neutron

E It is impossible to deduce anything about X from the reaction

Q4 This question refers to the following reaction:

$$\mu^- \longrightarrow e^{-^{\circ}+} \bar{v}_e^{\circ}+ Y$$

Which one of statements A to E is the correct symbol for particle Y?

- A n
- B v_e
- $C \bar{v}_e$
- $D \nu_{\mu}$
- $E \bar{v}_{\mu}$

Section C

Q5 This question refers to the following reaction, in which a stationary neutron decays, producing a proton that remains at rest and ejecting an electron and an antineutrino:

$$n \longrightarrow p + e^- + \bar{\nu}_e$$

The neutron has rest mass $m_{\rm n} = 939.6 \, {\rm MeV}/c^2$, and the proton has rest mass $m_{\rm p} = 938.3 \, {\rm MeV}/c^2$.

Which one of statements A to E is correct?

- A The electron is ejected with kinetic energy close to 1.3 MeV
- B The sum of the kinetic energies of the electron and the antineutrino is close to 1.3 MeV
- C The electron is ejected with kinetic energy close to 0.8 MeV
- D The sum of the kinetic energies of the electron and the antineutrino is close to 0.8 MeV
- E It is impossible to deduce anything about the kinetic energies of the electron and the neutrino

TABLE 1 Properties of leptons

Particle name	Symbol	Charge in units of proton charge	Rest mass/(MeV/c²)	Lepton number <i>L</i>
electron	e	-1	0.511	1
electron neutrino	$v_{\rm e}$	0	≈ 0	1
mu minus	μ-	-1	106	1
muon neutrino	$ u_{\mu}$	0	≈ 0	1
positron	e ⁺	1	0.511	-1
electron antineutrino	$\overline{\nu}_{\mathrm{e}}$	0	≈ 0	-1
mu plus	μ^+	1	106	-1
muon antineutrino	$\overline{ u}_{\mu}$	0	≈ 0	-1

All other particles have L = 0.

The spaces in this table are for you to fill in the properties of some other leptons when you meet them.