More SHC Questions – Answers

t

10.20 P =
$$\Delta Q / \Delta t$$
 = $\Sigma (m c \Delta \theta) / \Delta t$ = $(C_{kettle} + M_w C_w) \Delta \theta / \Delta t$
2.25 x 10³ = $(450 + 1 x 4200) \Delta \theta / \Delta t$
 $\Delta \theta / \Delta t$ = 0.484 K s⁻¹ = 29 K min⁻¹

10.25 KE =
$$\frac{1}{2}$$
 m v² = 0.5 x 800 x 20² = 160 kJ 10 times = 1600 kJ 20% = 320 kJ
m c $\Delta \theta$ = 320 kJ (4 x 1.5) x 420 x $\Delta \theta$ = 320 kJ $\Delta \theta$ = 127 °C

10.26
$$KE_1 = \frac{1}{2} \text{ m v}^2 = 0.5 \times 0.046 \times 40^2 = 36.8 \text{ J}$$
 $KE_2 = \frac{1}{2} \text{ m v}^2 = 0.5 \times 0.046 \times 25^2 = 14.4 \text{ J}$
 $\Delta KE = 22.4 \text{ J}$ (Note, do not use the speed difference - that would be very wrong!)
 $\text{m c } \Delta \theta = 22.4 \text{ J}$ $0.046 \times 1600 \times \Delta \theta = 22.4 \text{ J}$ $\Delta \theta = 0.30 \text{ °C}$
b) Both $\frac{1}{2} \text{ m v}^2$ and $\text{m c } \Delta \theta$ involve the same mass, which cancels

c) The temperature of the ball will rise until it reaches a 'dynamic equilibrium', where the rate of gain of energy from hitting the wall equals the rate of loss of energy to the surroundings (i.e. a constant temperature).

10.29	a)	(95 - θ)	(θ - 20)		
	b)	Using m c $\Delta \theta$:	$1.0 \times 4200 \times (95 - \theta) = 0.70 \times 385 \times (\theta - 20)$		
		Solution gives θ = 90.5 °C (90.47 °C, so rounds to 90 °C to 2 s.f.)			
	c)	Comment on much higher SHW of water than copper			
SQ 3	a)	mgh = 0.50 x 1	1.30 x 9.81 = 6.38 J	50 times = 319	J
	b)	$m c \Delta \theta = 319$.	J 0.50 x c x (23 - 18	3) = 319 J	c = 128 J kg ⁻¹ K ⁻¹
SQ 4	P =	$\underline{m} c \Delta \theta = 0$.025 x 4200 x (40 - 10) =	3150 W = 3.2 kW	