Mark schemes

1

(a) Tick in 4th box

- (b) (i) (using heat energy = ml) energy = 0.047 × 3.3 × 10⁵ = 1.6 × 10⁴ (J) \checkmark (1.55 × 10⁴ J) answer alone gains mark
 - (ii) (heat in from water = heat supplied to melt and raise ice temperature) $1.8 \times 10^4 = 1.6 \times 10^4 + (\text{energy to raise temp of ice})$ energy to raise temp of ice = 2×10^3 (J) \checkmark

answer alone gains mark allow 2, 2.5 or 3×10^3 J allow CE if substitution is shown $1.8 \times 10^4 - (b)(i)$

(iii) (using heat energy = mc∆T) c = 2 × 10³ / 0.047 × 25 = 2 × 10³ ✓ (1.7 × 10³) (note there is a large range of correct answers) J kg⁻¹ K⁻¹ or J kg⁻¹ °C⁻¹ ✓ (allow use of dividing line but don't allow °K and °C⁻¹ is not the same as C⁻¹) only allow CE if substitutions are seen

 $c = (b)(ii) / 0.047 \times 25$ = b(ii) × 0.851 allow 1 sig fig. common answers: for 2.5 × 10³ J gives 2.1 × 10³ or 2 × 10³ for 3 × 10³ J gives 2.6 × 10³ or 3 × 10³

2

1

1

1

(heat supplied by glass = heat gained by cola) (use of $m_{\rm g} c_{\rm g} \Delta T_{\rm g} = m_c c_{\rm c} \Delta T_{\rm c}$) 1st mark for RHS or LHS of substituted equation $0.250 \times 840 \times (30.0 - T_f) = 0.200 \times 4190 \times (T_f - 3.0)$ \checkmark 2nd mark for 8.4°C $(210 \times 30 - 210 t_{\rm f} = 838 T_{\rm f} - 838 \times 3)$ $T_{\rm f} = 8.4(1)$ (°C) 🗸 Alternatives: 8°C is substituted into equation (on either side shown will get mark) √ resulting in 4620J~4190J 🗸 or 8°C substituted into LHS \checkmark (produces $\Delta T = 5.5$ °C and hence) = 8.5°C ~ 8°C ✓ 8°C substituted into RHS ✓ (produces $\Delta T = 20^{\circ}C$ and hence) = 10°C ~ 8°C ✓

2

2

(i)

(ii) (heat gained by ice = heat lost by glass + heat lost by cola) NB correct answer does not necessarily get full marks

(heat gained by ice = $mc\Delta T + ml$) heat gained by ice = $m \times 4190 \times 3.0 + m \times 3.34 \times 10^5 \checkmark$ (heat gained by ice = $m \times 346600$) 3rd mark is only given if the previous 2 marks are awarded heat lost by glass + heat lost by cola = 0.250 × 840 × (8.41 − 3.0) + 0.200 × 4190 × (8.41 − 3.0) ✓ (= 5670 J) (especially look for $m \times 4190 \times 3.0$) the first two marks are given for the formation of the substituted equation not the calculated values $m (= 5670 / 346600) = 0.016 (kg) \checkmark$ if 8°C is used the final answer is 0.015 kg or (using cola returning to its original temperature) (heat supplied by glass = heat gained by ice) (heat gained by glass = $0.250 \times 840 \times (30.0 - 3.0)$) heat gained by glass = 5670 (J) 🗸 (heat used by ice = $mc\Delta T + ml$) heat used by ice = $m(4190 \times 3.0 + 3.34 \times 10^5) \checkmark (= m(346600))$ $m (= 5670 / 346600) = 0.016 (kg) \checkmark$ the energy required to change the state of a unit mass of water to steam / gas \checkmark when at its boiling point temperature / 100°C / without a change in temperature) \checkmark allow 1 kg in place of unit allow liquid to vapour / gas without reference to water don't allow 'evaporation' in first mark

(b) (i) thermal energy given by copper block (= $mc\Delta T$) = 0.047 × 390 × (990 - 100) = 1.6 × 10⁴ (J) \checkmark 2 sig figs \checkmark

(a)

3

can gain full marks without showing working a negative answer is not given credit sig fig mark stands alone

2

3

2

[5]

(ii) thermal energy gained by water and copper container $(= mc\Delta T_{water} + mc\Delta T_{copper})$ $= 0.050 \times 4200 \times (100 - 84) + 0.020 \times 390 \times (100 - 84)$ or = 3500 (J) √ (3485 J) available heat energy (= $1.6 \times 10^4 - 3500$) = 1.3×10^4 (J) \checkmark allow both 12000 J and 13000 J allow CE from (i) working must be shown for a CE take care in awarding full marks for the final answer - missing out the copper container may result in the correct answer but not be worth any marks because of a physics error (3485 is a mark in itself) ignore sign of final answer in CE (many CE's should result in a negative answer) 2 (iii) (using Q = ml) $m = 1.3 \times 10^4 / 2.3 \times 10^6$ = 0.0057 (kg) √ Allow 0.006 but not 0.0060 (kg) allow CE from (ii) answers between $0.0052 \rightarrow 0.0057$ kg resulting from use of 12000 and 13000 J 1 [7] (a) (use of $\Delta Q = m c \Delta T$) $30 \times 98 = 0.100 \times c \times 14 \sqrt{2}$ $c = 2100 (J \text{ kg}^{-1} \text{ K}^{-1}) \text{ v}^{-1}$ 2 (use of $\Delta Q = m I + m c \Delta T$) (b) $500 \times 98 = 0.100 \times 3.3 \times 10^5 \sqrt{+0.100 \times 4200 \times \Delta T} \sqrt{-0.100}$ $(\Delta T = 38 \ ^{\circ}C)$ T = 38°C √

4

3

(c) the temperature would be higher 🗸

as the ice/water spends more time below 25°C or heat travels in the direction from hot to cold or ice/water first gains heat then loses heat any one line √

[7]

[8]

2

3

lmax 2

3

5

6

(a)

(i) energy =
$$800 \times 60 = 48 \times 10^3 J$$
 (1)

- (ii) (use of $\triangle Q = mc \triangle \theta$ gives) $48 \times 10^3 = 60 \times 3900 \times \triangle \theta$ (1) $\triangle \theta = 0.21 \text{ K (1)}$ (0.205 K) (allow C.E. for value of energy from (i))
- (b) $\triangle Q = ml$ gives 500×60 (1) = $m \times 2.3 \times 10^{6}$ (1) m = 0.013 kg (1)
- (c) not generating as much heat internally (1) still losing heat (at the same rate)
 [or still sweating] (1)
 hence temperature will drop (1)
- (a) (i) quantity of energy supplied to unit mass (1)which raises temperature by 1°C [or 1K] (1)
 - (ii) quantity of energy required to change state of unit mass (1) solid to liquid [or ice to water] (1)

without change of temperature (1)

(max 4)

(b) (i)
$$Q (= mc\Delta\theta) = 0.15 \times 1200 \times (58 - 18) = 7200$$
 (J) (1)

$$P = \frac{7200}{5 \times 60} = 24 \text{ W (1)}$$

(ii)
$$Q = 24 \times 7 \times 60 = 10080$$
 (J) (1)

0.15l = 10080 gives l = 67200 J kg⁻¹ (1)

(iii) $24 \times 4 \times 60 = 0.15 \times s_L \times (94 - 58)$ (1)

gives
$$s_L = 1070 \text{ J kg}^{-1} \text{ K}^{-1}$$
 (1)

[10]

7	(a)	(i)	energy/heat input needed to change liquid into gas/vapour when at its boiling point/without change of temperature		
				M1	
			energy per unit mass/1 kg		
				A1	
		(ii)	idea that more energy has to be supplied to separate molecules than to break solid bond or		
			for vaporisation work is done against atmospheric pressure or Idea that there is a greater change in PE in L-G than S-L		
				B1	3
	(b)	(i)	$mI = Mc \Delta \theta$ or energy gain by water = 89250 (J) $m \times 2.3 \times 10^6 = 0.25 \times 4200 \times 85$		5
				C1	
			m = 0.0388 kg		
				A1	
			total mass = 0.289 (0.29) kg (0.25 + their <i>m</i>)		
				B1	
		(ii)	energy from steam is needed to raise temperature of the cup		
			or		
			energy/heat will be lost to the surroundings/cup/tube during the heating		
				B1	4

[7]