
CPU Instruction Set Architecture 1

Introduction

Objectives
At the end of this lab you should be able to:

 Use the simulator to execute basic CPU instructions

 Use direct and indirect addressing modes

 Create iterative loops

 Create sub-routines, sub-routine calls and return from
sub-routines

 Compile source code and investigate code generated

Processor (CPU) Simulators
The computer architecture tutorials are supported by simulators,
which are created to underpin theoretical concepts normally
covered during the lectures. The simulators provide visual and
animated representation of mechanisms involved and enable
the students to observe the hidden inner workings of systems,
which would be difficult or impossible to do otherwise. The
added advantage of using simulators is that they allow the
students to experiment and explore different technological
aspects of systems without having to install and configure the
real systems.

Basic Theory
The instruction sets of computer architectures define those low-
level architectural components, which include the following

 Processor instructions

 Registers

 Modes of addressing instructions and data

 Interrupts and exceptions

It also defines interaction between each of the above
components. It is this low-level programming model which
makes programmed computations possible.

1

Simulator Details
This section includes some basic information on the simulator, which
should enable the students to use the simulator. The tutor(s) will be
available to help anyone experiencing difficulty in using the simulator.

The simulator for this lab is an application running on a PC and is
composed of a single main window.

Image 1 - Main simulator window

The main window is composed of several views, which represent
different functional parts of the simulated processor. These are

 Instruction memory, i.e. RAM

 Special registers

 Register set

 Hardware stack

The parts of the simulator relevant to this lab are described below.

2

Instruction memory view

This view contains the program
instructions. The instructions are
displayed as sequences of low-level
instruction mnemonics (assembler-
level format) and not as binary code.
This is done for clarity and makes code
more readable.

Each instruction has two addresses:
the physical address (PAdd) and the
logical address (LAdd). This view also
displays the base address (Base)
against each instruction. The sequence
of instructions belonging to the same
program will have the same base
address.

Image2 - Instruction memory view

Special registers view
This view presents the set of registers, which have pre-
defined specialist functions:

PC: Program Counter contains the address of the next
instruction to be executed.
IR: Instruction Register contains the instruction currently
being executed.
SR: Status Register contains information pertaining to the
result of the last executed instruction.
SP: Stack Pointer register points to the value maintained
at the top of the hardware stack (see below).
BR: Base Register contains current base address.
MAR: Memory Address Register contains the memory
address currently being accessed.
Status bits: OV: Overflow; Z: Zero; N: Negative

 Image 3 - Special
registers view

3

Register set view

The register set view shows the contents of all
the general-purpose registers, which are used
to maintain temporary values as the program's
instructions are executed.

In this architecture, there are maximum 64
registers. These registers are often used to
hold values of a program's variables as
defined in high-level languages.

Not all architectures have this many registers.
Some have more (e.g. 128 register) and some
others have less (e.g. 8 registers). In all
cases, these registers serve similar purposes.

This view displays each register's name
(Reg), its current value (Value) and some
additional values, which are reserved for
program debugging. It can also be used to
reset the individual register values manually
which is often useful for advanced debugging.

Image 4 - Register set view

Hardware stack view

The hardware stack maintains temporary values
as the instructions are executed. The stack is a
LIFO (last-in-first-out) data structure. It is often
used for efficient interrupt handling and sub-routine
calls.

The instructions PSH (push) and POP are used to
store values on top of stack and pop values from
top of stack respectively.

Image 5 - Hardware stack view

4

Lab Exercises - Investigate and Explore
The lab exercises are a series of exercises, which are attempted by the
students under guidelines. The students are encouraged to carry out
further investigations on their own in order to form a better
understanding of the technology.

First we need to place some instructions in the Instruction Memory
View (i.e. representing the RAM in the real machine) before executing
any instructions. How are instructions placed in the Instruction Memory
View? Follow the procedure below for this.

Image 6 - Program Instructions View

In the Program Instructions View, first enter a Program Name, and
then enter a Base Address (this can be any number, but for this
exercise use 100). Click on the ADD button. A new program name will
be entered in the Program List View shown below. Use the SAVE… /
LOAD... buttons to save instructions in a file and load the instructions
from a file.

Use the DELETE button to delete the
selected program from the list; use the
CLEAR ALL button to remove all the
programs from the list. Note that when a
program is deleted, its instructions are
also removed from the Instruction
Memory View too.

Image 7 - Program List View

5

In the following exercises, you'll also need to see the contents of user
memory assigned to your program. To do this click on the SHOW
PROG MEMORY… button (see Image 7 above) in the PROGRAM
LIST view. The memory contents will be displayed in a separate
window as shown below. The addresses are displayed in decimal and
the memory data are displayed in hexadecimal formats.

Image 8 - Program memory page

You are now ready to enter instructions into this view. You do this by
clicking on the ADD NEW… button. This will display the Instructions:
CPU0 window. Use this window to enter the instructions. Use the
appendix provided as a reference to the simulator’s instruction set
architecture.

Complete the following activities:

1. In the appendix, locate the instruction, which is used to store a byte
of data in a memory location.

6

2. Use it to store number 65 in address location 20 (all numbers
are in decimal). This is an example of direct addressing.

3. Create an instruction to move number 22 to register R01 and
execute it.

4. Create an instruction to store number 51 in address location
currently stored in register R01 and execute it. This is an
example of indirect addressing.

5. Verify that the specified bytes are written to the correct address
locations (see Image 8). You should see an A and a 3 under the
Data column.

6. Now, let’s create a loop: First set R02 to 0 (zero). Increment
R02's value by 1 (one). If R02's value is 5 then exit this loop and
stop the program; otherwise continue the loop.

7. Let’s plant a short text into memory (we are hacking now!). Click
and highlight memory location 0024 (under PAdd column). Now
enter 'h, 'e, 'l, 'l, 'o, 0D (i.e. decimal 13), 0A (i.e. decimal 10) in
boxes B0 to B6 and click on the UPDATE button. The text
"hello" should now be in memory (starting from address location
24). What do the last two hex bytes 0D0A do?

8. Create a small sub-routine which when called will display the
text "hello". You may need your tutor's help on this.

9. Modify the above loop (i.e. insert a call to subroutine instruction)
to call this subroutine each time the value of R02 is incremented
by 1 (one).

10. Verify that when the loop is executed, the text "hello" is
displayed. To see the text click on the INPUT/OUTPUT… button
in ADVANCED view (see Image 1 above).

11. Observe the contents of the PC register and the hardware stack
just before the subroutine call. Observe these again just after
the subroutine return instruction is executed. Explain your
observations.

12. Go to the compiler screen (click on the Compiler… button) and
enter the following source code in the Program Source frame:

program TestSource
 for I = 1 to 8
 N = N + 2
 next
end

First make sure you check the Enable Optimizer and the
Redundant Code check-boxes at the bottom left corner of the
window. Now compile this code and observe the code generated on

7

the right. Investigate the binary code generated (shown in hex
format) against each instruction and try to understand how this is
constructed for each instruction. You may need your tutor's help on
this.

13.Enter the source below and compile it.

program StringTest
 var S string(5)
 S = “Hello”
End

When the above source is successfully compiled do the following

On the compiler window click on the SHOW… button in the
BINARY CODE view (near bottom right corner). You should see the
Binary Code for StringTest window displayed. In this window you
should see the binary code generated for this program (it is actually
displayed as hex values). Let’s analyse the code generated. Do the
following

Click on the RESET button. Click on the NEXT INSTRUCTION
button. You should see a value in the Address text box and the
opcode of the instruction in the Opcode text box. At the same time
the relevant part of the instruction will be highlighted in the Binary
Code Data view. To decode the instruction further, click on the
button. If the instruction has any operand you should now see it in
the Opnd1 text box. At the same time, observe which radio button
gets selected. The radio buttons indicate the addressing modes of
the operands as they get decoded. By repeatedly clicking on the
button (when enabled) you should see the rest of the instruction
decoded. At the end of the instruction the button will be disabled.
To decode the next instruction, you should click on the NEXT
INSTRUCTION button again (do not click on the RESET button
unless you wish to start from the beginning again).

Now, analyze the code generated and explain what is happening.
To help you understand this better, you can go back to the compiler
window, load the code in CPU simulator (use the LOAD IN
MEMORY button) and step through the code. You may need to look
at the memory where data is written to (use the SHOW PROG
MEMORY… in the CPU simulator window).

8

Appendix - Simulator Instruction Sub-set

Instruction Description and examples of usage

Data transfer instructions

MOV

Move data to register; move register to register

e.g.

MOV #2, R01 ;moves number 2 into register R01

MOV R01, R03 ;moves contents of register R01 into register R03

LDB

Load a byte from memory to register

e.g.

LDB 1000, R02 ;loads one byte value from memory location 1000

LDB @R00, R01 ;memory location is specified in register R00

LDW

Load a word (2 bytes) from memory to register

e.g.

LDW 1000, R02 ;loads two-byte value from memory location 1000

LDW @R00, R01 ;memory location is specified in register R00

STB

Store a byte from register to memory

e.g.

STB #2, 1000 ;stores value 2 into memory location 1000

STB R02, @R01 ;memory location is specified in register R01

STW

Store a word (2 bytes) from register to memory

e.g.

STW R04, 1000 ;stores register R04 into memory location 1000

STW R02, @2000 ;memory location is specified in memory 2000

PSH

Push data to top of hardware stack (TOS); push register to TOS

e.g.

PSH #6 ;pushes number 6 on top of the stack

PSH R03 ;pushes the contents of register R03 on top of the stack

POP

Pop data from top of hardware stack to register

e.g.

POP R05 ;pops contents of top of stack into register R05

9

10

Arithmetic instructions

ADD

Add number to register; add register to register

e.g.

ADD #3, R02 ;adds number 3 to contents of register R02 and
stores the result in register R02.

ADD R00, R01 ;adds contents of register R00 to contents of
register R01 and stores the result in register R01.

SUB Subtract number from register; subtract register from register

MUL Multiply number with register; multiply register with register

DIV Divide number with register; divide register with register

Control transfer instructions

JMP

Jump to instruction address unconditionally

e.g.

JMP 100 ;unconditionally jumps to address location 100

JLT

Jump to instruction address if less than (after last comparison)

e.g.

JLT 1000 ;jumps to address location 1000 if the previous
comparison instruction result indicates that CMP operand 2 is less
than operand 1.

JGT Jump to instruction address if greater than (after last comparison)

JEQ

Jump to instruction address if equal (after last comparison)

e.g.

JEQ 200 ;jumps to address location 200 if the previous comparison
instruction result indicates that the two CMP operands are equal.

JNE Jump to instruction address if not equal (after last comparison)

CAL

Jump to subroutine address

e.g. To call a subroutine starting at address location 1000 use the
following sequence of instructions

MSF ;always needed just before the following instruction

CAL 1000 ;will cause a jump to address location 1000

RET
Return from subroutine

e.g. The last instruction in a subroutine must always be the following
instruction

11

RET ;will jump to the instruction after the last CAL instruction.

SWI Software interrupt (used to request OS help)

HLT

Halt simulation. This must be the last instruction.

e.g.

HLT ;stops the simulation run (not the simulator itself)

Comparison instruction

CMP

Compare number with register; compare register with register

e.g.

CMP #5, R02 compare number 5 with the contents of register R02

CMP R01, R03 compare the contents of registers R01 and R03

Note:

If R03 = R01 then the status flag Z will be set

If R03 > R01 then non of the status flags will be set

If R03 < R01 then the status flag N will be set

Input, output instructions

IN Get input data (if available) from an external IO device

OUT

Output data to an external IO device

e.g. to display a string starting in memory address 120 (decimal) on
console device do the following

OUT 120, 0 ;the string is in address location 120 (direct addressing)

OUT @R02, 0 ;register R02 has number 120 (indirect addressing)

