
1 
 

Programming Model 2 
A. Introduction 

Objectives 

At the end of this lab you should be able to: 

▪ Use direct addressing mode of accessing data in memory 
▪ Use indirect addressing mode of accessing data in memory 
▪ Write a subroutine and call it 
▪ Pass parameters to a subroutine  
 

B. Processor (CPU) Simulators 

The computer architecture tutorials are supported by simulators, which are created to 
underpin theoretical concepts normally covered during the lectures. The simulators provide 
visual and animated representation of mechanisms involved and enable the students to 
observe the hidden inner workings of systems, which would be difficult or impossible to do 
otherwise. The added advantage of using simulators is that they allow the students to 
experiment and explore different technological aspects of systems without having to install 
and configure the real systems. 

C. Basic Theory 

The programming model of computer architecture defines those low-level architectural 
components, which include the following 

▪ CPU instruction set 
▪ CPU registers 
▪ Different ways of addressing instructions and data in instructions, i.e. addressing 

modes such as direct and indirect addressing. 
 
They also define interactions between the above components. It is this low-level 
programming model which makes programmed computations possible.  

D. Simulator Details 

You can find the simulator details relevant to this tutorial in Programming Model 1 tutorial. 
As a result, these are not repeated here except the new information on how to view and 
access program data memory view; this tutorial requires access to this part of the simulator. 
You will find the details below. 
 



2 
 

Program data memory view 

 

 

Image 1 - Program data memory view 

The CPU instructions that access that part of the memory containing data can write or read the data 
in addressed locations. This data can be seen in the memory pages window shown in Image 1 above. 
You can display this window by clicking the SHOW PROGRAM DATA MEMORY… button in the main 
CPU window. The Ladd (logical address) column shows the starting address of each line in the 
display. Each line of the display represents 8 bytes of data. Columns B0 through to B7 represent 
bytes 0 to 7 on each line. The Data column shows the displayable characters corresponding to the 8 
bytes. Those bytes that correspond to non-displayable characters are shown as dots. The data bytes 
are displayed in hex format only. For example, in Image 1, there are non-zero data bytes in address 
locations 19 and 37. These data bytes correspond to displayable characters capital A and B. 
 

To manually change the values of any bytes, first select the line(s) containing the bytes. Then use the 
information in the Initialize Data frame to modify the values of the bytes in the selected line(s) as 
Integer, Boolean or String formats. You need to click the UPDATE button to make the change. 



3 
 

E. Lab Exercises - Investigate and Explore 

Enter the instructions you create in order to answer the questions in the blank boxes. Refer to 
Appendix at the end of this document to find the details on the desired instructions. You are 
expected to execute the instructions you created on the simulator in order to verify your answers. 
 

A. Instructions for writing to and reading from memory (RAM): 
 

1. Locate the instruction that stores a byte in program data memory and use it to store number 
65 in memory address location 20 (this uses memory direct addressing method). 

 
 
 

2. Move number 51 into register R04. Use the store instruction to store the contents of R04 in 
program data memory location 21 (this uses register direct addressing method). 

 
 
 

3. Move number 22 into register R04. Use this information to indirectly store number 59 in 
program data memory (hint: you will need to use the ‘@’ prefix for this – see the list of 
instructions in appendix) - (this uses register indirect addressing method). 

 
 
 

4. Locate the instruction that loads a byte from program data memory into a register. Use this 
to load the number in memory address 22 into register R10. 

 
 
 

 

5. Write a loop in which 10 numbers from 41 to 50 are written in program data memory 
starting from memory address 24 (hint: use register indirect addressing  where register R04 
indirectly represents memory address to write to and increment it to address increasing 
memory locations).  

 
 
 
 
 

 

6. Manually initialise part of program data memory starting from address 40 with string “CPU 
INSTRUCTIONS RULE” (see section D above on how to do this). Write a loop in which this 
string is copied to another part of the program data memory starting from address 64. 

 

 

 

 

 

 



4 
 

 
B. Instructions for calling subroutines and passing parameters to subroutines: 

 
1. Add the following code and run it starting from the first MOV instruction (to do this you 

need to first select this instruction and then click on the RUN button).  
 
NOTE: 
Ask your tutor how to add labels to your code. A Label represents the address of the 
instruction immediately following it. For example, ‘Label2’ below represents the address of 
the MOV instruction following it. Labels are used by the jump instructions by putting a ‘$’ in 
front of the label name, e.g. the ‘JMP $Label2’ instruction will jump to the instruction at 
address represented by the label ‘Label2’. 
 
Label2 
MOV #16, R03 
MOV #h41, R04 
Label3 
STB R04, @R03 
ADD #1, R03 
ADD #1, R04 
CMP #h4F, R04 
JNE $Label3 
HLT 
 
a. Make a note of what you see in the program’s data area after the program stops running: 

 

 

 

b. Suggest what the significance of @ in @R03 might be: 

 

 

 

2. Add the following subroutine calling code but do NOT run it yet: 
 
MSF 
CAL $Label2 
HLT 
 
Now convert the code in (1) above into a subroutine by simply replacing the HLT instruction 

with the RET instruction.  

a. Make a note of the contents of the PROGRAM STACK after the instruction MSF is executed 
(you can execute this instruction by simply double-clicking on it): 

 

 

b. Make a note of the contents of the PROGRAM STACK after the instruction CAL is executed 
(you can execute this instruction by simply double-clicking on it): 
 
 
 

 

 

 

 

NOTE: 
This code stores numbers hex 41 to hex 4F starting from 
program memory address 16. These numbers are ASCII 
codes for displayable characters of the alphabet. You 
need to understand how this is done by this code in 
order to benefit from these exercises. 



5 
 

 
c. What is the significance of the additional information on the stack after executing the CAL 

instruction? 
 

 

 

3. Let’s make the above subroutine a little more flexible. Suppose we wish to change the 
number of characters stored when calling the subroutine. Modify the calling code in (2) as 
below: 

 
MSF 
PSH #h60          puts the number hex 60 on top of the stack 
CAL $Label2 
HLT 

 
a. Now modify the subroutine code in (1) as below and run the above calling code (starting from 

the MSF instruction). Pay particular attention to the behaviour of the stack:  
 

Label2 
MOV #16, R03 
MOV #h41, R04 
POP R05            puts the number on top of the stack in R05 
Label3 
STB R04, @R03 
ADD #1, R03 
ADD #1, R04 
CMP R05, R04    compares R05 with R04 
JNE $Label3 
RET 
 

b. Add a second parameter to the above code that can provide different starting addresses for 
the data transfer to memory and test it on the simulator. Write the modified code below: 

 

 

 

 

 



6 
 

 

4. Write a subroutine that takes two numbers as parameters, adds them and returns the result 
in register R00, i.e. when the subroutine is exited the result is available in R00 to the rest of 
the program. Test it on the simulator by writing the calling instructions that include passing 
two numbers on the stack. Copy the code below (including the calling instructions): 

 
 
 

 

 

 

 

 

5. Write a subroutine that takes two numbers as parameters, compares them and returns the 
higher of the two as the result in register R00 (consider what should happen if the two 
numbers are the same). Test it on the simulator by writing the calling instructions that 
include passing two numbers on the stack. Copy the subroutine code alone below: 

 
 

 

 

 



7 
 

Appendix - Simulator Instruction Sub-set 

Inst. Description 

Data transfer instructions 

MOV 

Move data to register; move register to register 
e.g. 
MOV #2, R01 moves number 2 into register R01 
MOV R01, R03  moves contents of register R01 into register R03 

LDB 

Load a byte from memory to register 
e.g. 
LDB 1022, R03   loads a byte from memory address 1022 into R03 
LDB @R02, R05  loads a byte from memory the address of which is in R02 

LDW Load a word (2 bytes) from memory to register 
Same as in LDB but a word (i.e. 2 bytes) is loaded into a register 

STB 

Store a byte from register to memory 
STB R07, 2146  stores a byte from R07 into memory address 2146 
STB R04, @R08  stores a byte from R04 into memory address of which is in 
R08 

STW Store a word (2 bytes) from register to memory 
Same as in STB but a word (i.e. 2 bytes) is loaded stored in memory 

PSH 

Push data to top of hardware stack (TOS); push register to TOS 
e.g. 
PSH #6  pushes number 6 on top of the stack 
PSH R03  pushes the contents of register R03 on top of the stack 

POP 

Pop data from top of hardware stack to register 
e.g. 
POP R05  pops contents of top of stack into register R05 
Note: If you try to POP from an empty stack you will get the error message 
“Stack underflow”. 

Arithmetic instructions 

ADD 

Add number to register; add register to register 
e.g. 
ADD #3, R02 adds number 3 to contents of register R02 and stores the 
result in register R02. 
ADD R00, R01 adds contents of register R00 to contents of register R01 
and stores the result in register R01. 

SUB Subtract number from register; subtract register from register 

MUL Multiply number with register; multiply register with register 

DIV Divide number with register; divide register with register 

Control transfer instructions 

JMP 

Jump to instruction address unconditionally 
e.g. 
JMP 100  unconditionally jumps to address location 100 where there is 
another instruction 



8 
 

JLT Jump to instruction address if less than (after last comparison) 

JGT Jump to instruction address if greater than (after last comparison) 

JEQ 

Jump to instruction address if equal (after last comparison instruction) 
e.g. 
JEQ 200 jumps to address location 200 if the previous comparison 
instruction result indicates that the two numbers are equal, i.e. the Z 
status flag is set (the Z box will be checked in this case). 

JNE Jump to instruction address if not equal (after last comparison) 

MSF 

Mark Stack Frame instruction is used in conjunction with the CAL 
instruction. 
e.g. 
MSF            reserve a space for the return address on program stack 
CAL 1456   save the return address in the reserved space and jump to 
subroutine in address location 1456 

CAL 

Jump to subroutine address (saves the return address on program stack) 
This instruction is used in conjunction with the MSF instruction. You’ll 
need an MSF instruction before the CAL instruction. See the example 
above 

RET Return from subroutine (uses the return address on stack) 

SWI Software interrupt (used to request OS help) 

HLT Halt simulation 

Comparison instruction 

CMP 

Compare number with register; compare register with register 
e.g. 
CMP #5, R02  compare number 5 with the contents of register R02 
CMP R01, R03 compare the contents of registers R01 and R03 
Note: 
If R01 = R03 then the status flag Z will be set, i.e. the Z box is checked. 
If R01 < R03 then none of the status flags will be set, i.e. none of the status 
flag boxes are checked. 
If R01 > R03 then the status flag N will be set, i.e. the N status box is 
checked. 

Input, output instructions 
IN Get input data (if available) from an external IO device 

OUT 

Output data to an external IO device 
e.g. 
OUT 16, 0  outputs contents of data in location 16 to the console (the 
second parameter must always be a 0) 

 


