
1

Programming Model 4

Objectives of this tutorial

At the end of this lab you should be able to:
▪ Enter CPU instructions using the CPU simulator
▪ Describe the effect of compare instruction on CPU status flags Z and N
▪ Construct a loop and explain jump instructions that use Z and N flags
▪ Use direct addressing to access memory location(s)
▪ Use indirect direct addressing to access memory location(s)
▪ Construct a subroutine and call it
▪ Pass parameter(s) to the subroutine

Special instructions

▪ Save your work at regular intervals.

▪ The CPU simulator is work in progress so it may crash from time to time. If this happens
then restart it and load your latest code, hence the importance of the above statement!

▪ Ask if you need help with any aspect of this tutorial.

▪ The simulator is there to help you understand the theory covered in lectures so make

the most of it.

2

Exercises

Learning objectives: To enter CPU instructions and describe effect of compare instruction on

CPU status flags Z and N.

In theory In practice

The CPU instruction sets are often
grouped together into categories
containing instructions with related
functions.

This exercise familiarises you with
the way the instructions are entered
using the simulator.

The most encountered instructions
involve data movements, e.g. the
MOV instruction.

Another common instruction is the
comparison instruction, e.g. CMP.
This instruction sets or resets the
status flags Z and N as a record of
the result of the comparison
operation.

1. Enter the following code and run it:

MOV #1, R01
MOV #2, R02
ADD R01, R02

2. Add the following code and note the states of the status

flags Z and N after each compare instruction is executed:

CMP #3, R02 Z  N 

CMP #1, R02 Z  N 

CMP #4, R02 Z  N 

Explain your observations of the states of the status
flags after the compare instructions above:

** Now save the above code! **

Learning objectives: To construct a loop and explain jump instructions that use Z and N flags

In theory In practice

The computer programs often
contain loops where the same
sequence of code is repeatedly
executed until or while certain
condition is met. Loops (or iterative
statements) are the most useful
features of programming languages.

At the instruction level, loops use
conditional jump instructions to
jump back to the start of the loop or
to jump out of the loop.

This exercise is created to
demonstrate the use of the jump
instruction which often uses the
result of a compare instruction. Such
jump instructions use the Z and the
N status flags to jump or not jump.

3. Add the following code and run it (ask your tutor how to
enter a label):

MOV #0, R01
Label1
ADD #1, R01
CMP #3, R01
JLT $Label1

Summarize what the above code is doing in plain
English:

4. Modify the above code such that R01 is incremented by 1

until it reaches the value of 4. Copy the code below:

** Now save the above code! **

3

Learning objectives: To use direct addressing to access memory location(s)

In theory In practice

Although instructions moving data
to or from registers are the fastest
instructions, it is still necessary to
move data in or out of the main
memory (RAM) which is a much
slower process.

Examples of instructions used to
store into or get data out of memory
are explored here. The method used
here uses the direct addressing
method, i.e. the memory address is
directly specified in the instruction
itself.

5. Add the following code and run:

STB #h41, 16
LDB 16, R03
ADD #1, R03
STB R03, 17

Make a note of what you see in the program’s data area:

What is the significance of h in h41 above?

Modify the above code to store the next two characters in
the alphabet. Write down the modified code below:

** Now save the above code! **

Learning objective: To use indirect addressing to access memory location(s)

In theory In practice

There are circumstances which make
direct addressing unsuitable and
inflexible method to use.

In these cases indirect addressing is
a more suitable and flexible method
to use. In indirect addressing, the
address of the memory location is
not directly included in the
instruction but is stored in a register
which is the used in the instruction.

This exercise introduces an indirect
method of accessing memory. This is
called register indirect addressing.
There is also the memory indirect
addressing but this is left as an
exercise for you.

6. Add the following code and run:

Label2
MOV #16, R03
MOV #h41, R04
Label3
STB R04, @R03
ADD #1, R03
ADD #1, R04
CMP #h4F, R04
JNE $Label3

Make a note of what you see in the program’s data area:

Explain the significance of @ in @R03 above:

** Now save the above code! **

4

Learning objective: To construct a subroutine and call it

In theory In practice

Another very useful feature of
programming languages is
subroutines. These contain
sequences of instructions which can
be executed many times. If a
subroutine was not available the
same sequence of instructions
would have been repeated many
times increasing the code size.

At instruction level, a subroutine is
called by an instruction such as CAL.
This effectively is a jump instruction
but it also saves the address of the
next instruction. This is later used by
a subroutine return instruction, e.g.
RET to return to the previous
sequence of instructions.

7. Add the following code but do NOT run it yet:

MSF
CAL $Label2

Now convert the code in (6) above into a subroutine by
inserting a RET as the last instruction in the subroutine.

Make a note of the contents of the PROGRAM STACK
after the instruction MSF is executed (see tutor what to
do to facilitate this observation):

Make a note of the contents of the PROGRAM STACK
after the instruction CAL is executed:

What is the significance of the additional information?

** Now save the above code! **

Learning objective: To pass parameter(s) to the subroutine

In theory In practice

Useful as they are the
subroutines are not very
flexible without the use of the
subroutine parameters. These
are values passed to the
subroutine to be consumed
inside the subroutine.

The common method of
passing parameters to the
subroutines is using the
program stack. The
parameters are pushed on the
stack before the call
instruction. These are then
popped off the stack inside the
subroutine and consumed.

This exercise is created to
demonstrate this mechanism.

8. Let’s make the above subroutine a little more flexible. Suppose
we wish to change the number of characters stored when
calling the subroutine. Modify the calling code in (7) as below:

MSF
PSH #h60
CAL $Label2

Now modify the subroutine code in (6) as below and run the
above calling code:

Label2
MOV #16, R03
MOV #h41, R04
POP R05 
Label3
STB R04, @R03
ADD #1, R03
ADD #1, R04
CMP R05, R04 
JNE $Label3
RET

Add a second parameter to change the starting address of the
data as a challenge and write the code in the box above!

** Now save the above code! **

