
AQA 2024: Symbol Puzzle (Python) Page 1 of 7 © ZigZag Education, 2023

Skeleton Code Breakdown

Static Methods

Identifier / Data Description

Main

Parameters default This is the main entrance point for the application. It is used
to determine whether the application is going to use a
standard, randomly created puzzle or load an external
puzzle text file.

It initialises a string variable called Again assigning the
value ‘y’ and an integer variable of Score.

The method then enters into the main application loop. It is
held in that loop by the value of the Again variable. The loop
operates using the following steps:

 Prompt the user if they would like to create a standard
puzzle or load an external file.

 Instantiate a new Puzzle object called MyPuzzle.

 If the user has entered a filename, call the default
constructor in the Puzzle class passing in the filename
as a parameter. This will create a new puzzle from an
external text file.

 If the user does not enter a filename (which is calculated
by the length of the filename being zero), call the
overloaded constructor in the Puzzle class passing in
the values 8 and 38. The first parameter is the GridSize
for a standard puzzle, creating a grid which is 8 columns
wide by 8 rows. The second parameter is calculated by
squaring the GridSize, multiplying the result by 0.6 and
then rounding down to an integer value.

 The method then calls the AttemptPuzzle() method on
MyPuzzle which starts the puzzle. The resultant Score
when a puzzle is complete is returned and assigned to
the Score variable, which is displayed to the user.

 The method then prompts the user if they would like to
do another puzzle, setting the Again variable
appropriately to either stop the loop and, therefore, end
the program, or allow it to repeat again.

Return values n/a

AQA 2024: Symbol Puzzle (Python) Page 2 of 7 © ZigZag Education, 2023

Class: Puzzle

Identifier / Data Description

<<constructor>>

Parameters Filename : String

OR

Size : Int
StartSymbols : Int

Uses overloading to accept two different versions of the
constructor.

This version of the constructor is called when an
external puzzle file is loaded.

If one string argument is passed (in the case of the user
loading an external puzzle file), the method:

Initialises the following private attributes:

 Score to 0

 SymbolsLeft from parameter StartSymbols

 GridSize from parameter Size

 Grid as List

 AllowedPatterns as List

 AllowedSymbols as List

These attributes are subsequently populated by the
LoadPuzzle() method.

The method calls the LoadPuzzle() method passing the
Filename parameter.

This version of the constructor is called when a new
standard puzzle is generated.

If two integer arguments are passed (in the case of the user
creating a standard puzzle), the method:

Initialises the following private attributes:

 Score to 0

 SymbolsLeft from parameter StartSymbols

 GridSize from parameter Size

 Grid as List

The method performs a count-controlled loop upperbound to
the square of the GridSize. Inside the loop the method
creates and adds all the cells for a standard puzzle into the
Grid. Using a random number between 1 and 100, each cell
has a 90% chance of being a normal cell and a 10% chance
of being a blocked cell.

The method then initialises AllowedPatterns as a list of
patterns and AllowedSymbols as a list of strings. It then
generates the default pattern objects for the Q, X and T
patterns, adding them to the AllowedPatterns list together
with adding the associated symbol ‘Q’, ‘X’ or ‘T’ to the
AllowedSymbols list.

Return values n/a

AQA 2024: Symbol Puzzle (Python) Page 3 of 7 © ZigZag Education, 2023

AttemptPuzzle (public)

Parameters n/a This method is the main loop for attempting puzzles one at a

time. It is held in the loop using the local Boolean variable

Finished.

The method firstly displays the current puzzle state by

calling the DisplayPuzzle() method. It then displays the

current user Score.

The method then asks the user to separately enter the Row

and Column of where they would like to place a symbol into

the puzzle. The method uses try…catch structures to check

if the user has entered integer values, but does not check if

they are valid within the bounds of the grid. The catch does

not give any error messages to the user for erroneous input.

The method then calls the GetSymbolFromUser() method

to get a symbol to place into the grid from the user, and

decrements the number of symbols available left to be used

in the puzzle.

The method then creates a local copy of the cell at the

location given by the user and tests to see if the symbol

given by the user can be used in that cell by calling the

CheckSymbolAllowed() method passing the symbol

entered by the user as a parameter. If the symbol can be

used in that cell, the symbol in the cell is changed using the

ChangeSymbolInCell() method.

The method then checks if this update generates a pattern

match by calling the CheckforMatchWithPattern() method,

passing Row and Column entered by the user earlier as

parameters. The result of this check is assigned to an

integer variable AmountToAddToScore. If this is greater

than 0, it is added to the user Score.

The method then checks if all the symbols available have

been used, and if so, exits the main program loop.

If the main program has exited, the final puzzle state is
displayed by calling the DisplayPuzzle() method and the
user Score is returned.

Return values Score : Int

AQA 2024: Symbol Puzzle (Python) Page 4 of 7 © ZigZag Education, 2023

CheckforMatchWithPattern (public)

Parameters Row : Int
Column : Int

Uses a nested loop to iterate through the grid concatenating
together a string variable called PatternString. The string is
built from nine cells in a 3 × 3 section of the grid in the order of
a helix. A nested loop is used to concatenate all nine possible
combinations of pattern that could include the cell at the
different locations in a 3 × 3 section of the grid. This is done
with a try…catch structure to prevent the code from crashing if
a cell location outside of the bounds of the grid is accessed.

Once the PatternString has been generated, the code then
uses a foreach loop to check it for a match in the
AllowedPatterns list by calling the MatchesPattern()
method, passing the PatternString and symbol being
checked as parameters.

If a match is found, the method calls the
AddToNotAllowedSymbols() on each cell included in the
matching 3 × 3 section of the grid, passing in the symbol
being checked as a parameter. This prevents the same
symbol from being placed into that cell in a future turn.

If a match has been found, the method returns the Score of
10, otherwise it returns the Score of 0.

Return values Int

CreateHorizontalLine (private)

Parameters n/a Uses iteration to concatenate a horizontal line of ‘-’
characters which is the correct width for the grid being used
in the current puzzle.

Return values Symbol : String

DisplayPuzzle (public)

Parameters n/a Used to print out the grid onto the screen. The method
works by using the following steps:

 Print a blank line.

 If the GridSize is less than 10, print a wider space onto
the screen, then iterate through to the GridSize printing
a space followed by the count headings for each column.

 Print a blank line.

 Print a horizontal line by calling the
CreateHorizontalLine() method.

 The method then iterates through the Grid list attribute
printing out the row number followed by space then a ‘|’
symbol and the symbol in each cell of the grid. The
iteration uses the MOD function to calculate the length
of a row before printing a final ‘|’ symbol followed by a
horizontal line underneath.

 This process is repeated until the whole grid has been
printed to the screen.

Return values n/a

GetCell (private)

Parameters Row : Int
Column : Int

Uses the Row and Column parameters to calculate the
correct Cell element in the one-dimensional Grid list which
is then returned. If the Row and Column parameters
generate an index location which is less than 0, the method
raises an IndexError. The other pre-release code versions
do not do this.

Return values Cell

AQA 2024: Symbol Puzzle (Python) Page 5 of 7 © ZigZag Education, 2023

GetSymbolFromUser (private)

Parameters n/a Used for getting a symbol from the user to place into the
grid. The method uses a loop to repeatedly ask the user to
enter the symbol they want to use until they enter a valid
symbol which is part of the AllowedSymbols list.

When they enter a valid symbol, it is returned.

Return values Symbol : String

LoadPuzzle (private)

Parameters Filename : String The method loads an external text file using the Filename
parameter.

See ‘Puzzle File Breakdown’ for details on what each line
does in an external puzzle file.

The method sequences through the lines in the external file
from the Filename parameter. It performs the following tasks:

Assigns NoOfSymbols from the first line of the file. It then
uses this value to iterate through the next lines, assigning
the symbols from those lines into the AllowedSymbols list.

Assigns NoOfPatterns from the next single readline. It then
uses this value to iterate through the following lines, reading
in each pattern. A pattern line contains a comma-separated
list – the first element is the symbol for a pattern, and the
second element is the pattern itself. These are used to
instantiate a new pattern object which is then added to the
AllowedPatterns list.

Assigns GridSize from the next single readline. It then uses
the square of this value to iterate through the following lines,
reading in each cell. A cell line contains a comma-separated
list – the first element is the symbol for the cell, and the
remaining elements is a sublist which contains all of the
symbols for the SymbolsNotAllowed list for that cell. If the
first element is an ‘@’ symbol the application instantiates
and appends a BlockedCell into the Grid. Otherwise the
application instantiates a Cell by using the cell symbol and
subsequent symbols not allowed elements.

Once all the cells have been appended to the grid, the
method assigns the next line in the file to the Score attribute
and the final line to the SymbolsLeft attribute.

The method uses a try…catch structure to handle file errors.
If an error occurs, an error message is given to the user, but
the method does not give the user the opportunity to try to
reload the file.

Return values n/a

AQA 2024: Symbol Puzzle (Python) Page 6 of 7 © ZigZag Education, 2023

Class: Pattern

Identifier / Data Description

<<constructor>>

Parameters SymbolToUse : String
PatternString : String

Initialises the following private attributes:

 Symbol from parameter SymbolToUse.

 PatternSequence from parameter PatternString. Return values n/a

GetPatternSequence (public)

Parameters n/a Returns the value of the private attribute PatternSequence.

Return values PatternSequence :
String

MatchesPattern (public)

Parameters PatternString : String
SymbolPlaced : String

This is used to confirm that a pattern string found by the helix

concatenation through a 3 × 3 section of the grid matches the

PatternSequence attribute in a pattern object.

If the passed parameter SymbolPlaced does not match the

Symbol for the pattern, the method returns false.

If it does match, the method iterates through the private

attribute PatternSequence comparing each letter with the letter

at the same position in the parameter PatternString. A

PatternSequence contains symbol characters (‘Q’, ‘X’ or ‘T’)

for the pattern, and the ‘*’ character for letters which don’t need

to match in the pattern. The iteration only compares characters

between the PatternSequence variable and PatternString

parameter which match the symbol. If there are any

differences, the pattern match returns false. The comparison in

this iteration uses a try…catch to handle any erroneous

comparisons of out-of-range errors. If an exception is caught,

the method displays to the user that an exception has occurred.

If the iteration completes, all the symbol characters have

matched and, therefore, the method returns true.

Return values Boolean

AQA 2024: Symbol Puzzle (Python) Page 7 of 7 © ZigZag Education, 2023

Class: Cell

Identifier / Data Description

<<constructor>>

Parameters n/a Initialises the protected attribute Symbol to an empty string.

Initialises the private attribute SymbolsNotAllowed to a new
empty string list.

Return values n/a

AddToNotAllowedSymbols (public)

Parameters SymbolToAdd : String Appends the parameter SymbolToAdd to the private list
attribute SymbolsNotAllowed.

Return values n/a

ChangeSymbolInCell (public)

Parameters NewSymbol : String Assigns the NewSymbol parameter to the protected attribute
Symbol.

Return values n/a

CheckSymbolAllowed (public) <<virtual>>

Parameters SymbolToCheck :
String

Iterates through the private list attribute SymbolsNotAllowed.
If the parameter SymbolToCheck is found in the list, the
method returns false, otherwise it returns true.

Return values Boolean

GetSymbol (public)

Parameters n/a The method uses the IsEmpty() method to test if the cell is
empty. If it is empty, the method returns a ‘-’, otherwise it
returns the value of the protected attribute Symbol.

Return values Symbol : String

IsEmpty (public)

Parameters n/a If the private attribute SymbolsNotAllowed is empty, the
method returns true, otherwise it returns false.

Return values Boolean

UpdateCell (public)

Parameters n/a This method is not used in the pre-release material. This
method has been included into the pre-release code to give the
option for a question which creates a new class that inherits the
cell class and overrides its base methods.

Return values n/a

Class: BlockedCell (inherits from Cell)

Identifier / Data Description

<<constructor>>

Parameters n/a Initialises the parent attribute Symbol to ‘@’.

Return values n/a

CheckSymbolAllowed (public) <<override>>

Parameters SymbolToCheck : String Overrides the CheckSymbolAllowed() method from the base
class. While technically this could be used as a helper method
to allow a blocked class object to access the private
SymbolsNotAllowed list attribute in the base class, it is used
to simply return false regardless of the value of the parameter
SymbolToCheck.

Return values Boolean

