
AQA 2024: Symbol Puzzle (Python) Page 1 of 5 © ZigZag Education, 2023

Advanced Techniques

These techniques are helper pieces of code to extend the Skeleton Program and functionality.

Note that the techniques demonstrated in this document are BEYOND the AQA 7517 specification. They DO NOT represent a mark scheme or an expected way of

solving challenges presented for the pre-release material. The objective of this document is to extend students’ knowledge and explore alternative techniques they

could use as they experiment with the code. Use of these techniques and ideas should be at the teacher's discretion. The code shown below still

demonstrates the ‘wrap around’ false positive matches identified by the standard skeleton code.

Extension Technique 1 – Regular expressions

The Skeleton Program provided by AQA does not include the regular expression (regex) library and, therefore, it is unlikely that AQA would include a Section D

question which uses regex. (A regex question in Section C is perfectly possible.) Although the library has not been included, students can import the library

themselves and use it if they are confident with regex and feel that its use would aid their solutions.

To use this code you will need to import the regex library: import re

An obvious place that could use regex is in the MatchesPattern method in the Pattern class, which could be rewritten as:

 def CheckforMatchWithPatternRegexAQAStandard(self, PatternStringToCheck):

 # These expressions comply with the techniques in the AQA specification

 # The hyphen must be last otherwise it is interpreted as a range

 t_check = re.compile(r'TTT[Q|X|T|@|-][Q|X|T|@|-]T[Q|X|T|@|-][Q|X|T|@|-]T')

 x_check = re.compile(r'X[Q|X|T|@|-]X[Q|X|T|@|-]X[Q|X|T|@|-]X[Q|X|T|@|-]X')

 q_check = re.compile(r'QQ[Q|X|T|@|-][Q|X|T|@|-]Q[Q|X|T|@|-][Q|X|T|@|-]QQ')

 return bool(t_check.search(PatternStringToCheck)) or bool(x_check.search(PatternStringToCheck)) or bool(q_check.search(Patt

ernStringToCheck))

AQA 2024: Symbol Puzzle (Python) Page 2 of 5 © ZigZag Education, 2023

This expression can be extended further by defining duplicates of symbols:

 def CheckforMatchWithPatternRegexBeyondStandard(self, PatternStringToCheck):

 # These expressions use techniques which are beyond the AQA specification

 # The hyphen must be last otherwise it is interpreted as a range

 t_check = re.compile(r'T{3}[Q|X|T|@|-]{2}T[Q|X|T|@|-]{2}T')

 x_check = re.compile(r'(X[Q|X|T|@|-]){4}X')

 q_check = re.compile(r'Q{2}[Q|X|T|@|-]{2}Q[Q|X|T|@|-]{2}QQ')

 return bool(t_check.search(PatternStringToCheck)) or bool(x_check.search(PatternStringToCheck)) or bool(q_check.search(Patt

ernStringToCheck))

Extension Technique 2 – Regular expressions on the grid

The methods shown in technique 1 improve the time complexity of the MatchesPattern method from O(n) to O(1). The main data structure for the pre-release

material uses a one-dimensional list; therefore, regex combined with a lambda-like expression could be used on this to make the same improvements by removing

the need to generate the helix pattern string. The expression, however, needs further modification to take into account that the grid can be different sizes and,

therefore, that the space between symbols within a pattern can change. A limitation of this code, however, is that it cannot detect overlapping patterns or some

patterns right next to each other because the regex is not identifying overlapping matches.

 def CheckforMatchWithPatternRegexUsingGrid(self, SymbolToCheck):

 StringRepresentationOfWholeGrid = ''.join(cell.GetSymbol() for cell in self.__Grid)

 check = None

 # The hyphen must be last otherwise it is interpreted as a range

 # The user can only enter in these three chars per the "AllowedSymbols" list, therefore, we don't

 # need to have a default for the switch to fall through if no match case

 if (SymbolToCheck == "Q"):

 check = re.compile(f'Q{{2}}[Q|X|T|@|-]{{{self.__GridSize - 2}}}Q{{2}}[Q|X|T|@|-]{{{self.__GridSize}}}Q')

 elif (SymbolToCheck == "T"):

 check = re.compile(f'T{{3}}[Q|X|T|@|-]{{{self.__GridSize - 2}}}T[Q|X|T|@|-]{{{self.__GridSize - 1}}}T')

 elif (SymbolToCheck == "X"):

 check = re.compile(f'X[Q|X|T|@|-]X[Q|X|T|@|-]{{{self.__GridSize - 3}}}[Q|X|T|@|-]X[Q|X|T|@|-][Q|X|T|@|-

]{{{self.__GridSize - 3}}}X[Q|X|T|@|-]X')

 return bool(check.search(StringRepresentationOfWholeGrid))

AQA 2024: Symbol Puzzle (Python) Page 3 of 5 © ZigZag Education, 2023

Extension Technique 3 – Regular expressions on the grid setting a cell to be part of a pattern

Regex is designed to pattern match. On its own it will not change any of the attributes of the cells within the grid once a pattern has been matched. To achieve

this, we need to match patterns and then calculate where they are in the grid so that we can call appropriate methods on those cells. It is possible to recognise

overlapping matches using regex; however, this limits the ability to then easily identify where those matches are. A solution to this is to iterate through the string

representation of the grid looking for matches, although this increases the time complexity of the method. Where matches are found, we need to record the

position in the grid of those matches so that we can then call methods on the cells at those positions. This code improves the time complexity of the overall

application from O(n3) to O(n2). You will need to add an accessor method and a mutator method to the Cell class to make this work. These should get and set a

Boolean attribute called ‘PartOfPattern’.

 def CheckforMatchWithPatternRegexUsingGrid2(self, SymbolToCheck):

 StringRepresentationOfWholeGrid = ''.join(cell.GetSymbol() for cell in self.__Grid)

 check = None

 pattern_matches = []

 # The hyphen must be last otherwise it is interpreted as a range

 # The user can only enter in these three chars per the "AllowedSymbols" list, therefore, we don't

 # need to have a default for the switch to fall through if no match case

 if (SymbolToCheck == "Q"):

 check = re.compile(f'Q{{2}}[Q|X|T|@|-]{{{self.__GridSize - 2}}}Q{{2}}[Q|X|T|@|-]{{{self.__GridSize}}}Q')

 elif (SymbolToCheck == "T"):

 check = re.compile(f'T{{3}}[Q|X|T|@|-]{{{self.__GridSize - 2}}}T[Q|X|T|@|-]{{{self.__GridSize - 1}}}T')

 elif (SymbolToCheck == "X"):

 check = re.compile(f'X[Q|X|T|@|-]X[Q|X|T|@|-]{{{self.__GridSize - 3}}}[Q|X|T|@|-]X[Q|X|T|@|-][Q|X|T|@|-

]{{{self.__GridSize - 3}}}X[Q|X|T|@|-]X')

 # This will match all of the cells in the grid which contain the pattern, including the "spaces" in rows which I am not int

erested in.

 # Regex doesn't match overlapping patterns, so I need to iterate through the whole string version of the grid.

 for i in range(len(StringRepresentationOfWholeGrid) - 9):

 match = check.search(StringRepresentationOfWholeGrid, i)

 if (match):

 match_positions = self.GetJustMatchedSymbolPositionsInGrid(match)

 if (not pattern_matches or pattern_matches[-1] != match_positions):

 pattern_matches.append(match_positions)

AQA 2024: Symbol Puzzle (Python) Page 4 of 5 © ZigZag Education, 2023

 if (pattern_matches):

 # Included purely for testing

 print("Symbol positions in each match in the grid:")

 for pattern_match in pattern_matches:

 # This may print multiple times if more than one pattern of the symbol being tested

 # currently exists in the grid.

 print(", ".join(map(str, pattern_match)))

 score_awarded = False

 for pattern_match in pattern_matches:

 for cell_position in pattern_match:

 # If there is a match, add the symbol to the SymbolsNotAllowedList for those cells.

 # But only if they are not already in a pattern.

 if not self.__Grid[cell_position].IsPartOfPattern():

 self.__Grid[cell_position].AddToNotAllowedSymbols(SymbolToCheck)

 self.__Grid[cell_position].SetPartOfPattern()

 score_awarded = True

 if (score_awarded):

 return 10

 else:

 print(f"No pattern matches for Symbol: {SymbolToCheck} found.")

 return 0

 def GetJustMatchedSymbolPositionsInGrid(self, match):

 symbol_positions = [0, 1, 2]

 for i in range(2, self.__GridSize * 3):

 if self.__GridSize - 1 < i <= self.__GridSize + 2:

 symbol_positions.append(i)

 if (self.__GridSize * 2) - 1 < i <= (self.__GridSize * 2) + 2:

 symbol_positions.append(i)

 return [i + match.start() for i in symbol_positions]

AQA 2024: Symbol Puzzle (Python) Page 5 of 5 © ZigZag Education, 2023

Extension Technique 4 – Reverse referencing the grid

The skeleton code includes a method called GetCell which takes the parameters of Row and Column and returns the Cell at the associated location in the grid

data structure. This method reverses that process, allowing the user to pass the reference of a location in the grid data structure, and it returns a tuple containing

the row and column for that cell.

 def GetRowColumnFromIndex(self, Index):

 if (Index < 0 or Index >= len(self.__Grid)):

 return None

 Result = Index // self.__GridSize

 row = (self.__GridSize - 1) - Result

 column = Index % self.__GridSize

 return row + 1, column + 1

