ENGINEERING PHYSICS

1-4 Angular Momentum

1. $I = 5.0 \times 10^{-2} \text{ kgm}^2$, r = 0.30 m, $v = 27 \text{ ms}^{-1}$

(a) angular momentum = $I\omega$ and $v = r\omega$ so

angular momentum =
$$\frac{Iv}{r}$$
 = $\frac{5.0 \times 10^{-2}}{0.30}$ = 4.5 Nms to 2 sf (or kgm²s⁻¹)

(b) $u = 27 \text{ ms}^{-1}$, $v = 0 \text{ ms}^{-1}$, $\omega_1 = 90 \text{ rads}^{-1}$, $\omega_2 = 0 \text{ rads}^{-1}$, $I\omega = 4.5 \text{ Nms}$, t = 9.0 s

$$T = \frac{d(I\omega)}{dt} = I\frac{d\omega}{dt} = I\alpha = 5.0 \times 10^{-2} \times \frac{90 - 0}{9.0}$$
$$= 0.50 \text{ Nm}$$

2. 240 revolutions per minute, I = 0.044 kgm²

(a)
$$\omega = \frac{\theta}{t} = \frac{240 \times 2\pi}{60} = 25.13... = 25 \text{ rads}^{-1} \text{ to 2 sf}$$

angular momentum = $I\omega = 0.044 \times 25.13...$

(b) common rate of rotation = 160 revolutions per minute

New
$$\omega = \frac{\theta}{t} = \frac{160 \times 2\pi}{60} = 16.75 = 17 \text{ rads}^{-1} \text{ to 2 sf}$$

Angular momentum is conserved so $I_1\omega_1 = (I_1 + I_2)\omega_2$

$$1.1 = (0.044 + I_2) \times 16.75$$

$$1.1 = 0.74 + 16.75I_2$$

$$I_2 = \frac{1.1 - 0.74}{16.75}$$
$$= 0.02167...$$

$$= 0.022 \text{ kgm}^2$$

(c) initial k.e. = $\frac{1}{2}$ $I_1\omega_1^2$ = $\frac{1}{2}$ x 0.044 x 25.13... 2

= 13.86 J (using 25 rads⁻¹ value of
$$\omega$$
 gives 13.75 J)

final k.e. =
$$\frac{1}{2} I_2 \omega_2^2$$
 = $\frac{1}{2} x(0.044 + 0.022) x 16.75^2$

= 9.258... J

= 9.26 J (using 17 rads⁻¹ value of
$$\omega$$
 gives 9.54 J)

loss in k.e. =
$$13.86 - 9.26 = 4.6 \text{ J}$$
 (13.75 - $9.54 = 4.21 = 4.2 \text{ J}$)

To get the answer given you need to use the 25 rads⁻¹ and 16.75 rads⁻¹ values for ω i.e.

loss in k.e. =
$$13.75 - 9.26 = 4.49 J = 4.5 J$$

3. Angular momentum is conserved. As the size decreases, the moment of inertia will decrease as it depends on R. Since $I_1\omega_1=I_2\omega_2$, in order to conserve angular momentum, the angular speed must be increased to compensate.

4.
$$\omega_1 = 20 \text{ rads}^{-1}$$
, $\omega_2 = 18 \text{ rads}^{-1}$, $m_{ADDED} = 0.2 \text{ kg}$, $r = 0.24 \text{ m}$

Moment of inertia of the object = $mr^2 = 0.2 \times 0.24^2 = 0.01152 \text{ kgm}^2$

As angular momentum is conserved, $I_1\omega_1 = (I_1 + I_2)\omega_2$

$$I_1 \times 20 = (I_1 + 0.01152) \times 18$$

$$20I_1 = 18I_1 + 0.20736$$

$$I_1 = \frac{0.20736}{20 - 18}$$

$$= 0.10368$$

 $= 0.10 \text{ kgm}^2$