ENGINEERING PHYSICS

2-2 Thermodynamics of ideal gases

1.
$$
P_1 = 100 \text{ kPa} = 100 \times 10^3 \text{ Pa}, V_1 = 0.0045 \text{ m}^3, T_1 = 300 \text{ K}
$$

\n $P_2 = 100 \text{ kPa} = 100 \times 10^3 \text{ Pa}, V_2 = 0.0060 \text{ m}^3, T_2 = 300 \text{ K}$
\n $R = 8.31 \text{ Jmol}^{-1} \text{K}^{-1}$
\n $PV = 100 \times 10^3 \times 0.0045$

(a) (i) PV = nRT therefore $n = \frac{PV}{RT}$ $\frac{1}{RT}$ = 8.31 ×300 = 0.1805….

$$
= 0.18
$$
 moles

(ii)
$$
\frac{V_1}{T_1} = \frac{V_2}{T_2}
$$
 so $\frac{0.0045}{300} = \frac{0.0060}{T_2}$
 $T_2 = \frac{0.0060 \times 300}{0.0045}$
 $= 400 \text{ K}$

(iii) Total k.e. of n moles of an ideal gas = 3/2 nRT

 k.e. gained = change in internal energy = 3/2 nRΔT = 3/2 x 0.18 x 8.31 x 100 = 224 J (b) work done = $P\Delta V$ $= 100 \times 10^{3} \times (0.0060 - 0.0045)$ $= 100 \times 10^3 \times 0.0015$ $= 150 J$

$$
\Delta U = Q - W
$$
 therefore $Q = \Delta U + W = +224 + 150 = 374$ J

2. n = 1.2 moles, T is constant, . P₁ = 120 kPa = 120 x 10³ Pa, V₁ = 0.025 m³, V₂ = 0.040 m³

(a) (i) PV = nRT therefore
$$
T = \frac{PV}{nR} = \frac{120 \times 10^3 \times 0.025}{0.040}
$$

= 7.5 x 10⁴ Pa (or 75 kPa)

(b)

3. (a) $P_1 = 150$ kPa = 150 x 10³ Pa, V₁ = 0.0036 m³, T₁ = 300 K

 V_2 = 0.0052 m³, γ = 1.40

For an adiabatic expansion, PV^{v} = constant

$$
150 \times 10^3 \times 0.0036^{1.40} = P_2 \times 0.0052^{1.40}
$$

$$
P_2 = 150 \times 10^3 \times \left(\frac{0.036}{0.052}\right)^{1.40}
$$

$$
= 150 \times 10^3 \times 0.5976...
$$

$$
= 89641
$$

 $= 9.0 \times 10^{4}$ Pa or 90 kPa

$$
\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}
$$
 so $T_2 = \frac{P_2 V_2 T_1}{P_1 V_1}$
= $\frac{90 \times 10^3 \times 0.052 \times 300}{150 \times 10^3 \times 0.036}$
= 260 K

(b)

An overestimate would be $\frac{150 + 75}{2}$ $\frac{1}{2}$ x (0.040 − 0.025) = 1920 ≈ 1.9 kJ

4. P_1 = 190 kPa = 190 x 10³ Pa, V₁ = 8.0 x 10⁻⁵ m³, 5.0% escapes

(a) The expansion can be considered to be adiabatic because it occurs so quickly that heat does not enter/leave the gas.

(b) 5.0% escapes therefore volume escaping = $\frac{5}{10}$ $\frac{10}{100}$ x 8.0 x 10⁻⁵ = 4.0 x 10⁻⁶ m³

$P_1 = 100$ kPa = 100×10^3 Pa

As the expansion is adiabatic PV^{γ} = constant

$$
190 \times 10^{3} \times (4.0 \times 10^{-6})^{1.40} = 190 \times 10^{3} \times V^{1.40}
$$

$$
V^{1.40} = \frac{190}{100} \times (4.0 \times 10^{-6})^{1.40}
$$

$$
= 5.267 \times 10^{-8}
$$

$$
V = (5.267 \times 10^{-8})^{(1/1.40)}
$$

$$
= 6.3 \times 10^{-6} \text{ m}^{3}
$$