ENGINEERING PHYSICS

2-3 Heat engines

1. The efficiency of a heat engine is less than 100% because energy is transferred to the surroundings.

 $Q_{IN} = W + Q_{OUT}$ where $Q_{IN} =$ heat transfer in W = work done $Q_{OUT} =$ heat transfer out to the surroundings

There always needs to be a low temperature sink to draw the energy from the source so $Q_{IN} \neq W$

Efficiency is defined as $\frac{\text{useful work done}}{\text{energy supplied}} \times 100 = \frac{W}{Q_{\text{IN}}} \times 100$

And as $W < Q_{IN}$ the efficiency is always less than 100%

2. 4 cylinders, fuel 43 MJ kg⁻¹, rate of fuel = 3.7×10^{-3} kgs⁻¹, 48 cycles per second, work done = 0.23 kW

(a) Input power = $43 \text{ MJ kg}^{-1} \times 3.7 \times 10^{-3} \text{ kgs}^{-1} = 159 100 \text{ Js}^{-1}$

= 160 kW to 2 sf

(b) % thermal efficiency = $\frac{\text{indicated power}}{\text{input power}} \times 100$

Indicated power = 4 cylinders x 48 cycles per second x 0.23 kW = 44.16 kW

% thermal efficiency =
$$\frac{44.16 \text{ kW}}{160 \text{ kW}} \times 100 = 28 \%$$
 to 2 sf

3.

4. 500 kJkg⁻¹ of work (for air passing through it) = 500×10^3 Jkg⁻¹, 9.6 kgs⁻¹ flow rate, 400 kW (frictional heating so power loss) = 400×10^3 W

(a) (i) work done per second = $500 \times 10^3 \text{ Jkg}^{-1} \times 9.6 \text{ kgs}^{-1} = 4.8 \times 10^6 \text{ Js}^{-1}$

= 4.8 MW

(ii) output power = $4.8 \times 10^6 - 400 \times 10^3 = 4400 \times 10^3 - 400 \times 10^3$

$$= 4400 \times 10^3 W$$

(b) 42 $MJkg^{-1}$ in the fuel, 0.31 kgs^{-1} used

(i) Input power = $42 \text{ MJ kg}^{-1} \times 0.31 \text{ kgs}^{-1} = 13.02 \text{ MJs}^{-1}$

(ii) efficiency = $\frac{\text{output power}}{\text{input power}} = \frac{4.4 \text{ MW}}{13 \text{ MW}} \times 100 = 0.34 \text{ to 2 sf}$ (34%)