Chem Factsbeet

www.curriculumpress.co.uk

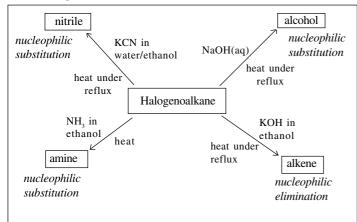
Number 31

# **Organic Chemistry 2: Halogeno-compounds and Grignard Reagents**

To succeed in this topic you need to:-

**April 2002** 

- Have a good understanding of AS-level Organic Chemistry (Factsheets 15, 16, 17 and 27);
- Be confident in using organic nomenclature and structural formulae.


After working through this Factsheet you will:-

- Have reviewed the chemistry of the halogeno-compounds covered so far;
- Know how Grignard reagents are formed;
- Know how Grignard reagents are used in a variety of organic preparations.

#### Halogeno-alkanes

Fig 1 below summarises the reactions of the halogeno-alkanes.

## Fig. 1 Halogenoalkane reactions



## **Grignard Reagents**

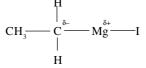
The main focus of this Factsheet is on the formation and use of a commonly examined set of reagents derived from the halogenoalkanes - Grignard reagents.

#### **Preparation of Grignard Reagents**

Grignard reagents are prepared by refluxing alkyl or aryl bromide or iodide compounds, dissolved in dry ether, with small magnesium turnings.

$$R-Br + Mg \rightarrow R-MgBr$$
  
'Grignard reagent

The Grignard reagent cannot be isolated - it must remain in etheral solution for further reaction.


Example of Grignard reagent **preparation**:

 $C_2H_5I + Mg \rightarrow C_2H_5MgI$ 

Reaction type: Addition Conditions: Dry ether solvent Reflux Trace of iodine as catalyst

## **Reactions of Grignard reagents**

The Grignard reagent is very reactive.



They contain a  $\delta$ - carbon, which gives rise to the extremely reactive R<sup>-</sup> species i.e. in the above example,



The R<sup>-</sup> species is a strong **nucleophile**, which is capable of attacking  $\delta$ + carbons in other molecules - hence **carbon chain lengths can be increased**.

## 1. Reaction with water to form alkanes

 $R-MgI + H_2O \rightarrow R-H + Mg(OH)I$ 

Reaction type:Substitution.Mechanism:Nucleophilic.

This reaction shows why Grignard reagents must be prepared in dry conditions.

## 2. Reaction with methanal to form primary alcohol.

Methanal gas is passed into the solution of the Grignard, and the mixture is then hydrolysed with dilute hydrochloric acid.

$$R-MgI + CH_2=O \rightarrow R-CH_2-O-MgI$$
 (Nucleophilic addition)

Then:

P

$$R-CH_2-O-MgI + H_2O \rightarrow R-CH_2-OH + Mg(OH)I$$
 (Hydrolysis)

Reaction conditions: In dry ether, followed by addition of dilute acid for hydrolysis.

## 3. Reaction with other aldehydes to form secondary alcohols.

$$\begin{array}{ccc} R-MgI + R'CHO \rightarrow CH-O-MgI & \xrightarrow{H_{2}O} CH-OH + Mg(OH)I \\ R' & R' \end{array}$$

R

Reaction conditions: In dry ether, followed by addition of dilute acid for hydrolysis.

For example:

inple:  

$$C_2H_5MgI + CH_3CHO \rightarrow CH-O-MgI$$
  
 $CH_3 \qquad H_2O$   
 $C_2H_5 \qquad V$   
 $C-OH + Mg(OH)I$   
 $CH_3$   
 $CH_$ 

4. Reaction with ketones to form tertiary alcohols.  

$$R-MgI + \begin{array}{c} R_{1} \\ R_{2} \\ R_{2} \end{array} \xrightarrow{R_{1}} C=O \xrightarrow{R_{1}} R-C-O-MgI \xrightarrow{H_{2}O} R-C-OH + Mg(OH)I \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{2} \end{array}$$

Reaction conditions: In dry ether, followed by addition of dilute acid for hydrolysis.

For example:

$$CH_{3}MgI + C_{2}H_{5} \longrightarrow CH_{3}-C-O-MgI$$

$$C_{3}H_{7} \longrightarrow C_{3}H_{7}$$

$$H_{2}O$$

$$C_{2}H_{5} \longrightarrow CH_{3}-C-O-MgI$$

$$C_{3}H_{7} \longrightarrow H_{2}O$$

$$C_{2}H_{5} \longrightarrow CH_{3}-C-OH + Mg(OH)I$$

$$C_{3}H_{7} \longrightarrow CH_{3}-C-OH + Mg(OH)I$$

5. Reactions of Grignard with carbon dioxide to form carboxylic acid. Carbon dioxide is bubbled through (or solid CO<sub>2</sub>, 'dry ice', is added to) an etheral solution of a Grignard reagent.

$$\begin{array}{ccc} \text{R-MgI} + \text{CO}_2 \rightarrow \text{R-C-O-MgI} & \xrightarrow{\text{H}_2\text{O}} & \text{R-C-OH} + \text{Mg(OH)I} \\ & \parallel & & \parallel \\ & \text{O} & & \text{O} \end{array}$$

Reaction conditions: In dry ether, followed by addition of dilute acid for hydrolysis.

## Questions

- 1. Write the structural formulae of the following compounds:
  - (a) 2-bromopropane
  - (b) 1,2-dichlorobutane
  - (c) 2,2-dibromo-1-chloro-3-methylhexane
- 2. Explain why Grignard reagents are very reactive.
- 3. Explain clearly how the Grignard reagent CH<sub>2</sub>MgI would be formed from CH,I.
- 4. This question relates to the following reaction scheme:

 $CH_2CH_2CH_2I \xrightarrow{step 1} CH_2CH_2CH_2MgI \xrightarrow{step 2} CH_2CH_2CH_2COOH$ 

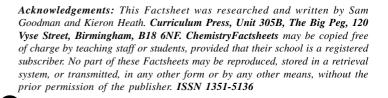
- Give the reaction equations and conditions for: (a) Step 1. (b) Step 2.
- 5. This question relates to the following reaction scheme:

 $CH_{A}CH_{B}Br \xrightarrow{step 1} CH_{A}CH_{M}gBr$  $\xrightarrow{\text{step 2}}$  CH<sub>3</sub>CH<sub>2</sub>CHOHCH<sub>3</sub>

Give the reaction equations and conditions for:

(a) Step 1.

(b) Step 2.


1.

- 2. Because they contain a very unstable  $\delta$  carbon atom, an extremely strong nucleophile.
- 3. CH<sub>2</sub>I should be dissolved in dry ether Magnesium turnings added Iodine catalyst Heat under reflux
- 4. (a) CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>I + Mg  $\rightarrow$ CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>MgI Conditions: Reflux in ether Iodine catalyst
  - (b)  $CH_{2}CH_{2}CH_{2}MgI + CO_{2} + H_{2}O \rightarrow CH_{3}CH_{2}CH_{2}COOH + Mg(OH)I$ Conditions: Addition of CO<sub>2</sub> in dry ether, then dilute acid for hydrolysis
- 5. (a)  $CH_2CH_2Br + Mg \rightarrow CH_2CH_2MgBr$

Reflux in ether Conditions: Iodine catalyst

(b)  $CH_{3}CH_{3}CH_{3}CH_{3}MgI + CH_{3}CHO + H_{2}O \rightarrow CH_{3}CH_{3}CHOHCH_{3} + Mg(OH)Br$ 

Conditions: Dissolved in dry ether, then dilute acid for hydrolysis.

