Chem Factsbeet

www.curriculum-press.co.uk

Number 73

Reaction Mechanisms - Revision Summary

Before working through this factsheet you should:

- Have a good understanding of electronegativity and bond polarity;
- Have a good knowledge of bond fission;
- Have read Factsheets 40 (reaction mechanisms) and 52 (reactions of functional groups a summary).

After working through this factsheet you will:

- Have been shown the relationship between bond polarity and bond breaking;
- Have been given an explanation of which substances react by which mechanism;
- Be able to suggest a mechanism for an unknown reaction.

Substitution Reactions

Substitution reactions involve bond breaking, then bond forming.

 $\rm CH_3CH_2Cl + NaOH \rightarrow \rm CH_3CH_2OH + NaCl$

A C-Cl bond breaks, then a C-OH bond forms.

Breaking a covalent bond can happen in two ways:

- Homolytic fission where each fragment retains one of the bonding electrons and *free radicals* are formed. In thermal cracking CH₂(CH₂)₁₀-(CH₂)₂CH₂ → CH₃(CH₂)₁₀· +CH₃(CH₃)₅·
- *Heterolytic fission* where one fragment retains **both** bonding electrons. **Positive and negative** *ions* are formed. C₁₁H₂₃−C₉H₁₉ → C₁₁H₂₃⁺ + C₉H₁₉⁻

The type of fission depends on bond polarity.

Non-polar bonds are present in diatomic molecular elements (eg the Cl-Cl bond in Cl_2) and symmetrical molecules (eg the C-H bonds in alkanes).

- There is an **equal** sharing of electrons between atoms.
- On breaking, there is no tendency for the two electrons to go with one atom rather than the other
- free radicals are formed by homolytic fission.

Polar bonds are formed between atoms of different electronegativities.

- One atom attracts the bonding pair of electrons **more** than the other.
- On breaking, **ions** are formed by heterolytic fission.

The term used to define a reaction mechanism indicates 1. the type of reaction, and

- 1. the <u>type of reaction</u>, and
- 2. the <u>instigator</u> of the reaction.

Free radical substitution

Involves the formation of free radicals from a molecule in the **initiation** stage.

 $Cl_2 \rightarrow 2Cl$

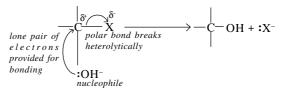
This is followed by **propagation** which involves two reactions, both of which involve a free radical colliding with a molecule to give **another** free radical and molecule.

$$Cl + CH_4 \rightarrow HCl + CH_3$$

 $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl$
Radical Molecule Molecule Radical

Two free radicals collide to form a molecule in the **termination** stage. CH_3 + Cl \rightarrow CH_3Cl $2CH_3$ \rightarrow C_2H_6 2 Radicals 1 Molecule

The instigator is the chlorine **radical**; the type of reaction is **substitution**. The mechanism is *free radical substitution*.

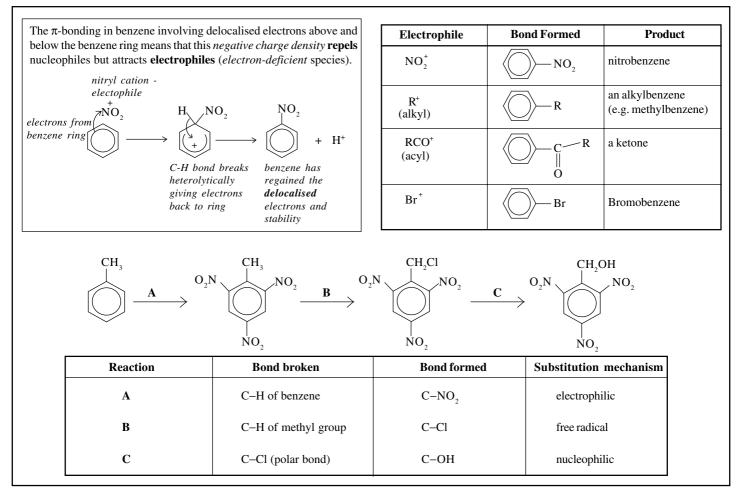

Nucleophilic substitution

Polar bonds in halogenoalkanes and alcohols produce C⁸⁺.

$$- \bigvee_{C}^{\mid \delta^{+} \frown \gamma} X^{\delta} - \bigvee_{C}^{\mid \delta^{+} \frown \gamma} OH$$

(X is a halogen atom)

 $C^{\delta+}$ is susceptible to attack from a *nucleophile* which approaches this *electron-deficient* site. The bond breaks **heterolytically** and the lone pair of electrons on the nucleophile forms a new bond.

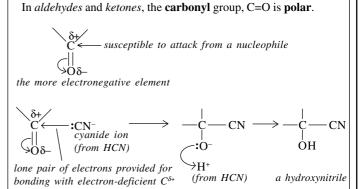


The instigator is OH, the **nucleophile**. The type of reaction is **substitution**. The mechanism is *nucleophilic substitution*.

Note: that when X or OH is attached directly to a benzene ring, nucleophilic substitution does **not** take place. The bonds are too strong.

Reactant	Bond Broken	Nucleophile	Bond Formed	Products
halogenalkane	C-X	:OH- :NH₃ :CN-	C–OH C–NH ₂ C–CN	alcohol amine nitrile
alcohol	С–ОН	: X⁻	C–X	halogenoalkane

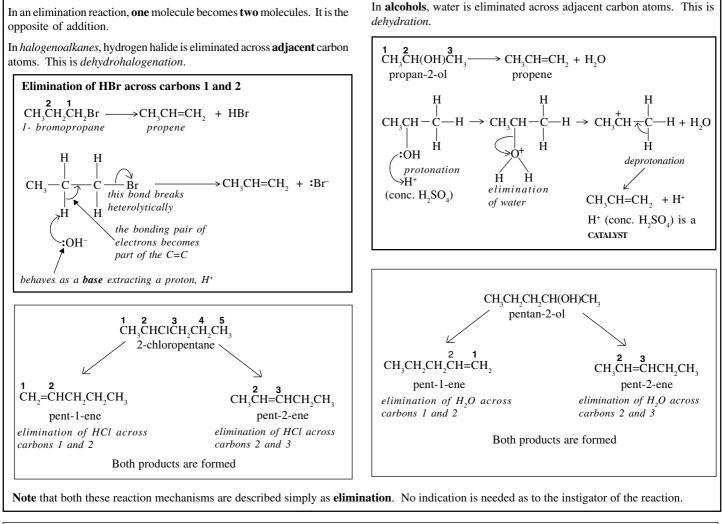
Electrophilic substitution


Addition Reactions

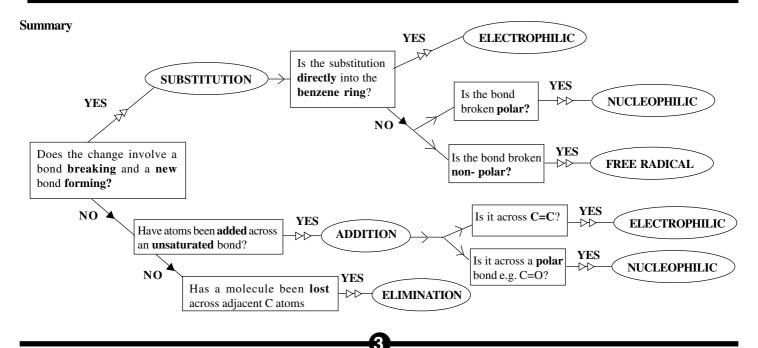
In an addition reaction, two molecules add together to give one molecule. In **alkenes**, the π -bonding of the C=C bond involves *negative charge* density above and below the bond. This repels the nucleophile but attracts the electrophile. =CH₂ >CH,ĊH, \rightarrow CH,CH,Br H_cC: carbocation electron ≫H^{δ+}polar intermediate movement molecule to $H^{\delta+}(the$ ≫Br electrophile) bond breaking hetrolytically

The instigator is the **electrophile**, $H^{\delta+}$ of H–Br. It is an **addition** reaction. The mechanism is *electrophilic addition*.

Addition to RCH=CH₂

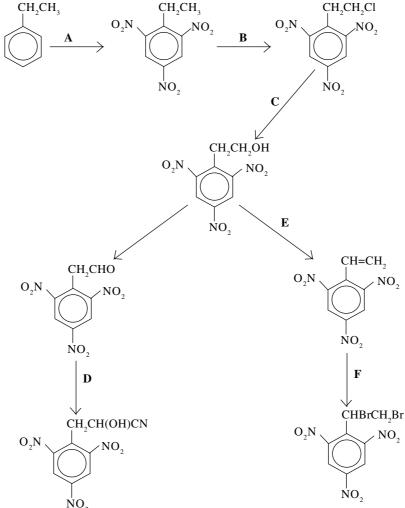

Molecule added	Electrophile	Product(s)
Br ₂	Br Br Br	RCHBrCH ₂ Br a dihalogenoalkane
HBr	H Br	RCHBrCH ₂ + RCH ₂ CH ₂ Br (major) (minor) halogenoalkanes
H ₂ O	H^{+}	RCH(OH)CH ₃ + RCH ₂ CH ₂ OH (major) (minor) alcohols

The **nucleophile**, CN^{\cdot} is the instigator. It attacks the $C^{\delta+}$ of the C=O. It is an **addition** reaction. The mechanism is **nucleophilic addition**.


Added	Nucleophile	Product(s)
HCN	CN⁻ from HCN	⊢C — CN │ OH a hydroxynitrile
2H atoms	∶H⁻ from NaBH₄	–C–OH H an alcohol

Elimination Reactions

Exam Hint: Do not be put off by the complexity of an organic molecule. Organic chemistry is the chemistry of **functional groups**. In order to identify a mechanism:


- 1. Identify the difference between reactant and product,
- 2. Decide whether substitution, addition or elimination has taken place,
- 3. Identify the instigator free radical, electrophile or nucleophile (not elimination),
- 4. Now you can describe the mechanism.

73. Reaction Mechanisms - Revision Summary

Questions

1. Identify the mechanisms, A to F, in the following reaction sequence:

2. Which one of the following products is formed when but-2-enal, CH₄CH=CHCHO reacts with NaBH₄ (H^{\circ})? a) CH₂CH₂CH₂CHO b) CH₃CH=CHCH₂OH c) CH₃CH₂CH₂CH₂OH

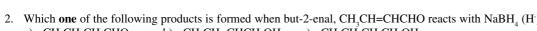
SISWERS

The answer is b), CH₃CH=CHCH₂OH Addition across C=C does not take place.

C=C has negative charge density which repels the nucleophile, H-.

Two H atoms add across the C=O to give the alcohol.

F is electrophilic addition. (Br₂ is added to C=C) E is elimination. $(H_2 O is removed forming C=C)$


2. H- is a nucleophile. It attacks the electron deficient C⁸⁺ of C=O.

D is nucleophilic addition. (HCN is added across polar C=O)

C is nucleophilic substitution. (Polar C-Cl breaks, C-OH forms).

B is free radical substitution. (Non-polar C-H breaks, C-Cl forms)

1. A is electrophilic substitution. (C-H of benzene breaks, C-NO₂ forms).

