Chem Factsbeet

www.curriculum-press.co.uk

Number 120

Calculating Equilibrium Compositions – A Cool Method!

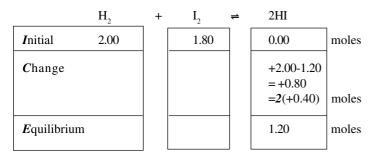
When carrying out calculations to find equilibrium constants such as Kc and Kp, the first stage of the process is to calculate the overall composition of the equilibrium mixture in terms of the numbers of moles of each reactant and the numbers of moles of each product. This, unfortunately, often seems to present problems. This Factsheet is designed to help you overcome these hurdles.

A typical problem might be:

When 2.00 moles of hydrogen and 1.80 moles of iodine are mixed and allowed to reach equilibrium at constant temperature in a sealed vessel, the resulting mixture is found to contain 1.20 moles of hydrogen iodide. Calculate the overall composition of the equilibrium mixture.

Note: Equilibrium is the state achieved when the rate of the forward reaction equals the rate of the backward reaction. This is a dynamic state where the numbers of moles of each reactant and each product reach constant values.

The aim of this problem is to calculate the number of moles of hydrogen, iodine and hydrogen iodide in the equilibrium mixture. The following procedure will allow you to do this for this and any other similar problem.


- 1. Write the balanced equation for the equilibrium reaction Equation $H_2 + I_2 \Rightarrow 2HI$
- 2. Insert the initial and equilibrium mole values that are known from the problem.

1.20

	Η,	+	Ι,	⇒	2HI
I nitial	2.00		1.80		0.00

*E*quilibrium

3. Identify for which reactant or product you know *both* initial and equilibrium amounts. In this case it is hydrogen iodide (HI). Calculate the *c*hange in the number of moles this substance between initial and equilibrium conditions. Express it as a multiple of the coefficient for that substance in the equation. For HI, this is "2". This gives:

4. Complete the calculation by deducing the changes in the number of moles of the other reactants and products remembering that they *must occur in the same ratio as the numbers of moles in the balanced equation*. Also, there must be gains (+) on one side of the equation and losses (-) on the other. This gives:

	H_2	+	\mathbf{I}_2	+	2HI	
I nitial	2.00		1.80		0.00	moles
C hange	= 1(-0.40) = - 0.40		= 1(-0.40) = - 0.40		+2.00-1.20 = +0.80 =2 (+0.40)	
<i>E</i> quilibrium	= 2.00 – 0.40 = 1.60		= 1.80 - 0.40 = 1.40		1.20	moles

Notice the initials of the three row labels; ICE. This gives a cool way of remembering the stages needed to successfully complete these sorts of problem!

Example 2

15.50g of phosphorus pentachloride (PCl₅) is heated at 500K in a sealed container. When equilibrium is reached, 4.56g of chlorine (Cl₂) is formed. Calculate the mole composition of the equilibrium mixture.

NB Make sure any mention of "grams" is first converted to moles

	PCl ₅	⇒	PCl ₃	ł	Cl_2	
<i>I</i> nitial	15.50/208.5 = 0.0743		0.00		0.00	mol
Change	= 1(-0.0642) = -0.0642		= 1(+0.0642) = +0.0642		0.0642-0.00 = +0.0642 = 1 (+0.0642)	mol
<i>E</i> qm	= 0.0743 - 0.0642 = 0.0101		= 0.00 +0.0642 = 0.0642		4.56/71.0 = 0.0642	mol

Example 3

0.856 moles of nitrogen (N_2) is mixed with 1.934 moles of hydrogen (H_2) and heated at 600K in a sealed container. When equilibrium is reached, 0.116 moles of ammonia (NH_3) is formed. Calculate the mole composition of the equilibrium mixture.

	N_2	+	3H ₂	~`	2NH ₃	
<i>I</i> nitial	0.856		1.934		0.00	mol
Change	= 1 (-0.0580) =-0.0580		= 3 (-0.0580) = -0.174		0.116-0.00 =+0.116 = 2 (+0.0580)	mol
Eqm	= 0.856 - 0.0580 = 0.798		= 1.934 - 0.174 = 1.760		= 0.116	mol

Example 4

Substances A and B react to give C and D according to the following equation

 $2A + B \rightleftharpoons 3C + 2D$

1.20 moles of A, 0.80 moles of B, 1.50 moles of C and 1.00 moles of D are mixed together and allowed to reach equilibrium at constant temperature in a sealed vessel. At equilibrium, 0.90 moles of C remain. Calculate the mole composition of the equilibrium mixture.

	2A	+	В	⇒	3C	+	2D	_
<i>I</i> nitial	1.20		0.80		1.50		1.00	mol
Change	= 2 (+0.20) = + 0.40		= 1 (+0.20) =+0.20		= 0.90 - 1.50 = -0.60 = 3(-0.20)		= 2 (-0.20) = -0.40	mol
Eqm	= 1.20 + 0.40 = 1.60		= 0.80 + 0.20 = 1.00		0.90		= 1.00 – 0.40 = 0.60	mol

Example 5

Sulphur dioxide (SO₂) and oxygen (O₂) are mixed together at 700K in a sealed vessel and allowed to reach equilibrium. The equilibrium mixture contained 1.22 moles of sulphur dioxide (SO₂), 0.84 moles of oxygen (O₂) and 1.66 moles of sulphur trioxide (SO₃). Calculate the numbers of moles of SO₂ and O₂ used initially.

NB This example is the reverse of the previous ones. We are calculating from equilibrium back to initial

	2SO ₂	+	O_2	⇒	2SO ₃	
<i>I</i> nitial	= 1.22 + 1.66 = 2.88		= 0.84 + 0.83 = 1.67		0.00	mol
Change	= 2(-0.83) = -1.66		= 1 (-0.83) = -0.83		1.66 - 0.00 = +1.66 = 2(+0.83)	mol
Eqm	1.22		0.84		1.66	mol

Now try some similar examples for yourself.

Practice Questions

1. $CH_3COOH \Rightarrow CH_3COO^- + H^+$

0.3840 moles of ethanoic acid (CH₃COOH) is added to water. When equilibrium is reached, 0.0025 moles of hydrogen ions (H⁺) are formed. Calculate the mole composition of the equilibrium mixture.

2. $2NO_2 + 4CO \Rightarrow N_2 + 4CO_2$

 1.240×10^{-3} moles of nitrogen dioxide (NO₂) are mixed with 3.440×10^{-3} moles of carbon monoxide (CO). When equilibrium is reached, 4.640×10^{-4} moles of carbon dioxide (CO₂) are formed. Calculate the mole composition of the equilibrium mixture.

- 3. CH₃COOH + CH₃OH \Rightarrow CH₃COOCH₃ + H₂O 0.828 moles of ethanoic acid (CH₃COOH) is mixed with 1.440 moles of methanol (CH₃OH). When equilibrium is reached, 0.444 moles of ethanoic acid (CH₃COOH) remain. Calculate the mole composition of the equilibrium mixture.
- 4. $4NH_3 + 5O_2 \approx 4NO + 6H_2O$

1.824 moles of ammonia (NH₃) is mixed with 1.284 moles of oxygen (O₂), 1.112 moles of nitrogen monoxide (NO) and 0.826 moles of steam (H₂O). When equilibrium is reached, 0.528 moles of steam (H₂O) remain. Calculate the mole composition of the equilibrium mixture.

5. $CO + 2H_2 \rightleftharpoons CH_3OH$

Carbon monoxide (CO) and hydrogen (H_2) are mixed together at 900K in a sealed vessel and allowed to reach equilibrium. The equilibrium mixture contained 2.46 moles of carbon monoxide (CO), 4.88 moles of hydrogen (H_2) and 1.18 moles of methanol (CH₃OH). Calculate the numbers of moles of carbon monoxide (CO) and hydrogen (H_2) used initially.

5. 3.64 moles CO and 7.24 moles H₂.

0[°]H

- CH₃COOCH₃ and 0.384 moles H_2^{O} O.013 moles NO and 0.528 moles 4. 2.023 moles NH_3 , 1.532 moles O_2 , 0.913 moles NO and 0.528 moles
- N_2 and 4.640 × 10⁻⁴ moles CO₂ 3. 0.444 moles CH₃COOH, 1.056 moles CH₃OH, 0.384 moles
- I. 0.3815 moles CH₃COOH, 0.0025 moles CH₃COO⁻ and 0.0025

Acknowledgements: This Factsheet was researched and written by Mike Hughes. Curriculum Press, Bank House, 105 King Street, Wellington, Shropshire, TF1 1NU. ChemistryFactsheets may be copied free of charge by teaching staff or students, provided that their school is a registered subscriber. No part of these Factsheets may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any other means, without the prior permission of the publisher. ISSN 1351-5136