Chem Factsbeet

www.curriculum-press.co.uk

Number 208

Calculating pH

pH is a measure of the acidity or alkalinity of an aqueous solution with a scale commonly ranging from 0 to 14 and being estimated by indicators (e.g. Universal indicator paper) or measured more accurately by a pH meter. Solutions with pH values less than 7 are said to be acidic whilst solutions with pH values greater than 7 are said to be alkaline. Hence, solutions with pH values equal to 7 are said to be neutral.

These familiar values (<7, 7 and >7) apply only if the temperature of the solution is 298K (25°C). Some of the consequences of this temperature dependence will be considered later!

This FactSheet concentrates on calculating pH values rather than measuring them. In order to be able to complete such calculations, there follows a summary of the essential definitions related to the nature and behaviour of acids and bases.

	Idea	Definition			
1	Acid	A proton (H ⁺) donor			
2	Base	A proton acceptor			
3	Alkali	A solution containing a water soluble base and consequently an excess of OH ⁻ ions.			
4	Strong	An acid (e.g.HCl, HNO ₃ , H ₂ SO ₄ , H ₃ PO ₄) or a base (e.g. NaOH, Ba(OH) ₂) which is fully ionised in aqueous solution			
5	Weak	An acid (e.g. any carboxylic acid [RCOOH], phenol $[C_6H_5OH]$) or a base (e.g. NH_3 , any amine $[RNH_2]$) which is partially ionised in aqueous solution			
6	K _w	$K_{w} \text{ is the "Ionic Product of Water" where}$ $K_{w} = [\mathbf{H}^{+}] \times [\mathbf{OH}^{-}] = 1.00 \times 10^{-14} \text{ mol}^{2} \text{dm}^{-6} \text{ at } 298 \text{K}$			
7	рН	-log ₁₀ [H ⁺]			
8	рОН	-log ₁₀ [OH ⁻]			
9	K _a	The equilibrium constant referring to the partial (equilibrium) ionisation of a weak acid (HA), HA \Rightarrow H ⁺ + A ⁻ $\mathbf{K}_{a} = \frac{[\mathbf{H}^{+}] \times [\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}$ mol dm ⁻³ (usually at 298K).			
10	K _b	The equilibrium constant referring to the partial (equilibrium) ionisation of a weak base (B) $B + H_2O \Rightarrow BH^+ + OH^-$ $K_b = [BH^+] \times [OH^-]$ mol dm ⁻³ (usually at 298K).			
11	pKa	-log ₁₀ K _a			
12	pK _b	-log ₁₀ K _b			
13	Buffer	A solution which resists changes in pH when small amounts of acid or base are added or the solution is diluted.			
14	Acidic buffer	A buffer solution which has a working pH below 7 at 298K. Typically it consists of a mixture of a weak acid (e.g. HCOOH) and a salt of the same acid (e.g. HCOONa). Produced by simply mixing the weak acid with the salt or by partially neutralising a sample of the weak acid (HCOOH) using a strong base (NaOH).			
15	Alkaline buffer	A buffer solution which has a working pH above 7 at 298K. Typically it consists of a mixture of a weak base (e.g. NH_3) and a salt of the same base (e.g. NH_4Cl). Produced by simply mixing the weak base with the salt or by partially neutralising a sample of the weak base (NH_3) using a strong acid (HCl).			

At 298K, for any given solution, pH + pOH = 14. This is derived by taking \log_{10} of both sides of $[H^+] \times [OH] = 1.00 \times 10^{-14}$

Worked examples of the various types of pH calculation follow. Further examples are included for you to practise the techniques.

Calculate the pH of pure water at 298K. State and explain how this value will change as the temperature rises. In pure water, a few molecules are ionised : $H_2O \Rightarrow H^+ + OH^-$

practise the techniques. \rightarrow [H⁺] = [OH⁻] since the ions are produced in ratio 1:1 \rightarrow K_w = [H⁺] × [OH⁻] = [H⁺]² = 1.00 × 10⁻¹⁴

Exam Hint:- quote pH values to 2 decimal places.

 $\rightarrow [H^+] = \sqrt{1.0 \times 10^{-14}} = 1.00 \times 10^{-7} \text{ mol } \text{dm}^{-3}$ $\rightarrow \text{pH} = -\log_{10}(1.00 \times 10^{-7}) = 7.00.$

Calculation 1: The pH of Water

The ionisation of water involves bond breaking. It is therefore an endothermic process and, according to Le Chatelier's Principle, will be favoured a higher temperature. Hence, as temperature rises the concentration of H⁺ ions will increase and the pH value will therefore decrease. e.g. If [H⁺] increases from 1.0×10^{-7} mol dm⁻³ to 1.05×10^{-7} mol dm⁻³, the new pH will be $-\log_{10}(1.05 \times 10^{-7}) = 6.98$.

Calculation 2: The pH of a Solution of a Strong Acid

This type of calculation would apply to acids such as HCl, HNO₃, H₂SO₄ and H₃PO₄. *Calculate the pH of a 0.12 mol dm*⁻³ *of the strong acid H_nA for:* (a) n = 1 (b) n = 2 (c) n = 3. H_nA will be fully ionised : H_nA \rightarrow nH⁺ + Aⁿ⁻ \rightarrow [H⁺] = n × [H_nA] \rightarrow For (a), [H⁺] = 1 × 0.12 = 0.12 mol dm⁻³ \rightarrow pH = -log₁₀(0.12) = 0.92 and for (b), [H⁺] = 2 × 0.12 = 0.24 mol dm⁻³ \rightarrow pH = -log₁₀(0.24) = 0.62 and for (c), [H⁺] = 3 × 0.12 = 0.36 mol dm⁻³ \rightarrow pH = -log₁₀(0.36) = 0.44

Calculation 3: The pH of a Solution of a Strong Base

This type of calculation would apply to bases such as NaOH, KOH and Ba(OH)₂ Calculate the pH of a 0.07 mol dm^3 of the strong base $M(OH)_n$ for (a) n = 1 (b) n = 2.

Method 1	Method 2
$M(OH)_n$ will be fully ionised.	$M(OH)_n$ will be fully ionised.
$M(OH)_n \rightarrow nOH^- + M^{n+}$	$M(OH)_{n}^{"} \rightarrow nOH^{-} + M^{n+}$
$\rightarrow [OH^{-}] = n \times [M(OH)_{n}]$	$\rightarrow [OH^{\cdot}] = n \times [M(OH)_n]$
For (a), $[OH^{-}] = 1 \times 0.07 = 0.07 \text{ mol dm}^{-3}$ $[H^{+}] = K_w/[OH^{-}] = 1.00 \times 10^{-14} / 0.07$ $\rightarrow pH = -\log_{10}(1.00 \times 10^{-14} / 0.07) = 12.85$	For (a), $[OH^-] = 1 \times 0.07 = 0.07 \text{ mol } dm^{-3}$ $\rightarrow pOH = -\log_{10}(0.07) = 1.15$ $\rightarrow pH = 14 - 1.15 = 12.85$
For (b), $[OH^-] = 2 \times 0.07 = 0.14 \text{ mol } dm^{-3}$ $[H^+] = K_w/[OH^-] = 1.00 \times 10^{-14} / 0.14$ $\rightarrow pH = -log_{10}(1.00 \times 10^{-14} / 0.14) = 13.15$	For (b), $[OH^-] = 2 \times 0.07 = 0.14 \text{ mol dm}^{-3}$ $\rightarrow \text{pOH} = -\log_{10}(0.14) = 0.85$ $\rightarrow \text{pH} = 14 - 1.15 = \textbf{13.15}$

Calculation 4: The pH of a Solution of a Weak Acid (HA)

This type of calculation applies to acids such as methanoic acid (HCOOH), ethanoic acid (CH₃COOH) and phenol (C₆H₅OH). Here a value for Ka must be available since the ionisation of a weak acid is an equilibrium process.

Equilibrium	HA	≠	H^{+}	+	A-
Initial concentration /mol dm ⁻³	С		0		0
		(Igno	oring H ⁺ ion	from $H_2O - s$	see earlier)
Equilibrium concentration /mol dm-3	C - x		х		х

$$\rightarrow$$
 Ka = $\frac{[H^+] \times [A^-]}{[HA]} = \frac{x^2}{C \cdot x}$

$$\rightarrow$$
 x = [H⁺] = $\sqrt{Ka \times (C-[H^+])}$

Using this equation to find $[H^+]$, and hence the pH, would involve solving a quadratic equation. However, by making a reasonable approximation, this equation can be made much easier to solve. This approximation involves assuming that the value of x is insignificant compared to the value of C. This is reasonable for most weak acids since very few molecules are actually ionised. Hence, $(C-[H^+])$ can be replaced with just C!

$$\rightarrow$$
 Ka = $\frac{[H^+] \times [A^-]}{[HA]} \approx \frac{x^2}{C}$

 $\rightarrow x = [H^+] \approx \sqrt{(K_a \times C)}.$

This is the relationship most often used to calculate the pH of a weak acid.

Calculation 5 : Calculate the pH of:

(a) 0.14 mol dm⁻³ methanoic acid (HCOOH) which has $K_a 1.82 \times 10^{-4}$ mol dm⁻³ at 298K

 $\mathbf{0}$ In this and subsequent pH calculations, the H^+ and OH^- ions

derived from the ionisation of water are considered negligible. In

pure water, $[H^+]$ and $[OH^-]$ are only 1.00×10^{-7} mol dm⁻³ (see above)

and in an acidic or alkaline solution the H^+ and OH^- ions derived

from water will be even less because the ionisation equilibrium

 $[H_2O \Rightarrow H^+ + OH^-]$ will be pushed to the left.

(b) 0.074 mol dm⁻³ phenol (C_6H_5OH) which has K_a 1.57 × 10⁻¹⁰ mol dm⁻³ at 298K

For (a)

 $[H^+] \approx \sqrt{(K_a \times C)} = \sqrt{(1.82 \times 10^{-4} \times 0.14)} = 5.0477 \times 10^{-3}$ $\rightarrow pH = -\log_{10}(5.0477 \times 10^{-3}) = 2.30$

 $(\underline{Note}:$ Had the approximation not been made, solving the quadratic equation would give pH 2.29 (to 2dp) for this solution)

For (b)

 $[H^+] \approx \sqrt{(K_a \times C)} = \sqrt{(1.57 \times 10^{-10} \times 0.074)} = 3.4085 \times 10^{-6}$ $\rightarrow pH = -\log_{10}(3.4085 \times 10^{-6}) = 5.47$

(<u>Note</u> : Had the approximation not been made, solving the quadratic equation would give pH 5.47 (to 2dp) for this solution)

Calculation 6: The pH of a Solution of a Weak Base (B)

This type of calculation applies to bases such as ammonia (NH_3) and aminomethane (CH_3NH_2) . Here a value for Kb must be available since the ionisation of a weak base (B) is an equilibrium process.

Equilibrium		В	+	H ₂ O	⇒	BH^{+}	+	OH-
Initial concentration	/mol dm ⁻³	С		-		0		0
				(Ignorii	ng OH ⁻ io	on from H_2 C) – see e	arlier)
Equilibrium concentration	/mol dm ⁻³	C - x				Х		х
$BH^+ \times [OH^-]$	x ²							

 $\rightarrow \text{Kb} = \frac{[\text{BH}] \times [\text{OH}]}{[\text{B}]} = \frac{x}{\text{C-x}}$ $\rightarrow x = [\text{OH}^{-}] = \sqrt{\text{K}_{b}} \times (\text{C-[OH}^{-}])$

As in the previous case, using this equation to find [OH⁻], and hence the pH, would involve solving a quadratic equation. However, by making a similar approximation, this equation can be simplified to $[OH^-] \approx \sqrt{(K_b \times C)}$ This is the relationship most often used to calculate the pH of a weak base.

Calculate the pH of:

(a) 0.097 mol dm^{-3} ammonia (NH₃) which has $K_b 1.80 \times 10^{-5}$ mol dm^{-3} at 298K (b) 0.11 mol dm^{-3} aminoethane ($C_3H_5NH_3$) which has $K_b 5.63 \times 10^{-4}$ mol dm^{-3} at 298K

Method 1	Method 2
$[OH^{-}] = \approx \sqrt{(K_{b} \times C)}$	$[OH^{-}] = \approx \sqrt{(K_{b} \times C)}$
For (a), $[OH^{-}] = \sqrt{(1.80 \times 10^{-5} \times 0.097)}$	For (a), $[OH^-] = \sqrt{(1.80 \times 10^{-5} \times 0.097)}$
$= 1.321 \text{ x } 10^{-3} \text{ mol dm}^{-3}$	$= 1.321 \times 10^{-3} \text{ mol dm}^{-3}$
$[H^+] = K_w/[OH^-] = 1.00 \times 10^{-14} / 1.321 \times 10^{-3}$	$\rightarrow \text{pOH} = -\log_{10}(1.321 \times 10^{-3})$
\rightarrow pH = -log ₁₀ (1.00 × 10 ⁻¹⁴ / 1.321 × 10 ⁻³)	= 2.88
= 11.12	\rightarrow pH = 14 - 2.88 = 11.12
For (b), $[OH^-] = \sqrt{(5.63 \times 10^{-4} \times 0.11)}$	For (b), $[OH^-] = \sqrt{(5.63 \times 10^{-4} \times 0.11)}$
$= 7.869 \times 10^{-3} \text{ mol dm}^{-3}$	$= 7.869 \times 10^{-3} \text{ mol dm}^{-3}$
$[H^+] = K_w/[OH] = 1.00 \times 10^{-14} / 7.869 \times 10^{-3}$	$\rightarrow \text{pOH} = -\log_{10}(7.869 \times 10^{-3})$
\rightarrow pH = -log ₁₀ (1.00 × 10 ⁻¹⁴ / 7.869 × 10 ⁻³)	= 2.11
= 11.89	\rightarrow pH = 14 - 2.10 = 11.89

Calculation 7: The pH of a Diluted Solution of a Acid or Base

If $V_1 \text{ cm}^3$ of a solution of an acid or base is diluted to $V_2 \text{ cm}^3$ by addition of water then the effective concentration of the acid or base becomes (the original concentration $\times V_1 / V_2$).

This new concentration can then be used as in calculations 2-6 [good further practice for those calculations!], depending on whether the solution is an acid or a base and whether it is weak or strong.

(a) Calculate the pH of a 0.52 mol dm⁻³ solution of the strong acid H_2SO_4 after 25.0cm³ of it is diluted to 100.0cm³.

 $[H_2SO_4] after dilution = 0.52 \times 25/100 = 0.13 \text{ mol dm}^{-3} \\ H_2SO_4 \text{ will be fully ionised} : H_2SO_4 \rightarrow 2H^+ + SO_4^{-2-} \\ \rightarrow [H^+] = 2 \times [H_2SO_4] = 2 \times 0.13 = 0.26 \text{ mol dm}^{-3} \rightarrow pH = -\log_{10}(0.26) = 0.59$

(b) Calculate the pH of a 0.064 mol dm⁻³ solution of the strong base NaOH after 40.0cm³ of it is added to 80.0cm³ of water.

Method 1	Method 2
[NaOH] after dilution = $0.064 \times 40/120 = 0213$ mol dm ⁻³	[NaOH] after dilution = $0.064 \times 40/120 = 0213 \text{ mol dm}^{-3}$
NaOH will be fully ionised :	NaOH will be fully ionised :
$NaOH \rightarrow Na^+ + OH^-$	$NaOH \rightarrow Na^+ + OH^-$
\rightarrow [OH ⁻] = 0213 mol dm ⁻³	\rightarrow [OH ⁻] = 0213 mol dm ⁻³
$[H^+] = K_w/[OH^-] = 1.00 \times 10^{-14} / 0213$	$\rightarrow \text{ pOH} = -\log_{10}(0213) = 1.67$
$\rightarrow pH = -\log_{10}(1.00 \times 10^{-14} / 0213)$	\rightarrow pH = 14 - 1.67
= 12.33	= 12.33

(c) Calculate the pH of a 0.35 mol dm⁻³ solution of the weak acid CH₃COOH [$K_a = 1.85 \times 10^{-5}$ mol dm⁻³] after 10.0cm³ of it is diluted to 250.0cm³.

[CH₃COOH] after dilution = $0.35 \times 10/250 = 0.014 \text{ mol dm}^{-3}$ [H⁺] $\approx \sqrt{(K_a \times C)} = \sqrt{(1.85 \times 10^{-5} \times 0.014)} = 5.089 \times 10^{-4}$ $\rightarrow \text{pH} = -\log_{10}(5.089 \times 10^{-4}) = 3.29$ (d) Calculate the pH of a 0.12 mol dm⁻³ solution of the weak base $NH_3 [K_b = 1.80 \times 10^{-5} \text{ mol dm}^{-3}]$ after mixing it with an equal volume of water.

Method 1	Method 2
$[NH_3]$ after dilution = $0.12 \times 1/2 = 0.06 \text{ mol dm}^{-3}$	$[NH_3]$ after dilution = $0.12 \times 1/2 = 0.06 \text{ mol dm}^{-3}$
$[OH^{-}] \approx \sqrt{(K_{b} \times C)}$	$[OH^{-}] \approx \sqrt{(K_{\rm b} \times C)}$
\rightarrow [OH ⁻] = $\sqrt{(1.80 \times 10^{-5} \times 0.06)}$	$\rightarrow [OH^{-}] = \sqrt{(1.80 \times 10^{-5} \times 0.06)}$
$= 1.0392 \times 10^{-3} \text{ mol dm}^{-3}$	$= 1.0392 \times 10^{-3} \text{ mol dm}^{-3}$
\rightarrow [H ⁺] = K _w /[OH-] = 1.00 × 10 ⁻¹⁴ /1.0392 × 10 ⁻³	$\rightarrow \text{pOH} = -\log_{10}(1.08 \times 10^{-3}) = 2.98$
\rightarrow pH = -log ₁₀ (1.00 × 10 ⁻¹⁴ / 1.0392 × 10 ⁻³) = 11.02	\rightarrow pH = 14 - 2.98 = 11.02
\rightarrow pH = -log ₁₀ (1.00 × 10 ⁻¹⁴ / 1.0392 × 10 ⁻³) = 11.02	\rightarrow pH = 14 - 2.98 = 11.02

Calculation 8: The pH of an Acidic Buffer Solution

Rem. An acidic buffer is mixture of a weak acid (e.g. HCOOH) and a salt of same acid (e.g. HCOONa)

DONOT use $[H^+] \approx \sqrt{(K_a \times C)}$ to calculate a buffer pH! The concentrations of H^+ and A^- are only equal in a solution of the PURE acid. In a buffer, the concentration of A^- is much higher because of the presence of the salt of the acid, HA.

The weak acid is partially ionised but the salt is fully ionised. HCOOH \Rightarrow HCOO⁺ + H⁺ and HCOONa \rightarrow HCOO⁺ + Na⁺ Ka = $\frac{[H^+] \times [HCOO^+]}{[HCOOH]}$ But [HCOOH] = Moles of HCOOH in excess / Volume of mixture in dm³ and [HCOO⁺] = Moles of HCOONa formed / Volume of mixture in dm³ [Note : HCOO⁺ from HCOOH is negligible since the salt pushes the HCOOH equilibrium further to the left.] $\rightarrow K_a = \frac{[H^+] \times [HCOONa]}{[HCOOH]}$ $\rightarrow [H^+] = \frac{K_a \times [HCOOH]}{[HCOONa]}$ $= \frac{K_a \times Moles of HCOOH in excess / Volume of mixture in dm³}{Moles of HCOONa formed / Volume of mixture in dm³}$ $= \frac{K_a \times Moles of HCOOH in excess}{Moles of HCOONa formed}$ since the volume will cancel.

This can then be used to calculate the pH as usual.

Calculate the pH of the acidic buffer solution produced by mixing 40.0cm³ of 0.20 mol dm⁻³ HCOOH $(K_a = 1.82 \times 10^{-4} \text{ mol dm}^{-3} \text{ at } 298\text{K})$ with 10.0cm³ of 0.30 mol dm⁻³ NaOH.

Moles of HCOOH used = $0.20 \times 40.0 / 1000 = 0.008$ Moles of NaOH used = $0.30 \times 10.0 / 1000 = 0.003$ The equation for the neutralisation is: HCOOH + NaOH \rightarrow HCOONa + H₂O \rightarrow Moles of HCOOH in excess = 0.008 - 0.003 = 0.005and moles HCOONa formed = Moles NaOH reacted = 0.003

$$[H^+] = \frac{K_a \times \text{Moles of HCOOH in excess}}{\text{Moles of HCOONa formed}}$$

 $= \frac{1.82 \times 10^{-4} \times 0.005}{0.003} = 3.033 \times 10^{-4} \text{ mol dm}^{-3}$ $\rightarrow \text{pH} = -\log_{10}(3.033 \times 10^{-4}) = 3.52$

Calculation 9: The pH of an Alkaline Buffer Solution

Rem. An alkaline buffer is a mixture of a weak base (e.g. NH_3) and a salt of same acid (e.g. NH_4Cl). The weak base is partially ionised but the salt is fully ionised.

$$\mathrm{NH}_3 + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{NH}_4^+ + \mathrm{OH}^- \text{ and } \mathrm{NH}_4\mathrm{Cl} \rightarrow \mathrm{NH}_4^+ + \mathrm{Cl}^-; \ \mathrm{K}_{\mathrm{b}} = \frac{[\mathrm{NH}_4^+] \times [\mathrm{OH}^-]}{[\mathrm{NH}_3]}$$

But $[NH_3] = Moles of NH_3$ in excess / Volume of mixture in dm³ and $[NH_4^+] = Moles of NH_4Cl formed / Volume of mixture in dm³$ $[Note : <math>NH_4^+$ from NH_3 is negligible since the salt pushes the NH_3 equilibrium further to the left.] $\rightarrow K_b = \frac{[OH_3] \times [NH_4Cl]}{[NH_3]} \rightarrow [OH_3] = \frac{K_b \times [NH_3]}{[NH_4Cl]}$ $= K_b \times Moles of NH_3$ in excess / Volume of mixture in dm³

- = $K_b \times$ Moles of NH₃ in excess / Volume of mixture in dm³ Moles of NH₄Cl formed / Volume of mixture in dm³
- = $Kb \times Moles of NH_3$ in excess since the volume will cancel. Moles of NH₄Cl formed

This can then be used to calculate the pH as usual, via K_{w} or using pOH.

Calculate the pH of the alkaline buffer solution produced by mixing 25.0cm³ of 0.15 mol dm⁻³ NH₃ $(K_{b} = 1.80 \times 10^{-5} \text{ mol } dm^{-3} \text{ at } 298K)$ with 15.0cm³ of 0.10 mol dm^{-3} HCl.

Moles of NH₃ used = $0.15 \times 25.0 / 1000 = 0.00375$ Moles of HCl used = $0.10 \times 15.0 / 1000 = 0.00150$ The equation for the neutralisation is: $NH_3 + HCl \rightarrow NH_4^+ + Cl^- \rightarrow Moles \text{ of } NH_3 \text{ in excess} = 0.00375 - 0.00150 = 0.00225$ and moles NH₄Cl formed = Moles HCl reacted = 0.00150

[$[OH-] = \frac{\mathbf{K}_{b} \times \text{Moles of NH}_{3} \text{ in excess}}{\text{Moles of NH}_{4} \text{Cl formed}} = \frac{1.80}{1.80}$		$\frac{10^{-5} \times 0.00225}{0.00150} = 2.70 \times 10^{-5} \text{ mol dm}^{-3}$
	Method 1	Τ	Method 2
	\rightarrow [H ⁺] = K _w /[OH-] = 1.00 × 10 ⁻¹⁴ / 2.70 × 10 ⁻⁵	Т	\rightarrow pOH = -log ₁₀ (2.70 × 10 ⁻⁵) = 4.57
	\rightarrow pH = -log ₁₀ (1.00 × 10 ⁻¹⁴ / 2.70 × 10 ⁻⁵) = 9.43		\rightarrow pH = 14 - 4.57 = 9.43

Calculation 10:	The nH of	a Mixture of an	Acid with a Base
Culculation 10	I ne pri or	a minitature or an	riciu mitili u Dust

These calculations can follow various routes depending on whether the acid or the base is in excess in the mixture, whether the acid and/or base are strong or weak and what volumes of each are mixed. The permutations that you might be expected

A B	e.g. HCl + KOH	Calculate the number of moles of excess acid. Hence, using the total volume of the mixture, determine its concentration in the mixture. Hence calculate the pH as in calculation 2
C	Excess weak acid with a strong base e.g. HCOOH + NaOH	This mixture corresponds to an acid buffer since it will contain the excess weak acid along with the salt produced by neutralisation. Calculate the pH as in calculation 8 .
D	Excess weak acid with a weak base e.g. $HCOOH + NH_3$	Not applicable at A level
E	e.g. KOH + HCl	Calculate the number of moles of excess base. Hence, using the total volume of the mixture, determine its concentration in the mixture. Hence calculate the pH as in calculation 3 .
F	Excess strong base with a weak acid e.g. NaOH + CH ₃ COOH	
G	Excess weak base with a strong acid e.g. \mathbf{NH}_3 + HCl	This mixture corresponds to an alkaline buffer since it will contain the excess weak base along with the salt produced by neutralisation. Calculate the pH as in calculation 9 .
Н	Excess weak base with a weak acid e.g. NH ₃ + HCOOH	Not applicable at A level

Calculation 11: The pH of a Diluted Buffer Solution For acidic buffer

K_a x Moles of weak acid =

Moles of salt of weak acid

For alkaline buffer $[OH^{-}] = \frac{K_{h} \times Moles \text{ of weak base}}{K_{h} \times Moles \text{ of weak base}}$

Moles of salt of weak base

There is no calculation here! The equations above show that $[H^+]/[OH^-]$ depends on the ratio of weak acid / base to salt of weak acid / base. This ratio, and hence the pH, does not change when water is added.

Calculation 12: The pH of an Acidic Buffer Solution after adding some Strong Acid or Base

If a small amount of strong acid is added to an acidic or alkaline buffer, its pH will decrease but only slightly.

Calculate the pH of the acidic buffer solution containing 40.0cm³ of 0.20 mol dm⁻³ HCOOH ($K_a = 1.82 \times 10^{-4}$ mol dm⁻³ at 298K) and 10.0cm³ of 0.30 mol dm⁻³ NaOH after (a) 10.0cm³ of 0.1 mol dm⁻³ HCl (b) 10.0cm³ of 0.1 mol dm⁻³ NaOH has been added.

Look back to calculation 8. This buffer starts at pH 3.52 and contains 0.005 moles of HCOOH with 0.003 moles of HCOONa.

(a) Moles HCl added = moles H⁺ added = $0.10 \times 10.0 / 1000 = 0.001$ These H⁺ ions combine with HCOO⁻ (from salt) to form more HCOOH. HCOO $^{-}$ + H $^{+}$ \rightarrow HCOOH

 \rightarrow Moles of HCOOH now in solution = 0.005 + 0.001 = 0.006 and moles of HCOONa now in solution = 0.003 - 0.001 = 0.002

K_a x Moles of HCOOH $[H^{+}] =$ **Moles of HCOONa** $= \frac{1.82 \times 10^{-4} \times 0.006}{1000}$ $= 5.46 \times 10^{-4} \text{ mol dm}^{-3}$ 0.002

 \rightarrow New pH = -log₁₀(5.46 × 10⁻⁵) = **3.26** (Note: addition of the same acid to 50cm³ of water would change the pH from 7.00 to 1.79)

(b) Moles NaOH added = moles OH⁻ added $= 0.10 \times 10.0 / 1000 = 0.001$ These OH⁻ ions convert some HCOOH to HCOO⁻ (the salt). $HCOOH + OH^{-} \rightarrow HCOO^{-} + H_{2}O$ \rightarrow Moles of HCOOH now in solution = 0.005 - 0.001 = 0.004 and moles of HCOONa now in solution = 0.003 + 0.001 = 0.004

$$[\mathbf{H}^+] = \frac{\mathbf{K}_{\mathbf{a}} \times \mathbf{Moles of HCOOH}}{\mathbf{Moles of HCOONa}}$$
$$= \frac{1.82 \times 10^4 \times 0.004}{0.004} = 1.82 \times 10^{-4} \text{ mol dm}^{-3}$$
$$\rightarrow \text{New pH} = -\log_{10}(1.82 \times 10^{-4}) = 3.74$$

Calculation 13: The pH of an Alkaline Buffer Solution after adding some Strong Base or Base

If a small amount of strong base is added to an acidic or alkaline buffer, its pH will increase but only slightly.

Calculate the pH of the alkaline buffer solution containing 25.0cm³ of $0.15 \text{ mol } dm^{-3} NH_3$ ($K_b = 1.80 \times 10^{-5} \text{ mol } dm^{-3} \text{ at } 298 \text{ K}$) and 15.0 cm³ of 0.10 mol dm⁻³ HCl after (a) 5.00cm³ of 0.1 mol dm⁻³ HCl (b) 5.00cm³ of 0.1 mol dm⁻³ NaOH has been added.

Look back at calculation 9. This buffer starts at pH 9.43 and contains 0.00375 moles of NH, with 0.00150 moles of NH,Cl. (a) Moles HCl added = moles H⁺ added = $0.10 \times 5.0 / 1000 = 0.0005$ These H⁺ ions combine with NH, to form more NH₄Cl (the salt). $\rm NH_3$ + HCl \rightarrow $\rm NH_4^+$ + Cl⁻ \rightarrow Moles of NH, now in solution = 0.00375 - 0.0005 = 0.00325 and moles of NH₄Cl now in solution = 0.00150 + 0.0005 = 0.0020 $\frac{\mathbf{K}_{b} \times \text{Moles of NH}_{3}}{1.80 \times 10^{-5} \times 0.00325} = 2.925 \times 10^{-5} \text{ mol dm}^{-3}$ [OH⁻] = · Moles of NH₄Cl 0.0020 Method 1 Method 2 \rightarrow [H⁺] = K_w/[OH⁻] = 1.00 × 10⁻¹⁴ / 2.925 × 10⁻⁵ \rightarrow pOH = -log₁₀(2.925 × 10⁻⁵) = 4.53 \rightarrow pH = -log₁₀(1.00 × 10⁻¹⁴ / 2.925 × 10⁻⁵) = **9.46** \rightarrow New pH = 14 - 4.53 = 9.46 (b) Moles NaOH added = moles OH added = $0.10 \times 5.0 / 1000 = 0.0005$ These OH⁻ ions convert some NH₄⁺ (from the salt) to NH₃. $\mathrm{NH}_{4}^{+} + \mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}^{-} + \mathrm{H}_{2}\mathrm{O}$ \rightarrow Moles of NH₃ now in solution = 0.00375 + 0.0005 = 0.00425 and moles of NH_4Cl now in solution = 0.0015 - 0.0005 = 0.0010 $[\mathbf{OH}^{-}] = \frac{\mathbf{K}_{b} \times \mathbf{Moles of NH}_{3}}{\mathbf{Moles of NH}_{4}\mathbf{Cl}} = \frac{1.80 \times 10^{-5} \times 0.00425}{0.0010}$ $= 7.65 \times 10^{-5} \text{ mol dm}^{-3}$ Method 1 Method 2 \rightarrow [H⁺] = K_w/[OH⁻] = 1.00 × 10⁻¹⁴ / 7.65 × 10⁻⁵ \rightarrow pOH = -log₁₀(7.65 × 10⁻⁵) = 4.12 $\rightarrow pH = -\log_{10}(1.00 \times 10^{-14} / 7.65 \times 10^{-5}) = 9.88$

Practice Questions

1. A 25.0 cm³ sample of 0.0850 mol dm⁻³ hydrochloric acid was placed in a beaker and 100cm³ of distilled water were added. Calculate the pH of the new solution formed at 298K.

 \rightarrow New pH = 14 - 4.12 = 9.88

- 2. A 25.0 cm³ sample of 0.620 mol dm³ nitric acid was placed in a beaker and 38.2 cm³ of 0.550 mol dm⁻³ aqueous sodium hydroxide were added. Calculate the pH of the solution formed at 298K.
- 3. At 42°C, the value of K_w is 3.46×10^{14} mol²dm⁻⁶. Calculate the pH of pure water at this temperature.
- 4. The value of K_a for weak acid (HA) is 1.93×10^{-4} mol dm⁻³ at 25°C. Calculate the pH of a 0.0560 mol dm–3 solution of HA at 25°C.
- 5. The value of K_{a} for methanoic acid is 1.78×10^{-4} mol dm⁻³ at 25°C. A buffer solution is prepared containing 2.35×10^{-2} mol of methanoic acid and 1.84 × 10⁻² mol of sodium methanoate in 1.00dm³ of solution. Calculate the pH of this buffer solution at 25°C. A 5.00 cm³ sample of 0.100 mol dm⁻³ hydrochloric acid is added to this buffer solution. Calculate the new pH of the buffer solution after this addition.
- 6. Calculate the pH of the buffer solution formed when 10.00cm³ of 0.100 mol dm⁻³ potassium hydroxide are added to 25.00cm³ of 0.430 mol dm⁻³ ethanoic acid at 298K. (K₂ for CH₂COOH = 1.85×10^{-5} mol dm⁻³ at 298K)
- 7. Calculate the pH of 0.140 moldm⁻³ aqueous sodium hydroxide at 50°C. The value of K_w is $5.48 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6}$ at 50°C.
- 8. Calculate the pH of the solution formed when 25.0cm³ of 0.150 mol dm⁻³ aqueous sulfuric acid are added to 30.0 cm³ of 0.200 mol dm⁻³ aqueous potassium hydroxide at 25 °C. Assume that the sulfuric acid is fully dissociated.

Answers

- 1. See calculation $7(a) \rightarrow 1.79$
- 2. See calculation 10E. Find moles of acid. Find moles of alkali. Calculate moles in excess (here NaOH). Calculate [NaOH] using total volume. Calculate pH as per calculation $3 \rightarrow 12.85$
- 3. See calculation $1 \rightarrow 6.73$
- 4. See calculation $4 \rightarrow 2.49$
- 5. See calculation $8 \rightarrow 3.64$; See calculation $12 \rightarrow 3.62$
- 6. See calculation $8 \rightarrow 3.74$
- 7. See calculation $3 \rightarrow 12.41$
- 8. See calculation 10A. Find moles of acid. Find moles of alkali. Calculate moles in excess (here H₂SO₄) remembering reaction ratio. Calculate $[H_2SO_4]$ using total volume. Calculate $[H^+]$ and pH as per calculation $2 \rightarrow 1.59$

Acknowledgements: This Factsheet was researched and written by Mike Hughes.

Curriculum Press, Bank House, 105 King Street, Wellington, Shropshire, TF1 1NU. Chemistry Factsheets may be copied free of charge by teaching staff or students, provided that their school is a registered subscriber. No part of these Factsheets may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any other means, without the prior permission of the publisher. ISSN 1351-5136